1932

Abstract

Many fungi can live both saprophytically and as endophyte or pathogen inside a living plant. In both environments, complex organic polymers are used as sources of nutrients. Propagation inside a living host also requires the ability to respond to immune responses of the host. We review current knowledge of how plant-pathogenic fungi do this. First, we look at how fungi change their global gene expression upon recognition of the host environment, leading to secretion of effectors, enzymes, and secondary metabolites; changes in metabolism; and defense against toxic compounds. Second, we look at what is known about the various cues that enable fungi to sense the presence of living plant cells. Finally, we review literature on transcription factors that participate in gene expression in planta or are suspected to be involved in that process because they are required for the ability to cause disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080516-035551
2017-08-04
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/phyto/55/1/annurev-phyto-080516-035551.html?itemId=/content/journals/10.1146/annurev-phyto-080516-035551&mimeType=html&fmt=ahah

Literature Cited

  1. Ahn JH, Walton JD. 1.  1998. Regulation of cyclic peptide biosynthesis and pathogenicity in Cochliobolus carbonum by TOXEp, a novel protein with a bZIP basic DNA-binding motif and four ankyrin repeats. Mol. Gen. Genet. 260:462–69 [Google Scholar]
  2. Akiyama K, Hayashi H. 2.  2006. Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. Ann. Bot. 97:925–31 [Google Scholar]
  3. Alkan N, Friedlander G, Ment D, Prusky D, Fluhr R. 3.  2015. Simultaneous transcriptome analysis of Colletotrichum gloeosporioides and tomato fruit pathosystem reveals novel fungal pathogenicity and fruit defense strategies. New Phytol 205:801–15 [Google Scholar]
  4. Bajar A, Podila GK, Kolattukudy PE. 4.  1991. Identification of a fungal cutinase promoter that is inducible by a plant signal via a phosphorylated trans-acting factor. PNAS 88:8208–12 [Google Scholar]
  5. Barad S, Horowitz SB, Kobiler I, Sherman A, Prusky D. 5.  2014. Accumulation of the mycotoxin patulin in the presence of gluconic acid contributes to pathogenicity of Penicillium expansum. Mol. Plant-Microbe Interact. 27:66–77 [Google Scholar]
  6. Barad S, Sela N, Kumar D, Kumar-Dubey A, Glam-Matana N. 6.  et al. 2016. Fungal and host transcriptome analysis of pH-regulated genes during colonization of apple fruits by Penicillium expansum. BMC Genom 17:330 [Google Scholar]
  7. Boedi S, Berger H, Sieber C, Munsterkotter M, Maloku I. 7.  et al. 2016. Comparison of Fusarium graminearum transcriptomes on living or dead wheat differentiates substrate-responsive and defense-responsive genes. Front. Microbiol. 7:1113 [Google Scholar]
  8. Boenisch MJ, Schafer W. 8.  2011. Fusarium graminearum forms mycotoxin producing infection structures on wheat. BMC Plant Biol 11:110 [Google Scholar]
  9. Boronat S, Domenech A, Paulo E, Calvo IA, Garcia-Santamarina S. 9.  et al. 2014. Thiol-based H2O2 signalling in microbial systems. Redox Biol 2:395–99 [Google Scholar]
  10. Bradshaw RE, Guo Y, Sim AD, Kabir MS, Chettri P. 10.  et al. 2016. Genome-wide gene expression dynamics of the fungal pathogen Dothistroma septosporum throughout its infection cycle of the gymnosperm host Pinus radiata. . Mol. Plant Pathol. 17:210–24 [Google Scholar]
  11. Brakhage AA. 11.  2013. Regulation of fungal secondary metabolism. Nat. Rev. Microbiol. 11:21–32 [Google Scholar]
  12. Brown DW, Busman M, Proctor RH. 12.  2014. Fusarium verticillioides SGE1 is required for full virulence and regulates expression of protein effector and secondary metabolite biosynthetic genes. Mol. Plant-Microbe Interact. 27:809–23 [Google Scholar]
  13. Brown DW, Butchko RA, Busman M, Proctor RH. 13.  2007. The Fusarium verticillioides FUM gene cluster encodes a Zn(II)2Cys6 protein that affects FUM gene expression and fumonisin production. Eukaryot. Cell 6:1210–18 [Google Scholar]
  14. Buschhaus C, Jetter R. 14.  2011. Composition differences between epicuticular and intracuticular wax substructures: How do plants seal their epidermal surfaces?. J. Exp. Bot. 62:841–53 [Google Scholar]
  15. Camejo D, Guzman-Cedeno A, Moreno A. 15.  2016. Reactive oxygen species, essential molecules, during plant-pathogen interactions. Plant Physiol. Biochem. 103:10–23 [Google Scholar]
  16. Caracuel Z, Roncero MI, Espeso EA, Gonzalez-Verdejo CI, Garcia-Maceira FI, Di Pietro A. 16.  2003. The pH signalling transcription factor PacC controls virulence in the plant pathogen Fusarium oxysporum. Mol. Microbiol. 48:765–79 [Google Scholar]
  17. Chacko N, Gold S. 17.  2012. Deletion of the Ustilago maydis ortholog of the Aspergillus sporulation regulator medA affects mating and virulence through pheromone response. Fungal Genet. Biol 49:426–32 [Google Scholar]
  18. Chen Y, Le X, Sun Y, Li M, Zhang H. 18.  et al. 2016. MoYcp4 is required for growth, conidiogenesis and pathogenicity in Magnaporthe oryzae. Mol. Plant Pathol. https://doi.org/10.1111/mpp.12455 [Crossref]
  19. Chen Y, Zhai S, Sun Y, Li M, Dong Y. 19.  et al. 2015. MoTup1 is required for growth, conidiogenesis and pathogenicity of Magnaporthe oryzae. Mol. Plant Pathol. 16:799–810 [Google Scholar]
  20. Chen Y, Zhai S, Zhang H, Zuo R, Wang J. 20.  et al. 2014. Shared and distinct functions of two Gti1/Pac2 family proteins in growth, morphogenesis and pathogenicity of Magnaporthe oryzae. . Environ. Microbiol. 16:788–801 [Google Scholar]
  21. Cho Y, Ohm RA, Grigoriev IV, Srivastava A. 21.  2013. Fungal-specific transcription factor AbPf2 activates pathogenicity in Alternaria brassicicola. Plant J 75:498–514 [Google Scholar]
  22. Cho Y, Srivastava A, Ohm RA, Lawrence CB, Wang KH. 22.  et al. 2012. Transcription factor Amr1 induces melanin biosynthesis and suppresses virulence in Alternaria brassicicola. . PLOS Pathog. 8:e1002974 [Google Scholar]
  23. Chung H, Choi J, Park SY, Jeon J, Lee YH. 23.  2013. Two conidiation-related Zn(II)2Cys6 transcription factor genes in the rice blast fungus. Fungal Genet. Biol. 61:133–41 [Google Scholar]
  24. 24. Consort. REX. 2016. Combining selective pressures to enhance the durability of disease resistance genes. Front. Plant Sci. 7:1916 [Google Scholar]
  25. Croll D, McDonald BA. 25.  2012. The accessory genome as a cradle for adaptive evolution in pathogens. PLOS Pathog 8:e1002608 [Google Scholar]
  26. Croll D, Zala M, McDonald BA. 26.  2013. Breakage-fusion-bridge cycles and large insertions contribute to the rapid evolution of accessory chromosomes in a fungal pathogen. PLOS Genet 9:e1003567 [Google Scholar]
  27. Cuzick A, Urban M, Hammond-Kosack K. 27.  2008. Fusarium graminearum gene deletion mutants map1 and tri5 reveal similarities and differences in the pathogenicity requirements to cause disease on Arabidopsis and wheat floral tissue. New Phytol 177:990–1000 [Google Scholar]
  28. Dalmais B, Schumacher J, Moraga J, Le Pêcheur P, Tudzynski B. 28.  et al. 2011. The Botrytis cinerea phytotoxin botcinic acid requires two polyketide synthases for production and has a redundant role in virulence with botrydial. Mol. Plant Pathol. 12:564–79 [Google Scholar]
  29. Deng S, Wang CY, Zhang X, Wang Q, Lin L. 29.  2015. VdNUC-2, the key regulator of phosphate responsive signaling pathway, is required for Verticillium dahliae infection. PLOS ONE 10:e0145190 [Google Scholar]
  30. Denison SH. 30.  2000. pH regulation of gene expression in fungi. Fungal Genet. Biol. 29:61–71 [Google Scholar]
  31. Desjardins AE, Proctor RH. 31.  2007. Molecular biology of Fusarium mycotoxins. Int. J. Food Microbiol. 119:47–50 [Google Scholar]
  32. DeZwaan TM, Carroll AM, Valent B, Sweigard JA. 32.  1999. Magnaporthe grisea pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell 11:2013–30 [Google Scholar]
  33. Doehlemann G, Hemetsberger C. 33.  2013. Apoplastic immunity and its suppression by filamentous plant pathogens. New Phytol 198:1001–16 [Google Scholar]
  34. Dufresne M, Perfect S, Pellier AL, Bailey JA, Langin T. 34.  2000. A GAL4-like protein is involved in the switch between biotrophic and necrotrophic phases of the infection process of Colletotrichum lindemuthianum on common bean. Plant Cell 12:1579–90 [Google Scholar]
  35. Dunn MF, Ramirez-Trujillo JA, Hernandez-Lucas I. 35.  2009. Major roles of isocitrate lyase and malate synthase in bacterial and fungal pathogenesis. Microbiology 155:3166–75 [Google Scholar]
  36. Elias-Villalobos A, Fernandez-Alvarez A, Ibeas JI. 36.  2011. The general transcriptional repressor Tup1 is required for dimorphism and virulence in a fungal plant pathogen. PLOS Pathog 7:e1002235 [Google Scholar]
  37. Elliott CE, Fox EM, Jarvis RS, Howlett BJ. 37.  2011. The cross-pathway control system regulates production of the secondary metabolite toxin, sirodesmin PL, in the ascomycete, Leptosphaeria maculans. . BMC Microbiol. 11:169 [Google Scholar]
  38. Fisher MC, Gow NA, Gurr SJ. 38.  2016. Tackling emerging fungal threats to animal health, food security and ecosystem resilience. Philos. Trans. R. Soc. Lond. Ser. B 371:20160332 [Google Scholar]
  39. Flor-Parra I, Vranes M, Kamper J, Perez-Martin J. 39.  2006. Biz1, a zinc finger protein required for plant invasion by Ustilago maydis, regulates the levels of a mitotic cyclin. Plant Cell 18:2369–87 [Google Scholar]
  40. Friesen TL, Faris JD, Solomon PS, Oliver RP. 40.  2008. Host-specific toxins: effectors of necrotrophic pathogenicity. Cell. Microbiol. 10:1421–28 [Google Scholar]
  41. Fudal I, Collemare J, Bohnert HU, Melayah D, Lebrun MH. 41.  2007. Expression of Magnaporthe grisea avirulence gene ACE1 is connected to the initiation of appressorium-mediated penetration. Eukaryot. Cell 6:546–54 [Google Scholar]
  42. Gan P, Ikeda K, Irieda H, Narusaka M, O'Connell RJ. 42.  et al. 2013. Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. New Phytol 197:1236–49 [Google Scholar]
  43. Gao T, Zheng Z, Hou Y, Zhou M. 43.  2014. Transcription factors spt3 and spt8 are associated with conidiation, mycelium growth, and pathogenicity in Fusarium graminearum. . FEMS Microbiol. Lett. 351:42–50 [Google Scholar]
  44. Garcia-Garrido JM, Lendzemo V, Castellanos-Morales V, Steinkellner S, Vierheilig H. 44.  2009. Strigolactones, signals for parasitic plants and arbuscular mycorrhizal fungi. Mycorrhiza 19:449–59 [Google Scholar]
  45. Gardiner DM, Kazan K, Manners JM. 45.  2009. Nutrient profiling reveals potent inducers of trichothecene biosynthesis in Fusarium graminearum. . Fungal Genet. Biol. 46:604–13 [Google Scholar]
  46. Gardiner DM, Kazan K, Praud S, Torney FJ, Rusu A, Manners JM. 46.  2010. Early activation of wheat polyamine biosynthesis during Fusarium head blight implicates putrescine as an inducer of trichothecene mycotoxin production. BMC Plant Biol 10:289 [Google Scholar]
  47. Gervais J, Plissonneau C, Linglin J, Meyer M, Labadie K. 47.  et al. 2016. Different waves of effector genes with contrasted genomic location are expressed by Leptosphaeria maculans during cotyledon and stem colonization of oilseed rape. Mol. Plant Pathol. https://doi.org/10.1111/mpp.12464 [Crossref]
  48. Giesbert S, Schumacher J, Kupas V, Espino J, Segmuller N. 48.  et al. 2012. Identification of pathogenesis-associated genes by T-DNA-mediated insertional mutagenesis in Botrytis cinerea: a type 2A phosphoprotein phosphatase and an SPT3 transcription factor have significant impact on virulence. Mol. Plant-Microbe Interact. 25:481–95 [Google Scholar]
  49. Giese H, Sondergaard TE, Sorensen JL. 49.  2013. The AreA transcription factor in Fusarium graminearum regulates the use of some nonpreferred nitrogen sources and secondary metabolite production. Fungal Biol 117:814–21 [Google Scholar]
  50. Gijzen M, Nurnberger T. 50.  2006. Nep1-like proteins from plant pathogens: recruitment and diversification of the NPP1 domain across taxa. Phytochemistry 67:1800–7 [Google Scholar]
  51. Gronover CS, Schumacher J, Hantsch P, Tudzynski B. 51.  2005. A novel seven-helix transmembrane protein BTP1 of Botrytis cinerea controls the expression of GST-encoding genes, but is not essential for pathogenicity. Mol. Plant Pathol. 6:243–56 [Google Scholar]
  52. Gu SQ, Li P, Wu M, Hao ZM, Gong XD. 52.  et al. 2014. StSTE12 is required for the pathogenicity of Setosphaeria turcica by regulating appressorium development and penetration. Microbiol. Res. 169:817–23 [Google Scholar]
  53. Guo M, Chen Y, Du Y, Dong Y, Guo W. 53.  et al. 2011. The bZIP transcription factor MoAP1 mediates the oxidative stress response and is critical for pathogenicity of the rice blast fungus Magnaporthe oryzae. PLOS Pathog 7:e1001302 [Google Scholar]
  54. Haddadi P, Ma L, Wang H, Borhan MH. 54.  2016. Genome-wide transcriptomic analyses provide insights into the lifestyle transition and effector repertoire of Leptosphaeria maculans during the colonization of Brassica napus seedlings. Mol. Plant Pathol 17:1196–210 [Google Scholar]
  55. Hampel M, Jakobi M, Schmitz L, Meyer U, Finkernagel F. 55.  et al. 2016. Unfolded protein response (UPR) regulator Cib1 controls expression of genes encoding secreted virulence factors in Ustilago maydis. PLOS ONE 11:e0153861 [Google Scholar]
  56. Harris LJ, Balcerzak M, Johnston A, Schneiderman D, Ouellet T. 56.  2016. Host-preferential Fusarium graminearum gene expression during infection of wheat, barley, and maize. Fungal Biol 120:111–23 [Google Scholar]
  57. Hartmann HA, Kruger J, Lottspeich F, Kahmann R. 57.  1999. Environmental signals controlling sexual development of the corn smut fungus Ustilago maydis through the transcriptional regulator Prf1. Plant Cell 11:1293–306 [Google Scholar]
  58. Hassan S, Mathesius U. 58.  2012. The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. J. Exp. Bot. 63:3429–44 [Google Scholar]
  59. Hawkins AR, Lamb HK, Moore JD, Charles IG, Roberts CF. 59.  1993. The pre-chorismate (shikimate) and quinate pathways in filamentous fungi: theoretical and practical aspects. J. Gen. Microbiol. 139:2891–99 [Google Scholar]
  60. Heimel K, Freitag J, Hampel M, Ast J, Bolker M, Kamper J. 60.  2013. Crosstalk between the unfolded protein response and pathways that regulate pathogenic development in Ustilago maydis. . Plant Cell 25:4262–77 [Google Scholar]
  61. Heimel K, Scherer M, Schuler D, Kamper J. 61.  2010. The Ustilago maydis Clp1 protein orchestrates pheromone and b-dependent signaling pathways to coordinate the cell cycle and pathogenic development. Plant Cell 22:2908–22 [Google Scholar]
  62. Heimel K, Scherer M, Vranes M, Wahl R, Pothiratana C. 62.  et al. 2010. The transcription factor Rbf1 is the master regulator for b-mating type controlled pathogenic development in Ustilago maydis. . PLOS Pathog. 6:e1001035 [Google Scholar]
  63. Hemetsberger C, Herrberger C, Zechmann B, Hillmer M, Doehlemann G. 63.  2012. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity. PLOS Pathog 8:e1002684 [Google Scholar]
  64. Hou R, Jiang C, Zheng Q, Wang C, Xu JR. 64.  2015. The AreA transcription factor mediates the regulation of deoxynivalenol (DON) synthesis by ammonium and cyclic adenosine monophosphate (cAMP) signalling in Fusarium graminearum. . Mol. Plant Pathol. 16:987–99 [Google Scholar]
  65. Imazaki I, Kurahashi M, Iida Y, Tsuge T. 65.  2007. Fow2, a Zn(II)2Cys6-type transcription regulator, controls plant infection of the vascular wilt fungus Fusarium oxysporum. . Mol. Microbiol. 63:737–53 [Google Scholar]
  66. IpCho SVS, Tan KC, Koh G, Gummer J, Oliver RP. 66.  et al. 2010. The transcription factor StuA regulates central carbon metabolism, mycotoxin production, and effector gene expression in the wheat pathogen Stagonospora nodorum. Eukaryot. Cell 9:1100–8 [Google Scholar]
  67. Jiang C, Zhang S, Zhang Q, Tao Y, Wang C, Xu JR. 67.  2015. FgSKN7 and FgATF1 have overlapping functions in ascosporogenesis, pathogenesis and stress responses in Fusarium graminearum. Environ. Microbiol. 17:1245–60 [Google Scholar]
  68. Jonkers W, Dong Y, Broz K, Kistler HC. 68.  2012. The Wor1-like protein Fgp1 regulates pathogenicity, toxin synthesis and reproduction in the phytopathogenic fungus Fusarium graminearum. . PLOS Pathog. 8:e1002724 [Google Scholar]
  69. Joubert A, Simoneau P, Campion C, Bataille-Simoneau N, Iacomi-Vasilescu B. 69.  et al. 2011. Impact of the unfolded protein response on the pathogenicity of the necrotrophic fungus Alternaria brassicicola. Mol. Microbiol. 79:1305–24 [Google Scholar]
  70. Kamper J, Kahmann R, Bolker M, Ma LJ, Brefort T. 70.  et al. 2006. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444:97–101 [Google Scholar]
  71. Kawahara Y, Oono Y, Kanamori H, Matsumoto T, Itoh T, Minami E. 71.  2012. Simultaneous RNA-seq analysis of a mixed transcriptome of rice and blast fungus interaction. PLOS ONE 7:e49423 [Google Scholar]
  72. Kellner R, Bhattacharyya A, Poppe S, Hsu TY, Brem RB, Stukenbrock EH. 72.  2014. Expression profiling of the wheat pathogen Zymoseptoria tritici reveals genomic patterns of transcription and host-specific regulatory programs. Genome Biol. Evol. 6:1353–65 [Google Scholar]
  73. Khan R, Tan R, Mariscal AG, Straney D. 73.  2003. A binuclear zinc transcription factor binds the host isoflavonoid-responsive element in a fungal cytochrome p450 gene responsible for detoxification. Mol. Microbiol. 49:117–30 [Google Scholar]
  74. Kim H, Woloshuk CP. 74.  2008. Role of AREA, a regulator of nitrogen metabolism, during colonization of maize kernels and fumonisin biosynthesis in Fusarium verticillioides. Fungal Genet. Biol. 45:947–53 [Google Scholar]
  75. Kim S, Park SY, Kim KS, Rho HS, Chi MH. 75.  et al. 2009. Homeobox transcription factors are required for conidiation and appressorium development in the rice blast fungus Magnaporthe oryzae. . PLOS Genet. 5:e1000757 [Google Scholar]
  76. Kim Y, Kim H, Son H, Choi GJ, Kim JC, Lee YW. 76.  2014. MYT3, a Myb-like transcription factor, affects fungal development and pathogenicity of Fusarium graminearum. . PLOS ONE 9:e94359 [Google Scholar]
  77. Kleemann J, Rincon-Rivera LJ, Takahara H, Neumann U, Ver Loren van Themaat E. 77.  et al. 2012. Sequential delivery of host-induced virulence effectors by appressoria and intracellular hyphae of the phytopathogen Colletotrichum higginsianum. . PLOS Pathog. 8:e1002643 [Google Scholar]
  78. Koeck M, Hardham AR, Dodds PN. 78.  2011. The role of effectors of biotrophic and hemibiotrophic fungi in infection. Cell. Microbiol. 13:1849–57 [Google Scholar]
  79. Kou Y, Tan YH, Ramanujam R, Naqvi NI. 79.  2017. Structure-function analyses of the Pth11 receptor reveal an important role for CFEM motif and redox regulation in rice blast. New Phytol 214:330–42 [Google Scholar]
  80. Kubicek CP, Starr TL, Glass NL. 80.  2014. Plant cell wall–degrading enzymes and their secretion in plant-pathogenic fungi. Annu. Rev. Phytopathol. 52:427–51 [Google Scholar]
  81. Kulkarni RD, Kelkar HS, Dean RA. 81.  2003. An eight-cysteine-containing CFEM domain unique to a group of fungal membrane proteins. Trends Biochem. Sci. 28:118–21 [Google Scholar]
  82. Kulkarni RD, Thon MR, Pan H, Dean RA. 82.  2005. Novel G-protein-coupled receptor-like proteins in the plant pathogenic fungus Magnaporthe grisea. Genome Biol 6:R24 [Google Scholar]
  83. Landraud P, Chuzeville S, Billon-Grande G, Poussereau N, Bruel C. 83.  2013. Adaptation to pH and role of PacC in the rice blast fungus Magnaporthe oryzae. PLOS ONE 8:e69236 [Google Scholar]
  84. Lanver D, Berndt P, Tollot M, Naik V, Vranes M. 84.  et al. 2014. Plant surface cues prime Ustilago maydis for biotrophic development. PLOS Pathog 10:e1004272 [Google Scholar]
  85. Lanver D, Mendoza-Mendoza A, Brachmann A, Kahmann R. 85.  2010. Sho1 and Msb2-related proteins regulate appressorium development in the smut fungus Ustilago maydis. . Plant Cell 22:2085–101 [Google Scholar]
  86. Lee SJ, Rose JK. 86.  2010. Mediation of the transition from biotrophy to necrotrophy in hemibiotrophic plant pathogens by secreted effector proteins. Plant Signal. Behav. 5:769–72 [Google Scholar]
  87. Leroch M, Mueller N, Hinsenkamp I, Hahn M. 87.  2015. The signalling mucin Msb2 regulates surface sensing and host penetration via BMP1 MAP kinase signalling in Botrytis cinerea. . Mol. Plant Pathol. 16:787–98 [Google Scholar]
  88. Lev S, Hadar R, Amedeo P, Baker SE, Yoder OC, Horwitz BA. 88.  2005. Activation of an AP1-like transcription factor of the maize pathogen Cochliobolus heterostrophus in response to oxidative stress and plant signals. Eukaryot. Cell 4:443–54 [Google Scholar]
  89. Li D, Kolattukudy PE. 89.  1995. Cloning and expression of cDNA encoding a protein that binds a palindromic promoter element essential for induction of fungal cutinase by plant cutin. J. Biol. Chem. 270:11753–56 [Google Scholar]
  90. Li D, Sirakova T, Rogers L, Ettinger WF, Kolattukudy PE. 90.  2002. Regulation of constitutively expressed and induced cutinase genes by different zinc finger transcription factors in Fusarium solani f. sp. pisi (Nectria haematococca). J. Biol. Chem 277:7905–12 [Google Scholar]
  91. Lin CH, Yang SL, Chung KR. 91.  2009. The YAP1 homolog-mediated oxidative stress tolerance is crucial for pathogenicity of the necrotrophic fungus Alternaria alternata in citrus. Mol. Plant-Microbe Interact. 22:942–52 [Google Scholar]
  92. Liu N, Fan F, Qiu D, Jiang L. 92.  2013. The transcription cofactor FgSwi6 plays a role in growth and development, carbendazim sensitivity, cellulose utilization, lithium tolerance, deoxynivalenol production and virulence in the filamentous fungus Fusarium graminearum. Fungal Genet. Biol. 58–59:42–52 [Google Scholar]
  93. Liu W, Zhou X, Li G, Li L, Kong L. 93.  et al. 2011. Multiple plant surface signals are sensed by different mechanisms in the rice blast fungus for appressorium formation. PLOS Pathog 7:e1001261 [Google Scholar]
  94. Loewith R, Hall MN. 94.  2011. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 189:1177–201 [Google Scholar]
  95. Lopez-Berges MS, Rispail N, Prados-Rosales RC, Di Pietro A. 95.  2010. A nitrogen response pathway regulates virulence functions in Fusarium oxysporum via the protein kinase TOR and the bZIP protein MeaB. Plant Cell 22:2459–75 [Google Scholar]
  96. Lysoe E, Seong KY, Kistler HC. 96.  2011. The transcriptome of Fusarium graminearum during the infection of wheat. Mol. Plant-Microbe Interact. 24:995–1000 [Google Scholar]
  97. Ma LJ, van der Does HC, Borkovich KA, Coleman JJ, Daboussi MJ. 97.  et al. 2010. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–73 [Google Scholar]
  98. Maier FJ, Miedaner T, Hadeler B, Felk A, Salomon S. 98.  et al. 2006. Involvement of trichothecenes in fusarioses of wheat, barley and maize evaluated by gene disruption of the trichodiene synthase (Tri5) gene in three field isolates of different chemotype and virulence. Mol. Plant Pathol. 7:449–61 [Google Scholar]
  99. Marroquin-Guzman M, Sun G, Wilson RA. 99.  2017. Glucose-ABL1-TOR signaling modulates cell cycle tuning to control terminal appressorial cell differentiation. PLOS Genet 13:e1006557 [Google Scholar]
  100. Marroquin-Guzman M, Wilson RA. 100.  2015. GATA-dependent glutaminolysis drives appressorium formation in Magnaporthe oryzae by suppressing TOR inhibition of cAMP/PKA signaling. PLOS Pathog 11:e1004851 [Google Scholar]
  101. Martin-Urdiroz M, Oses-Ruiz M, Ryder LS, Talbot NJ. 101.  2016. Investigating the biology of plant infection by the rice blast fungus Magnaporthe oryzae. Fungal Genet. Biol. 90:61–68 [Google Scholar]
  102. Masachis S, Segorbe D, Turra D, Leon-Ruiz M, Furst U. 102.  et al. 2016. A fungal pathogen secretes plant alkalinizing peptides to increase infection. Nat. Microbiol. 1:16043 [Google Scholar]
  103. Mathioni SM, Belo A, Rizzo CJ, Dean RA, Donofrio NM. 103.  2011. Transcriptome profiling of the rice blast fungus during invasive plant infection and in vitro stresses. BMC Genom 12:49 [Google Scholar]
  104. Mendoza-Mendoza A, Eskova A, Weise C, Czajkowski R, Kahmann R. 104.  2009. Hap2 regulates the pheromone response transcription factor prf1 in Ustilago maydis. . Mol. Microbiol. 72:683–98 [Google Scholar]
  105. Merhej J, Richard-Forget F, Barreau C. 105.  2011. The pH regulatory factor Pac1 regulates Tri gene expression and trichothecene production in Fusarium graminearum. . Fungal Genet. Biol. 48:275–84 [Google Scholar]
  106. Michielse CB, Becker M, Heller J, Moraga J, Collado IG, Tudzynski P. 106.  2011. The Botrytis cinerea Reg1 protein, a putative transcriptional regulator, is required for pathogenicity, conidiogenesis, and the production of secondary metabolites. Mol. Plant-Microbe Interact. 24:1074–85 [Google Scholar]
  107. Michielse CB, Studt L, Janevska S, Sieber CM, Arndt B. 107.  et al. 2015. The global regulator FfSge1 is required for expression of secondary metabolite gene clusters but not for pathogenicity in Fusarium fujikuroi. . Environ. Microbiol. 17:2690–708 [Google Scholar]
  108. Michielse CB, van Wijk R, Reijnen L, Manders EM, Boas S. 108.  et al. 2009. The nuclear protein Sge1 of Fusarium oxysporum is required for parasitic growth. PLOS Pathog 5:e1000637 [Google Scholar]
  109. Mirzadi Gohari A, Mehrabi R, Robert O, Ince IA, Boeren S. 109.  et al. 2014. Molecular characterization and functional analyses of ZtWor1, a transcriptional regulator of the fungal wheat pathogen Zymoseptoria tritici. Mol. Plant Pathol. 15:394–405 [Google Scholar]
  110. Miyara I, Shafran H, Kramer Haimovich H, Rollins J, Sherman A, Prusky D. 110.  2008. Multi-factor regulation of pectate lyase secretion by Colletotrichum gloeosporioides pathogenic on avocado fruits. Mol. Plant Pathol. 9:281–91 [Google Scholar]
  111. Molina L, Kahmann R. 111.  2007. An Ustilago maydis gene involved in H2O2 detoxification is required for virulence. Plant Cell 19:2293–309 [Google Scholar]
  112. Montibus M, Ducos C, Bonnin-Verdal MN, Bormann J, Ponts N. 112.  et al. 2013. The bZIP transcription factor Fgap1 mediates oxidative stress response and trichothecene biosynthesis but not virulence in Fusarium graminearum. . PLOS ONE 8:e83377 [Google Scholar]
  113. Montibus M, Khosravi C, Zehraoui E, Verdal-Bonnin MN, Richard-Forget F, Barreau C. 113.  2016. Is the Fgap1 mediated response to oxidative stress chemotype dependent in Fusarium graminearum?. FEMS Microbiol. Lett. 363:fnv232 [Google Scholar]
  114. Nasmith CG, Walkowiak S, Wang L, Leung WW, Gong Y. 114.  et al. 2011. Tri6 is a global transcription regulator in the phytopathogen Fusarium graminearum. . PLOS Pathog. 7:e1002266 [Google Scholar]
  115. Nejat N, Rookes J, Mantri NL, Cahill DM. 115.  2017. Plant-pathogen interactions: toward development of next-generation disease-resistant plants. Crit. Rev. Biotechnol. 37:229–37 [Google Scholar]
  116. Nino-Sanchez J, Casado-Del Castillo V, Tello V, De Vega-Bartol JJ, Ramos B. 116.  et al. 2016. The FTF gene family regulates virulence and expression of SIX effectors in Fusarium oxysporum. . Mol. Plant Pathol. 17:1124–39 [Google Scholar]
  117. O'Brien JA, Daudi A, Butt VS, Bolwell GP. 117.  2012. Reactive oxygen species and their role in plant defence and cell wall metabolism. Planta 236:765–79 [Google Scholar]
  118. O'Connell RJ, Thon MR, Hacquard S, Amyotte SG, Kleemann J. 118.  et al. 2012. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat. Genet. 44:1060–65 [Google Scholar]
  119. Odenbach D, Breth B, Thines E, Weber RW, Anke H, Foster AJ. 119.  2007. The transcription factor Con7p is a central regulator of infection-related morphogenesis in the rice blast fungus Magnaporthe grisea. . Mol. Microbiol. 64:293–307 [Google Scholar]
  120. Oh M, Son H, Choi GJ, Lee C, Kim JC. 120.  et al. 2016. Transcription factor ART1 mediates starch hydrolysis and mycotoxin production in Fusarium graminearum and F. verticillioides. . Mol. Plant Pathol 17:755–68 [Google Scholar]
  121. Okmen B, Collemare J, Griffiths S, van der Burgt A, Cox R, de Wit PJ. 121.  2014. Functional analysis of the conserved transcriptional regulator CfWor1 in Cladosporium fulvum reveals diverse roles in the virulence of plant pathogenic fungi. Mol. Microbiol. 92:10–27 [Google Scholar]
  122. Okmen B, Doehlemann G. 122.  2014. Inside plant: biotrophic strategies to modulate host immunity and metabolism. Curr. Opin. Plant Biol. 20:19–25 [Google Scholar]
  123. Park SY, Choi J, Lim SE, Lee GW, Park J. 123.  et al. 2013. Global expression profiling of transcription factor genes provides new insights into pathogenicity and stress responses in the rice blast fungus. PLOS Pathog 9:e1003350 [Google Scholar]
  124. Peplow AW, Tag AG, Garifullina GF, Beremand MN. 124.  2003. Identification of new genes positively regulated by Tri10 and a regulatory network for trichothecene mycotoxin production. Appl. Environ. Microbiol. 69:2731–36 [Google Scholar]
  125. Perez-Nadales E, Di Pietro A. 125.  2015. The transmembrane protein Sho1 cooperates with the mucin Msb2 to regulate invasive growth and plant infection in Fusarium oxysporum. . Mol. Plant Pathol. 16:593–603 [Google Scholar]
  126. Pinto VE, Patriarca A. 126.  2017. Alternaria species and their associated mycotoxins. Methods Mol. Biol. 1542:13–32 [Google Scholar]
  127. Porquier A, Morgant G, Moraga J, Dalmais B, Luyten I. 127.  et al. 2016. The botrydial biosynthetic gene cluster of Botrytis cinerea displays a bipartite genomic structure and is positively regulated by the putative Zn(II)2Cys6 transcription factor BcBot6. Fungal Genet. Biol. 96:33–46 [Google Scholar]
  128. Qutob D, Kemmerling B, Brunner F, Kufner I, Engelhardt S. 128.  et al. 2006. Phytotoxicity and innate immune responses induced by Nep1-like proteins. Plant Cell 18:3721–44 [Google Scholar]
  129. Ridenour JB, Bluhm BH. 129.  2017. The novel fungal-specific gene FUG1 has a role in pathogenicity and fumonisin biosynthesis in Fusarium verticillioides. . Mol. Plant Pathol. 18:4513–28 [Google Scholar]
  130. Rosler SM, Sieber CM, Humpf HU, Tudzynski B. 130.  2016. Interplay between pathway-specific and global regulation of the fumonisin gene cluster in the rice pathogen Fusarium fujikuroi. . Appl. Microbiol. Biotechnol. 100:5869–82 [Google Scholar]
  131. Rouxel T, Balesdent MH. 131.  2017. Life, death and rebirth of avirulence effectors in a fungal pathogen of Brassica crops, Leptosphaeria maculans. . New Phytol. 214:2526–32 [Google Scholar]
  132. Rudd JJ, Kanyuka K, Hassani-Pak K, Derbyshire M, Andongabo A. 132.  et al. 2015. Transcriptome and metabolite profiling of the infection cycle of Zymoseptoria tritici on wheat reveals a biphasic interaction with plant immunity involving differential pathogen chromosomal contributions and a variation on the hemibiotrophic lifestyle definition. Plant Physiol 167:1158–85 [Google Scholar]
  133. Ruiz-Roldan C, Pareja-Jaime Y, Gonzalez-Reyes JA, Roncero MI. 133.  2015. The transcription factor Con7-1 is a master regulator of morphogenesis and virulence in Fusarium oxysporum. . Mol. Plant-Microbe Interact. 28:55–68 [Google Scholar]
  134. Santhanam P, Thomma BP. 134.  2013. Verticillium dahliae Sge1 differentially regulates expression of candidate effector genes. Mol. Plant-Microbe Interact. 26:249–56 [Google Scholar]
  135. Sbrana C, Giovannetti M. 135.  2005. Chemotropism in the arbuscular mycorrhizal fungus Glomus mosseae. . Mycorrhiza 15:539–45 [Google Scholar]
  136. Scazzocchio C. 136.  2000. The fungal GATA factors. Curr. Opin. Microbiol. 3:126–31 [Google Scholar]
  137. Schilling L, Matei A, Redkar A, Walbot V, Doehlemann G. 137.  2014. Virulence of the maize smut Ustilago maydis is shaped by organ-specific effectors. Mol. Plant Pathol. 15:780–89 [Google Scholar]
  138. Schmidt SM, Houterman PM, Schreiver I, Ma L, Amyotte S. 138.  et al. 2013. MITEs in the promoters of effector genes allow prediction of novel virulence genes in Fusarium oxysporum. . BMC Genom. 14:119 [Google Scholar]
  139. Schonig B, Vogel S, Tudzynski B. 139.  2009. Cpc1 mediates cross-pathway control independently of Mbf1 in Fusarium fujikuroi. . Fungal Genet. Biol. 46:898–908 [Google Scholar]
  140. Selin C, de Kievit TR, Belmonte MF, Fernando WG. 140.  2016. Elucidating the role of effectors in plant-fungal interactions: progress and challenges. Front. Microbiol. 7:600 [Google Scholar]
  141. Seong KY, Pasquali M, Zhou X, Song J, Hilburn K. 141.  et al. 2009. Global gene regulation by Fusarium transcription factors Tri6 and Tri10 reveals adaptations for toxin biosynthesis. Mol. Microbiol. 72:354–67 [Google Scholar]
  142. Simon A, Dalmais B, Morgant G, Viaud M. 142.  2013. Screening of a Botrytis cinerea one-hybrid library reveals a Cys2His2 transcription factor involved in the regulation of secondary metabolism gene clusters. Fungal Genet. Biol. 52:9–19 [Google Scholar]
  143. Skibbe DS, Doehlemann G, Fernandes J, Walbot V. 143.  2010. Maize tumors caused by Ustilago maydis require organ-specific genes in host and pathogen. Science 328:89–92 [Google Scholar]
  144. Snoeijers SS, Vossen P, Goosen T, Van den Broek HW, De Wit PJ. 144.  1999. Transcription of the avirulence gene Avr9 of the fungal tomato pathogen Cladosporium fulvum is regulated by a GATA-type transcription factor in Aspergillus nidulans. . Mol. Gen. Genet 261:653–59 [Google Scholar]
  145. Soanes DM, Chakrabarti A, Paszkiewicz KH, Dawe AL, Talbot NJ. 145.  2012. Genome-wide transcriptional profiling of appressorium development by the rice blast fungus Magnaporthe oryzae. . PLOS Pathog. 8:e1002514 [Google Scholar]
  146. Son H, Seo YS, Min K, Park AR, Lee J. 146.  et al. 2011. A phenome-based functional analysis of transcription factors in the cereal head blight fungus. Fusarium graminearum. PLOS Pathog. 7:e1002310 [Google Scholar]
  147. Sornkom W, Miki S, Takeuchi S, Abe A, Asano K, Sone T. 147.  2016. Fluorescent reporter analysis revealed the timing and localization of AVR-Pia expression, an avirulence effector of Magnaporthe oryzae. Mol. Plant Pathol. https://doi.org/10.1111/mpp.12468 [Crossref]
  148. Soyer JL, El Ghalid M, Glaser N, Ollivier B, Linglin J. 148.  et al. 2014. Epigenetic control of effector gene expression in the plant pathogenic fungus Leptosphaeria maculans. . PLOS Genet. 10:e1004227 [Google Scholar]
  149. Soyer JL, Hamiot A, Ollivier B, Balesdent MH, Rouxel T, Fudal I. 149.  2015. The APSES transcription factor LmStuA is required for sporulation, pathogenic development and effector gene expression in Leptosphaeria maculans. Mol. Plant Pathol. 16:1000–5 [Google Scholar]
  150. Soyer JL, Moller M, Schotanus K, Connolly LR, Galazka JM. 150.  et al. 2015. Chromatin analyses of Zymoseptoria tritici: methods for chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq). Fungal Genet. Biol. 79:63–70 [Google Scholar]
  151. Srivastava A, Cho IK, Cho Y. 151.  2013. The Bdtf1 gene in Alternaria brassicicola is important in detoxifying brassinin and maintaining virulence on Brassica species. Mol. Plant-Microbe Interact. 261429–40
  152. Straney D, Khan R, Tan R, Bagga S. 152.  2002. Host recognition by pathogenic fungi through plant flavonoids. Adv. Exp. Med. Biol 505:9–22 [Google Scholar]
  153. Straney D, Ruan Y, He J. 153.  1994. In vitro transcription and binding analysis of promoter regulation by a host-specific signal in a phytopathogenic fungus. Antonie Van Leeuwenhoek 65:183–89 [Google Scholar]
  154. Sun D, Cao H, Shi Y, Huang P, Dong B. 154.  et al. 2016. The regulatory factor X protein MoRfx1 is required for development and pathogenicity in the rice blast fungus Magnaporthe oryzae. . Mol. Plant Pathol. https://doi.org/10.1111/mpp.12461 [Crossref]
  155. Sun Y, Wang Y, Tian C. 155.  2016. bZIP transcription factor CgAP1 is essential for oxidative stress tolerance and full virulence of the poplar anthracnose fungus Colletotrichum gloeosporioides. Fungal Genet. Biol. 95:58–66 [Google Scholar]
  156. Teichert S, Wottawa M, Schonig B, Tudzynski B. 156.  2006. Role of the Fusarium fujikuroi TOR kinase in nitrogen regulation and secondary metabolism. Eukaryot. Cell 5:1807–19 [Google Scholar]
  157. Temme N, Tudzynski P. 157.  2009. Does Botrytis cinerea ignore H2O2-induced oxidative stress during infection? Characterization of botrytis activator protein 1. Mol. Plant-Microbe Interact. 22:987–98 [Google Scholar]
  158. Thatcher LF, Williams AH, Garg G, Buck SG, Singh KB. 158.  2016. Transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. medicaginis during colonisation of resistant and susceptible Medicago truncatula hosts identifies differential pathogenicity profiles and novel candidate effectors. BMC Genom 17:860 [Google Scholar]
  159. Thomma BP, Bolton MD, Clergeot PH, PJ DEW. 159.  2006. Nitrogen controls in planta expression of Cladosporium fulvum Avr9 but no other effector genes. Mol. Plant Pathol. 7:125–30 [Google Scholar]
  160. Timpner C, Braus-Stromeyer SA, Tran VT, Braus GH. 160.  2013. The Cpc1 regulator of the cross-pathway control of amino acid biosynthesis is required for pathogenicity of the vascular pathogen Verticillium longisporum. Mol. Plant-Microbe Interact. 26:1312–24 [Google Scholar]
  161. Tollot M, Assmann D, Becker C, Altmuller J, Dutheil JY. 161.  et al. 2016. The WOPR protein Ros1 is a master regulator of sporogenesis and late effector gene expression in the maize pathogen Ustilago maydis. PLOS Pathog 12:e1005697 [Google Scholar]
  162. Torres MF, Ghaffari N, Buiate EA, Moore N, Schwartz S. 162.  et al. 2016. A Colletotrichum graminicola mutant deficient in the establishment of biotrophy reveals early transcriptional events in the maize anthracnose disease interaction. BMC Genom 17:202 [Google Scholar]
  163. Toruño TY, Stergiopoulos I, Coaker G. 163.  2016. Plant-pathogen effectors: cellular probes interfering with plant defenses in spatial and temporal manners. Annu. Rev. Phytopathol. 54:419–41 [Google Scholar]
  164. Tran VT, Braus-Stromeyer SA, Kusch H, Reusche M, Kaever A. 164.  et al. 2014. Verticillium transcription activator of adhesion Vta2 suppresses microsclerotia formation and is required for systemic infection of plant roots. New Phytol 202:565–81 [Google Scholar]
  165. Tsuge T, Harimoto Y, Akimitsu K, Ohtani K, Kodama M. 165.  et al. 2013. Host-selective toxins produced by the plant pathogenic fungus Alternaria alternata. . FEMS Microbiol. Rev. 37:44–66 [Google Scholar]
  166. Tudzynski B. 166.  2014. Nitrogen regulation of fungal secondary metabolism in fungi. Front. Microbiol. 5:656 [Google Scholar]
  167. Turra D, Di Pietro A. 167.  2015. Chemotropic sensing in fungus-plant interactions. Curr. Opin. Plant Biol. 26:135–40 [Google Scholar]
  168. Turra D, El Ghalid M, Rossi F, Di Pietro A. 168.  2015. Fungal pathogen uses sex pheromone receptor for chemotropic sensing of host plant signals. Nature 527:521–24 [Google Scholar]
  169. Umemura M, Koike H, Machida M. 169.  2015. Motif-independent de novo detection of secondary metabolite gene clusters: toward identification from filamentous fungi. Front. Microbiol. 6:371 [Google Scholar]
  170. van der Does HC, Duyvesteijn RG, Goltstein PM, van Schie CC, Manders EM. 170.  et al. 2008. Expression of effector gene SIX1 of Fusarium oxysporum requires living plant cells. Fungal Genet. Biol 45:1257–64 [Google Scholar]
  171. van der Does HC, Fokkens L, Yang A, Schmidt SM, Langereis L. 171.  et al. 2016. Transcription factors encoded on core and accessory chromosomes of Fusarium oxysporum induce expression of effector genes. PLOS Genet 12:e1006401 [Google Scholar]
  172. Van Nguyen T, Kroger C, Bonnighausen J, Schafer W, Bormann J. 172.  2013. The ATF/CREB transcription factor Atf1 is essential for full virulence, deoxynivalenol production, and stress tolerance in the cereal pathogen Fusarium graminearum. . Mol. Plant-Microbe Interact. 26:1378–94 [Google Scholar]
  173. Viefhues A, Schlathoelter I, Simon A, Viaud M, Tudzynski P. 173.  2015. Unraveling the function of the response regulator BcSkn7 in the stress signaling network of Botrytis cinerea. . Eukaryot. Cell 14:636–51 [Google Scholar]
  174. Vilanova L, Teixido N, Torres R, Usall J, Vinas I, Sanchez-Torres P. 174.  2016. Relevance of the transcription factor PdSte12 in Penicillium digitatum conidiation and virulence during citrus fruit infection. Int. J. Food Microbiol. 235:93–102 [Google Scholar]
  175. Visentin I, Montis V, Doll K, Alabouvette C, Tamietti G. 175.  et al. 2012. Transcription of genes in the biosynthetic pathway for fumonisin mycotoxins is epigenetically and differentially regulated in the fungal maize pathogen Fusarium verticillioides. . Eukaryot. Cell 11:252–59 [Google Scholar]
  176. Wahl R, Wippel K, Goos S, Kamper J, Sauer N. 176.  2010. A novel high-affinity sucrose transporter is required for virulence of the plant pathogen Ustilago maydis. . PLOS Biol. 8:e1000303 [Google Scholar]
  177. Wahl R, Zahiri A, Kamper J. 177.  2010. The Ustilago maydis b mating type locus controls hyphal proliferation and expression of secreted virulence factors in planta. Mol. Microbiol. 75:208–20 [Google Scholar]
  178. Wang E, Norred WP, Bacon CW, Riley RT, Merrill AH Jr.. 178.  1991. Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated with Fusarium moniliforme. J. Biol. Chem. 266:14486–90 [Google Scholar]
  179. Wang G, Li G, Zhang S, Jiang C, Qin J, Xu JR. 179.  2015. Activation of the signalling mucin MoMsb2 and its functional relationship with Cbp1 in Magnaporthe oryzae. . Environ. Microbiol. 17:2969–81 [Google Scholar]
  180. Wang M, Sun X, Yu D, Xu J, Chung K, Li H. 180.  2016. Genomic and transcriptomic analyses of the tangerine pathotype of Alternaria alternata in response to oxidative stress. Sci. Rep. 6:32437 [Google Scholar]
  181. Wang Y, Liu W, Hou Z, Wang C, Zhou X. 181.  et al. 2011. A novel transcriptional factor important for pathogenesis and ascosporogenesis in Fusarium graminearum. . Mol. Plant-Microbe Interact. 24:118–28 [Google Scholar]
  182. Wight WD, Kim KH, Lawrence CB, Walton JD. 182.  2009. Biosynthesis and role in virulence of the histone deacetylase inhibitor depudecin from Alternaria brassicicola. . Mol. Plant-Microbe Interact. 22:1258–67 [Google Scholar]
  183. Xiong D, Wang Y, Tian L, Tian C. 183.  2016. MADS-box transcription factor VdMcm1 regulates conidiation, microsclerotia formation, pathogenicity, and secondary metabolism of Verticillium dahliae. . Front. Microbiol. 7:1192 [Google Scholar]
  184. Yan X, Li Y, Yue X, Wang C, Que Y. 184.  et al. 2011. Two novel transcriptional regulators are essential for infection-related morphogenesis and pathogenicity of the rice blast fungus Magnaporthe oryzae. . PLOS Pathog. 7:e1002385 [Google Scholar]
  185. Yang C, Liu H, Li G, Liu M, Yun Y. 185.  et al. 2015. The MADS-box transcription factor FgMcm1 regulates cell identity and fungal development in Fusarium graminearum. . Environ. Microbiol. 17:2762–76 [Google Scholar]
  186. Yang J, Zhao X, Sun J, Kang Z, Ding S. 186.  et al. 2010. A novel protein Com1 is required for normal conidium morphology and full virulence in Magnaporthe oryzae. . Mol. Plant-Microbe Interact. 23:112–23 [Google Scholar]
  187. Yang Q, Yin D, Yin Y, Cao Y, Ma Z. 187.  2015. The response regulator BcSkn7 is required for vegetative differentiation and adaptation to oxidative and osmotic stresses in Botrytis cinerea. . Mol. Plant Pathol. 16:276–87 [Google Scholar]
  188. You BJ, Choquer M, Chung KR. 188.  2007. The Colletotrichum acutatum gene encoding a putative pH-responsive transcription regulator is a key virulence determinant during fungal pathogenesis on citrus. Mol. Plant-Microbe Interact. 20:1149–60 [Google Scholar]
  189. You BJ, Chung KR. 189.  2007. Phenotypic characterization of mutants of the citrus pathogen Colletotrichum acutatum defective in a PacC-mediated pH regulatory pathway. FEMS Microbiol. Lett. 277:107–14 [Google Scholar]
  190. Yu PL, Wang CL, Chen PY, Lee MH. 190.  2016. YAP1 homologue-mediated redox sensing is crucial for a successful infection by Monilinia fructicola. Mol. Plant Pathol. https://doi.org/10.1111/mpp.12438 [Crossref]
  191. Yue X, Que Y, Xu L, Deng S, Peng Y. 191.  et al. 2016. ZNF1 encodes a putative C2H2 zinc-finger protein essential for appressorium differentiation by the rice blast fungus Magnaporthe oryzae. . Mol. Plant-Microbe Interact. 29:22–35 [Google Scholar]
  192. Zahiri A, Heimel K, Wahl R, Rath M, Kamper J. 192.  2010. The Ustilago maydis forkhead transcription factor Fox1 is involved in the regulation of genes required for the attenuation of plant defenses during pathogenic development. Mol. Plant-Microbe Interact. 23:1118–29 [Google Scholar]
  193. Zaparoli G, Barsottini MR, de Oliveira JF, Dyszy F, Teixeira PJ. 193.  et al. 2011. The crystal structure of necrosis- and ethylene-inducing protein 2 from the causal agent of cacao's Witches’ Broom disease reveals key elements for its activity. Biochemistry 50:9901–10 [Google Scholar]
  194. Zarnack K, Eichhorn H, Kahmann R, Feldbrugge M. 194.  2008. Pheromone-regulated target genes respond differentially to MAPK phosphorylation of transcription factor Prf1. Mol. Microbiol. 69:1041–53 [Google Scholar]
  195. Zhan J, Thrall PH, Papaïx J, Xie L, Burdon JJ. 195.  2015. Playing on a pathogen's weakness: using evolution to guide sustainable plant disease control strategies. Annu. Rev. Phytopathol. 53:19–43 [Google Scholar]
  196. Zhang T, Sun X, Xu Q, Candelas LG, Li H. 196.  2013. The pH signaling transcription factor PacC is required for full virulence in Penicillium digitatum. . Appl. Microbiol. Biotechnol. 97:9087–98 [Google Scholar]
  197. Zhang T, Xu Q, Sun X, Li H. 197.  2013. The calcineurin-responsive transcription factor Crz1 is required for conidation, full virulence and DMI resistance in Penicillium digitatum. . Microbiol. Res. 168:211–22 [Google Scholar]
  198. Zhang XW, Jia LJ, Zhang Y, Jiang G, Li X. 198.  et al. 2012. In planta stage-specific fungal gene profiling elucidates the molecular strategies of Fusarium graminearum growing inside wheat coleoptiles. Plant Cell 24:5159–76 [Google Scholar]
  199. Zhang Y, He J, Jia LJ, Yuan TL, Zhang D. 199.  et al. 2016. Cellular tracking and gene profiling of Fusarium graminearum during maize stalk rot disease development elucidates its strategies in confronting phosphorus limitation in the host apoplast. PLOS Pathog 12:e1005485 [Google Scholar]
  200. Zhang Z, Li H, Qin G, He C, Li B, Tian S. 200.  2016. The MADS-Box transcription factor Bcmads1 is required for growth, sclerotia production and pathogenicity of Botrytis cinerea. . Sci. Rep. 6:33901 [Google Scholar]
  201. Zheng Y, Kief J, Auffarth K, Farfsing JW, Mahlert M. 201.  et al. 2008. The Ustilago maydis Cys2His2-type zinc finger transcription factor Mzr1 regulates fungal gene expression during the biotrophic growth stage. Mol. Microbiol. 68:1450–701 [Google Scholar]
  202. Zhou Z, Li G, Lin C, He C. 202.  2009. Conidiophore stalk-less1 encodes a putative zinc-finger protein involved in the early stage of conidiation and mycelial infection in Magnaporthe oryzae. . Mol. Plant-Microbe Interact. 22:402–10 [Google Scholar]
/content/journals/10.1146/annurev-phyto-080516-035551
Loading
/content/journals/10.1146/annurev-phyto-080516-035551
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error