1932

Abstract

Toxin-antitoxin (TA) systems are gene modules that are ubiquitous in free-living prokaryotes. Diverse in structure, cellular function, and fitness roles, TA systems are defined by the presence of a toxin gene that suppresses bacterial growth and a toxin-neutralizing antitoxin gene, usually encoded in a single operon. Originally viewed as DNA maintenance modules, TA systems are now thought to function in many roles, including bacterial stress tolerance, virulence, phage defense, and biofilm formation. However, very few studies have investigated the significance of TA systems in the context of plant-microbe interactions. This review discusses the potential impact and application of TA systems in plant-associated bacteria, guided by insights gained from animal-pathogenic model systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080516-035559
2017-08-04
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/phyto/55/1/annurev-phyto-080516-035559.html?itemId=/content/journals/10.1146/annurev-phyto-080516-035559&mimeType=html&fmt=ahah

Literature Cited

  1. Alawneh AM, Qi D, Yonesaki T, Otsuka Y. 1.  2016. An ADP-ribosyltransferase Alt of bacteriophage T4 negatively regulates the Escherichia coli MazF toxin of a toxin-antitoxin module. Mol. Microbiol. 99:188–98 [Google Scholar]
  2. Allison KR, Brynildsen MP, Collins JJ. 2.  2011. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 473:216–20 [Google Scholar]
  3. Aoki SK, Diner EJ, de Roodenbeke CK, Burgess BR, Poole SJ. 3.  et al. 2010. A widespread family of polymorphic contact-dependent toxin delivery systems in bacteria. Nature 468:439–42 [Google Scholar]
  4. Arbing MA, Handelman SK, Kuzin AP, Verdon G, Wang C. 4.  et al. 2010. Crystal structures of Phd-Doc, HigA, and YeeU establish multiple evolutionary links between microbial growth-regulating toxin-antitoxin systems. Structure 18:996–1010 [Google Scholar]
  5. Audoly G, Vincentelli R, Edouard S, Georgiades K, Mediannikov O. 5.  et al. 2011. Effect of rickettsial toxin VapC on its eukaryotic host. PLOS ONE 6:e26528 [Google Scholar]
  6. Ayrapetyan M, Williams T, Baxter R, Oliver J. 6.  2015. Viable but nonculturable and persister cells coexist stochastically and are induced by human serum. Infect. Immun. 83:4194–203 [Google Scholar]
  7. Ayrapetyan M, Williams TC, Oliver JD. 7.  2015. Bridging the gap between viable but non-culturable and antibiotic persistent bacteria. Trends Microbiol 23:7–13 [Google Scholar]
  8. Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S. 8.  2004. Bacterial persistence as a phenotypic switch. Science 305:1622–25 [Google Scholar]
  9. Bayles KW. 9.  2007. The biological role of death and lysis in biofilm development. Nat. Rev. Microbiol. 5:721–26 [Google Scholar]
  10. Benz J, Meinhart A. 10.  2014. Antibacterial effector/immunity systems: It's just the tip of the iceberg. Curr. Opin. Microbiol. 17:1–10 [Google Scholar]
  11. Bergkessel M, Basta DW, Newman DK. 11.  2016. The physiology of growth arrest: uniting molecular and environmental microbiology. Nat. Rev. Microbiol. 14:549–62 [Google Scholar]
  12. Blower TR, Evans TJ, Przybilski R, Fineran PC, Salmond GP. 12.  2012. Viral evasion of a bacterial suicide system by RNA-based molecular mimicry enables infectious altruism. PLOS Genet 8:e1003023 [Google Scholar]
  13. Blower TR, Short FL, Rao F, Mizuguchi K, Pei XY. 13.  et al. 2012. Identification and classification of bacterial Type III toxin-antitoxin systems encoded in chromosomal and plasmid genomes. Nucleic Acids Res 40:6158–73 [Google Scholar]
  14. Boaretti M, Del Mar Lleò M, Bonato B, Signoretto C, Canepari P. 14.  2003. Involvement of rpoS in the survival of Escherichia coli in the viable but non-culturable state. Environ. Microbiol 5:986–96 [Google Scholar]
  15. Bordes P, Sala AJ, Ayala S, Texier P, Slama N. 15.  et al. 2016. Chaperone addiction of toxin-antitoxin systems. Nat. Commun. 7:13339 [Google Scholar]
  16. Bowden SD, Eyres A, Chung J, Monson RE, Thompson A. 16.  et al. 2013. Virulence in Pectobacterium atrosepticum is regulated by a coincidence circuit involving quorum sensing and the stress alarmone, (p)ppGpp. Mol. Microbiol. 90:457–71 [Google Scholar]
  17. Brown BL, Lord DM, Grigoriu S, Peti W, Page R. 17.  2013. The Escherichia coli toxin MqsR destabilizes the transcriptional repression complex formed between the antitoxin MqsA and the mqsRA operon promoter. J. Biol. Chem. 288:1286–94 [Google Scholar]
  18. Brzozowska I, Zielenkiewicz U. 18.  2013. Regulation of toxin-antitoxin systems by proteolysis. Plasmid 70:33–41 [Google Scholar]
  19. Burbank LP, Stenger DC. 19.  2017. The DinJ/RelE toxin-antitoxin system suppresses bacterial proliferation and virulence of Xylella fastidiosa in grapevine. Phytopathology 107:388–94 [Google Scholar]
  20. Cabrefiga J, Francés J, Montesinos E, Bonaterra A. 20.  2011. Improvement of fitness and efficacy of a fire blight biocontrol agent via nutritional enhancement combined with osmoadaptation. Appl. Environ. Microbiol. 77:3174–81 [Google Scholar]
  21. Cataudella I, Sneppen K, Gerdes K, Mitarai N. 21.  2013. Conditional cooperativity of toxin-antitoxin regulation can mediate bistability between growth and dormancy. PLOS Comput. Biol. 9:e1003174 [Google Scholar]
  22. Cha YR, Lee KW, Moon YH, Kim JC, Han TJ. 22.  et al. 1998. Cloning of a cDNA encoding phospholipase D from Pimpinella brachycarpa. . Mol. Cell 8:19–26 [Google Scholar]
  23. Chatnaparat T, Li Z, Korban SS, Zhao Y. 23.  2015. The bacterial alarmone (p)ppGpp is required for virulence and controls cell size and survival of Pseudomonas syringae on plants. Environ. Microbiol. 17:4253–70 [Google Scholar]
  24. Chatnaparat T, Li Z, Korban SS, Zhao Y. 24.  2015. The stringent response mediated by (p)ppGpp is required for virulence of Pseudomonas syringae pv. tomato and its survival on tomato. Mol. Plant-Microbe Interact 28:776–89 [Google Scholar]
  25. Cheverton AM, Gollan B, Przydacz M, Wong CT, Mylona A. 25.  et al. 2016. A Salmonella toxin promotes persister formation through acetylation of tRNA. Mol. Cell 63:86–96 [Google Scholar]
  26. Christensen SK, Mikkelsen M, Pedersen K, Gerdes K. 26.  2001. RelE, a global inhibitor of translation, is activated during nutritional stress. PNAS 98:14328–33 [Google Scholar]
  27. Conlon BP, Nakayasu ES, Fleck LE, LaFleur MD, Isabella VM. 27.  et al. 2013. Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature 503:365–70 [Google Scholar]
  28. Cooper TF, Heinemann JA. 28.  2000. Postsegregational killing does not increase plasmid stability but acts to mediate the exclusion of competing plasmids. PNAS 97:12643–48 [Google Scholar]
  29. Danhorn T, Fuqua C. 29.  2007. Biofilm formation by plant-associated bacteria. Annu. Rev. Microbiol. 61:401–22 [Google Scholar]
  30. da Silva Santiago, Mendes JS, dos Santos CA, de Toledo MAS, Beloti LL. 30.  et al. 2016. The antitoxin protein of a toxin-antitoxin system from Xylella fastidiosa is secreted via outer membrane vesicles. Front. Microbiol. 7:2030 [Google Scholar]
  31. Del Campo R, Russi P, Mara P, Mara H, Peyrou M. 31.  et al. 2009. Xanthomonas axonopodis pv. citri enters the VBNC state after copper treatment and retains its virulence. FEMS Microbiol. Lett 298:143–48 [Google Scholar]
  32. Dörr T, Vulić M, Lewis K. 32.  2010. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. . PLOS Biol. 8:e1000317 [Google Scholar]
  33. Falkenstein H, Zeller W, Geider K. 33.  1989. The 29 kb plasmid, common in strains of Erwinia amylovora, modulates development of fireblight symptoms. Microbiology 135:2643–50 [Google Scholar]
  34. Fasani RA, Savageau MA. 34.  2013. Molecular mechanisms of multiple toxin-antitoxin systems are coordinated to govern the persister phenotype. PNAS 110:2528–37 [Google Scholar]
  35. Fineran PC, Blower TR, Foulds IJ, Humphreys DP, Lilley KS, Salmond GPC. 35.  2009. The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. PNAS 106:894–99 [Google Scholar]
  36. Georgiades K, Raoult D. 36.  2011. Genomes of the most dangerous epidemic bacteria have a virulence repertoire characterized by fewer genes but more toxin-antitoxin modules. PLOS ONE 6:e17962 [Google Scholar]
  37. Gerdes K, Maisonneuve E. 37.  2012. Bacterial persistence and toxin-antitoxin loci. Annu. Rev. Microbiol. 66:103–23 [Google Scholar]
  38. Gerdes K, Rasmussen PB, Molin S. 38.  1986. Unique type of plasmid maintenance function: postsegregational killing of plasmid-free cells. PNAS 83:3116–20 [Google Scholar]
  39. Goeders N, Van Melderen L. 39.  2014. Toxin-antitoxin systems as multilevel interaction systems. Toxins 6:304–24 [Google Scholar]
  40. Grey BE, Steck TR. 40.  2001. The viable but nonculturable state of Ralstonia solanacearum may be involved in long-term survival and plant infection. Appl. Environ. Microbiol. 67:3866–72 [Google Scholar]
  41. Gunasekera TS, Sundin GW. 41.  2006. Role of nucleotide excision repair and photoreactivation in the solar UVB radiation survival of Pseudomonas syringae pv. syringae B728a. J. Appl. Microbiol 100:1073–83 [Google Scholar]
  42. Han Q, Zhou C, Wu S, Liu Y, Triplett L. 42.  et al. 2015. Crystal structure of Xanthomonas AvrRxo1-ORF1, a type III effector with a polynucleotide kinase domain, and its interactor AvrRxo1-ORF2. Structure 23:1900–9 [Google Scholar]
  43. Handelsman J, Stabb EV. 43.  1996. Biocontrol of soilborne plant pathogens. Plant Cell 8:1855–69 [Google Scholar]
  44. Harrison JJ, Ceri H, Roper NJ, Badry EA, Sproule KM, Turner RJ. 44.  2005. Persister cells mediate tolerance to metal oxyanions in Escherichia coli. Microbiology 151:3181–95 [Google Scholar]
  45. Hazan R, Engelberg-Kulka H. 45.  2004. Escherichia coli mazEF-mediated cell death as a defense mechanism that inhibits the spread of phage P1. Mol. Genet. Genom. 272:227–34 [Google Scholar]
  46. Helaine S, Cheverton AM, Watson KG, Faure LM, Matthews SA, Holden DW. 46.  2014. Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science 343:204–8 [Google Scholar]
  47. Hu Y, Benedik MJ, Wood TK. 47.  2012. Antitoxin DinJ influences the general stress response through transcript stabilizer CspE. Environ. Microbiol. 14:669–79 [Google Scholar]
  48. Jorgensen MG, Pandey DP, Jaskolska M, Gerdes K. 48.  2009. HicA of Escherichia coli defines a novel family of translation-independent mRNA interferases in bacteria and archaea. J. Bacteriol. 191:1191–99 [Google Scholar]
  49. Keren I, Shah D, Spoering A, Kaldalu N, Lewis K. 49.  2004. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J. Bacteriol. 186:8172–80 [Google Scholar]
  50. Kim W, Fricke N, Conery AL, Fuchs BB, Rajamuthiah R. 50.  et al. 2016. NH125 kills methicillin-resistant Staphylococcus aureus persisters by lipid bilayer disruption. Future Med. Chem 8:257–69 [Google Scholar]
  51. Kim Y, Wang X, Ma Q, Zhang X-S, Wood TK. 51.  2009. Toxin-antitoxin systems in Escherichia coli influence biofilm formation through YjgK (TabA) and fimbriae. J. Bacteriol. 191:1258–67 [Google Scholar]
  52. Kimelman A, Levy A, Sberro H, Kidron S, Leavitt A. 52.  et al. 2012. A vast collection of microbial genes that are toxic to bacteria. Genome Res 22:802–9 [Google Scholar]
  53. Kolodkin-Gal I, Verdiger R, Shlosberg-Fedida A, Engelberg-Kulka H. 53.  2009. A differential effect of E. coli toxin-antitoxin systems on cell death in liquid media and biofilm formation. PLOS ONE 4:e6785 [Google Scholar]
  54. Komi KK, Ge Y-M, Xin X-Y, Ojcius DM, Sun D. 54.  et al. 2015. ChpK and MazF of the toxin-antitoxin modules are involved in the virulence of Leptospira interrogans during infection. Microbes Infect 17:34–47 [Google Scholar]
  55. Kong HG, Bae JY, Lee HJ, Joo HJ, Jung EJ. 55.  et al. 2014. Induction of the viable but nonculturable state of Ralstonia solanacearum by low temperature in the soil microcosm and its resuscitation by catalase. PLOS ONE 9:e109792 [Google Scholar]
  56. Korch SB, Henderson TA, Hill TM. 56.  2003. Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by (p)ppGpp synthesis. Mol. Microbiol 50:1199–213 [Google Scholar]
  57. Kwan BW, Chowdhury N, Wood TK. 57.  2015. Combatting bacterial infections by killing persister cells with mitomycin C. Environ. Microbiol. 17:4406–14 [Google Scholar]
  58. Lee MW, Rogers EE, Stenger DC. 58.  2010. Functional characterization of replication and stability factors of an incompatibility group P-1 plasmid from Xylella fastidiosa. Appl. Environ. . Microbiol. 76:7734–40 [Google Scholar]
  59. Lee MW, Rogers EE, Stenger DC. 59.  2011. Xylella fastidiosa plasmid-encoded PemK toxin is an endoribonuclease. Phytopathology 102:32–40 [Google Scholar]
  60. Lee MW, Tan CC, Rogers EE, Stenger DC. 60.  2014. Toxin-antitoxin systems mqsR/ygiT and dinJ/relE of Xylella fastidiosa. . Physiol. Mol. Plant Pathol 87:59–68 [Google Scholar]
  61. Leplae R, Geeraerts D, Hallez R, Guglielmini J, Drèze P, Van Melderen L. 61.  2011. Diversity of bacterial type II toxin-antitoxin systems: a comprehensive search and functional analysis of novel families. Nucleic Acids Res 39:5513–25 [Google Scholar]
  62. Lewis K. 62.  2010. Persister cells. Annu. Rev. Microbiol. 64:357–72 [Google Scholar]
  63. Li L, Mendis N, Trigui H, Oliver JD, Faucher SP. 63.  2014. The importance of the viable but non-culturable state in human bacterial pathogens. Front. Microbiol. 5:258 [Google Scholar]
  64. Lobato-Marquez D, Diaz-Orejas R, Garcia-Del Portillo F. 64.  2016. Toxin-antitoxins and bacterial virulence. FEMS Microbiol. Rev. 40:592–609 [Google Scholar]
  65. Ma L-S, Hachani A, Lin J-S, Filloux A, Lai E-M. 65.  2014. Agrobacterium tumefaciens deploys a superfamily of type VI secretion DNase effectors as weapons for interbacterial competition in planta. Cell Host Microbe 16:94–104 [Google Scholar]
  66. Maisonneuve E, Castro-Camargo M, Gerdes K. 66.  2013. (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. Cell 154:1140–50 [Google Scholar]
  67. Maisonneuve E, Gerdes K. 67.  2014. Molecular mechanisms underlying bacterial persisters. Cell 157:539–48 [Google Scholar]
  68. Maisonneuve E, Shakespeare LJ, Jørgensen MG, Gerdes K. 68.  2011. Bacterial persistence by RNA endonucleases. PNAS 108:13206–11 [Google Scholar]
  69. Makarova KS, Wolf YI, Koonin EV. 69.  2009. Comprehensive comparative-genomic analysis of type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. Biol. Direct 4:19 [Google Scholar]
  70. Martins PMM, Machado MA, Silva NV, Takita MA, de Souza AA. 70.  2016. Type II toxin-antitoxin distribution and adaptive aspects on Xanthomonas genomes: focus on Xanthomonas citri. . Front. Microbiol. 7:652 [Google Scholar]
  71. McGhee GC, Jones AL. 71.  2000. Complete nucleotide sequence of ubiquitous plasmid pEA29 from Erwinia amylovora strain Ea88: gene organization and intraspecies variation. Appl. Environ. Microbiol. 66:4897–907 [Google Scholar]
  72. Merfa MV, Niza B, Takita MA, De Souza AA. 72.  2016. The MqsRA toxin-antitoxin system from Xylella fastidiosa plays a key role in bacterial fitness, pathogenicity, and persister cell formation. Front. Microbiol. 7:904 [Google Scholar]
  73. Mock NM, Baker CJ, Aver'yanov AA. 73.  2015. Induction of a viable but not culturable (VBNC) state in some Pseudomonas syringae pathovars upon exposure to oxidation of an apoplastic phenolic, acetosyringone. Physiol. Mol. Plant Pathol. 89:16–24 [Google Scholar]
  74. Moyed HS, Bertrand KP. 74.  1983. hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J. Bacteriol 155:768–75 [Google Scholar]
  75. Mruk I, Kobayashi I. 75.  2013. To be or not to be: regulation of restriction-modification systems and other toxin-antitoxin systems. Nucleic Acids Res 42:70–86 [Google Scholar]
  76. Muranaka LS, Takita MA, Olivato JC, Kishi LT, de Souza AA. 76.  2012. Global expression profile of biofilm resistance to antimicrobial compounds in the plant-pathogenic bacterium Xylella fastidiosa reveals evidence of persister cells. J. Bacteriol. 194:4561–69 [Google Scholar]
  77. Mutschler H, Meinhart A. 77.  2011. ε/ζ systems: their role in resistance, virulence, and their potential for antibiotic development. J. Mol. Med. 89:1183–94 [Google Scholar]
  78. Norton JP, Mulvey MA. 78.  2012. Toxin-antitoxin systems are important for niche-specific colonization and stress resistance of uropathogenic Escherichia coli. . PLOS Pathog. 8:e1002954 [Google Scholar]
  79. Oliver JD. 79.  2010. Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol. Rev. 34:415–25 [Google Scholar]
  80. Ordax M, Marco-Noales E, Lopez M, Biosca E. 80.  2004. Copper induces a viable but nonculturable (VBNC) state in Erwinia amylovora. Acta Hortic 704:205–10 [Google Scholar]
  81. Orman MA, Brynildsen MP. 81.  2013. Dormancy is not necessary or sufficient for bacterial persistence. Antimicrob. Agents Chemother. 57:3230–39 [Google Scholar]
  82. Otsuka Y, Yonesaki T. 82.  2012. Dmd of bacteriophage T4 functions as an antitoxin against Escherichia coli LsoA and RnlA toxins. Mol. Microbiol. 83:669–81 [Google Scholar]
  83. Page R, Peti W. 83.  2016. Toxin-antitoxin systems in bacterial growth arrest and persistence. Nat. Chem. Biol. 12:208–14 [Google Scholar]
  84. Pearl S, Gabay C, Kishony R, Oppenheim A, Balaban NQ. 84.  2008. Nongenetic individuality in the host-phage interaction. PLOS Biol 6:e120 [Google Scholar]
  85. Pecota DC, Wood TK. 85.  1996. Exclusion of T4 phage by the hok/sok killer locus from plasmid R1. J. Bacteriol. 178:2044–50 [Google Scholar]
  86. Pinto D, Santos MA, Chambel L. 86.  2015. Thirty years of viable but nonculturable state research: unsolved molecular mechanisms. Crit. Rev. Microbiol. 41:61–76 [Google Scholar]
  87. Popov G, Fraiture M, Brunner F, Sessa G. 87.  2016. Multiple Xanthomonas euvesicatoria type III effectors inhibit flg22-triggered immunity. Mol. Plant-Microbe Interact. 29:651–60 [Google Scholar]
  88. Putrinš M, Kogermann K, Lukk E, Lippus M, Varik V, Tenson T. 88.  2015. Phenotypic heterogeneity enables uropathogenic Escherichia coli to evade killing by antibiotics and serum complement. Infect. Immun. 83:1056–67 [Google Scholar]
  89. Rocker A, Meinhart A. 89.  2016. Type II toxin: antitoxin systems. More than small selfish entities?. Curr. Genet. 62:287–90 [Google Scholar]
  90. Rotem E, Loinger A, Ronin I, Levin-Reisman I, Gabay C. 90.  et al. 2010. Regulation of phenotypic variability by a threshold-based mechanism underlies bacterial persistence. PNAS 107:12541–46 [Google Scholar]
  91. Russell AB, Peterson SB, Mougous JD. 91.  2014. Type VI secretion system effectors: poisons with a purpose. Nat. Rev. Microbiol. 12:137–48 [Google Scholar]
  92. Ryu C-M. 92.  2015. Against friend and foe: type 6 effectors in plant-associated bacteria. J. Microbiol. 53:201–8 [Google Scholar]
  93. Saavedra De Bast M, Mine N, Van Melderen L. 93.  2008. Chromosomal toxin-antitoxin systems may act as antiaddiction modules. J. Bacteriol. 190:4603–9 [Google Scholar]
  94. Sberro H, Leavitt A, Kiro R, Koh E, Peleg Y. 94.  et al. 2013. Discovery of functional toxin/antitoxin systems in bacteria by shotgun cloning. Mol. Cell 50:136–48 [Google Scholar]
  95. Schumacher MA, Balani P, Min J, Chinnam NB, Hansen S. 95.  et al. 2015. HipBA-promoter structures reveal the basis of heritable multidrug tolerance. Nature 524:59–64 [Google Scholar]
  96. Schuster CF, Bertram R. 96.  2013. Toxin-antitoxin systems are ubiquitous and versatile modulators of prokaryotic cell fate. FEMS Microbiol. Lett. 340:73–85 [Google Scholar]
  97. Sena-Vélez M, Redondo C, Graham JH, Cubero J. 97.  2016. Presence of extracellular DNA during biofilm formation by Xanthomonas citri subsp. citri strains with different host range. PLOS ONE 11:e0156695 [Google Scholar]
  98. Senthil-Kumar M, Mysore KS. 98.  2013. Nonhost resistance against bacterial pathogens: retrospectives and prospects. Annu. Rev. Phytopathol. 51:407–27 [Google Scholar]
  99. Sevin EW, Barloy-Hubler F. 99.  2007. RASTA-Bacteria: a web-based tool for identifying toxin-antitoxin loci in prokaryotes. Genome Biol 8:R155 [Google Scholar]
  100. Shah D, Zhang Z, Khodursky A, Kaldalu N, Kurg K, Lewis K. 100.  2006. Persisters: a distinct physiological state of E. coli. . BMC Microbiol. 6:53 [Google Scholar]
  101. Shao Y, Harrison EM, Bi D, Tai C, He X. 101.  et al. 2011. TADB: a web-based resource for Type 2 toxin-antitoxin loci in bacteria and archaea. Nucleic Acids Res 39:D606–11 [Google Scholar]
  102. Shavit R, Lebendiker M, Pasternak Z, Burdman S, Helman Y. 102.  2015. The vapB-vapC operon of Acidovorax citrulli functions as a bona-fide toxin-antitoxin module. Front. Microbiol 6:1499 [Google Scholar]
  103. Short FL, Blower TR, Salmond GPC. 103.  2012. A promiscuous antitoxin of bacteriophage T4 ensures successful viral replication. Mol. Microbiol. 83:665–68 [Google Scholar]
  104. Tan Q, Awano N, Inouye M. 104.  2011. YeeV is an Escherichia coli toxin that inhibits cell division by targeting the cytoskeleton proteins, FtsZ and MreB. Mol. Microbiol. 79:109–18 [Google Scholar]
  105. Teixidó N, Cañamás TP, Abadias M, Usall J, Solsona C. 105.  et al. 2006. Improving low water activity and desiccation tolerance of the biocontrol agent Pantoea agglomerans CPA-2 by osmotic treatments. J. Appl. Microbiol. 101:927–37 [Google Scholar]
  106. Torrey HL, Keren I, Via LE, Lee JS, Lewis K. 106.  2016. High persister mutants in Mycobacterium tuberculosis. . PLOS ONE 11:e0155127 [Google Scholar]
  107. Triplett L, Shidore T, Long J, Miao J, Wu S. 107.  et al. 2016. AvrRxo1 is a bifunctional type III secreted effector and toxin-antitoxin system component with homologs in diverse environmental contexts. PLOS ONE 11:e0158856 [Google Scholar]
  108. Unterholzner SJ, Hailer B, Poppenberger B, Rozhon W. 108.  2013. Characterisation of the stbD/E toxin-antitoxin system of pEP36, a plasmid of the plant pathogen Erwinia pyrifoliae. . Plasmid 70:216–25 [Google Scholar]
  109. Unterholzner SJ, Poppenberger B, Rozhon W. 109.  2013. Toxin-antitoxin systems: biology, identification, and application. Mob. Genet. Elements 3:e26219 [Google Scholar]
  110. Varani AM, Monteiro-Vitorello CB, Nakaya HI, Sluys M-AV. 110.  2013. The role of prophage in plant-pathogenic bacteria. Annu. Rev. Phytopathol. 51:429–51 [Google Scholar]
  111. Verstraeten N, Knapen WJ, Kint CI, Liebens V, Van den Bergh B. 111.  et al. 2015. Obg and membrane depolarization are part of a microbial bet-hedging strategy that leads to antibiotic tolerance. Mol. Cell 59:9–21 [Google Scholar]
  112. Wang X, Kim Y, Hong SH, Ma Q, Brown BL. 112.  et al. 2011. Antitoxin MqsA helps mediate the bacterial general stress response. Nat. Chem. Biol. 7:359–66 [Google Scholar]
  113. Wang X, Lord DM, Cheng H-Y, Osbourne DO, Hong SH. 113.  et al. 2012. A new type V toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS. Nat. Chem. Biol. 8:855–61 [Google Scholar]
  114. Weel-Sneve R, Kristiansen KI, Odsbu I, Dalhus B, Booth J. 114.  et al. 2013. Single transmembrane peptide DinQ modulates membrane-dependent activities. PLOS Genet 9:e1003260 [Google Scholar]
  115. Wei Y, Gao ZQ, Otsuka Y, Naka K, Yonesaki T. 115.  et al. 2013. Structure-function studies of Escherichia coli RnlA reveal a novel toxin structure involved in bacteriophage resistance. Mol. Microbiol. 90:956–65 [Google Scholar]
  116. Wen Y, Behiels E, Devreese B. 116.  2014. Toxin-antitoxin systems: their role in persistence, biofilm formation, and pathogenicity. Pathog. Dis. 70:240–49 [Google Scholar]
  117. Williams JJ, Hergenrother PJ. 117.  2012. Artificial activation of toxin-antitoxin systems as an antibacterial strategy. Trends Microbiol 20:291–98 [Google Scholar]
  118. Wiuff C, Zappala RM, Regoes RR, Garner KN, Baquero F, Levin BR. 118.  2005. Phenotypic tolerance: antibiotic enrichment of noninherited resistance in bacterial populations. Antimicrob. Agents Chemother. 49:1483–94 [Google Scholar]
  119. Wood TK. 119.  2016. Combatting bacterial persister cells. Biotechnol. Bioeng. 113:476–83 [Google Scholar]
  120. Wood TK, Knabel SJ, Kwan BW. 120.  2013. Bacterial persister cell formation and dormancy. Appl. Environ. Microbiol. 79:7116–21 [Google Scholar]
  121. Wozniak RAF, Waldor MK. 121.  2009. A toxin-antitoxin system promotes the maintenance of an integrative conjugative element. PLOS Genet 5:e1000439 [Google Scholar]
  122. Wu Y, Vulić M, Keren I, Lewis K. 122.  2012. Role of oxidative stress in persister tolerance. Antimicrob. Agents Chemother. 56:4922–26 [Google Scholar]
  123. Yamaguchi Y, Park J-H, Inouye M. 123.  2011. Toxin-antitoxin systems in bacteria and archaea. Annu. Rev. Genet. 45:61–79 [Google Scholar]
  124. Yasui R, Washizaki A, Furihata Y, Yonesaki T, Otsuka Y. 124.  2014. AbpA and AbpB provide anti-phage activity in Escherichia coli. . Genes Genet. Syst. 89:51–60 [Google Scholar]
  125. Zhang Y, Zhang J, Hoeflich KP, Ikura M, Qing G, Inouye M. 125.  2003. MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli. . Mol. Cell 12:913–23 [Google Scholar]
  126. Zhao B, Ardales E, Raymundo A, Bai J, Trick HN. 126.  et al. 2004. The avrRxo1 gene from the rice pathogen Xanthomonas oryzae pv. oryzicola confers a nonhost defense reaction on maize with resistance gene Rxo1. . Mol. Plant-Microbe Interact 17:771–79 [Google Scholar]
  127. Zhao B, Lin X, Poland J, Trick H, Leach J, Hulbert S. 127.  2005. A maize resistance gene functions against bacterial streak disease in rice. PNAS 102:15383–88 [Google Scholar]
  128. Zhao J, Wang Q, Li M, Heijstra BD, Wang S. 128.  et al. 2013. Escherichia coli toxin gene hipA affects biofilm formation and DNA release. Microbiology 159:633–40 [Google Scholar]
/content/journals/10.1146/annurev-phyto-080516-035559
Loading
/content/journals/10.1146/annurev-phyto-080516-035559
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error