1932

Abstract

The genetic bottlenecks associated with plant domestication and subsequent selection in man-made agroecosystems have limited the genetic diversity of modern crops and increased their vulnerability to environmental stresses. Wild emmer wheat, the tetraploid progenitor of domesticated wheat, distributed along a wide range of ecogeographical conditions in the Fertile Crescent, has valuable “left behind” adaptive diversity to multiple diseases and environmental stresses. The biotic and abiotic stress responses are conferred by series of genes and quantitative trait loci (QTLs) that control complex resistance pathways. The study of genetic diversity, genomic organization, expression profiles, protein structure and function of biotic and abiotic stress-resistance genes, and QTLs could shed light on the evolutionary history and adaptation mechanisms of wild emmer populations for their natural habitats. The continuous evolution and adaptation of wild emmer to the changing environment provide novel solutions that can contribute to safeguarding food for the rapidly growing human population.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080614-120254
2016-08-04
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/phyto/54/1/annurev-phyto-080614-120254.html?itemId=/content/journals/10.1146/annurev-phyto-080614-120254&mimeType=html&fmt=ahah

Literature Cited

  1. Aaronsohn A. 1.  1910. Agricultural and botanical explorations in Palestine Bur. Plant Ind. Bull. 180, US Dep. Agric. Washington, DC:
  2. Akpinar BA, Kantar M, Budak H. 2.  2015. Root precursors of microRNAs in wild emmer and modern wheats show major differences in response to drought stress. Funct. Integr. Genom. 15:587–98 [Google Scholar]
  3. Anikster Y, Manisterski J, Long DL, Leonard KJ. 3.  2005. Leaf rust and stem rust resistance in Triticum dicoccoides populations in Israel. Plant Dis. 89:55–62 [Google Scholar]
  4. Ben-David R, Peleg Z, Dinoor A, Saranga Y, Korol AB, Fahima T. 4.  2014. Genetic dissection of quantitative powdery mildew resistance loci in tetraploid wheat. Mol. Breed. 34:1647–58 [Google Scholar]
  5. Ben-David R, Xie WL, Peleg Z, Saranga Y, Dinoor A, Fahima T. 5.  2010. Identification and mapping of PmG16, a powdery mildew resistance gene derived from wild emmer wheat. Theor. Appl. Genet. 121:499–510 [Google Scholar]
  6. Bennett FGA. 6.  1984. Resistance to powdery mildew in wheat: a review of its use in agriculture and breeding programs. Plant Pathol. 33:279–300 [Google Scholar]
  7. Bergelson J, Kreitman M, Stahl EA, Tian DC. 7.  2001. Evolutionary dynamics of plant R-genes. Science 292:2281–85 [Google Scholar]
  8. Blanco A, Gadaleta A, Cenci A, Carluccio AV, Abdelbacki AM, Simeone R. 8.  2008. Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticum turgidum var. dicoccoides in durum wheat. Theor. Appl. Genet. 117:135–42 [Google Scholar]
  9. Blum A. 9.  1983. Genetic and physiological relationships in plant breeding for drought resistance. Agric. Water Manag. 7:195–205 [Google Scholar]
  10. Blum A. 10.  2005. Drought resistance, water-use efficiency, and yield potential: Are they compatible, dissonant, or mutually exclusive?. Aust. J. Agric. Res. 56:1159–68 [Google Scholar]
  11. Bradshaw AD. 11.  2006. Unravelling phenotypic plasticity: Why should we bother?. New Phytol. 170:644–48 [Google Scholar]
  12. Brown JKM, Tellier A. 12.  2011. Plant-parasite coevolution: bridging the gap between genetics and ecology. Annu. Rev. Phytopathol. 49:345–67 [Google Scholar]
  13. Brunner S, Hurni S, Streckeisen P, Mayr G, Albrecht M. 13.  et al. 2010. Intragenic allele pyramiding combines different specificities of wheat Pm3 resistance alleles. Plant J. 64:433–45 [Google Scholar]
  14. Bryant RRM, McGrann GRD, Mitchell AR, Schoonbeek HJ, Boyd LA. 14.  et al. 2014. A change in temperature modulates defence to yellow (stripe) rust in wheat line UC1041 independently of resistance gene Yr36. BMC Plant Biol. 14:10 [Google Scholar]
  15. Budak H, Hussain B, Khan Z, Ozturk NZ, Ullah N. 15.  2015. From genetics to functional genomics: improvement in drought signaling and tolerance in wheat. Front. Plant Sci. 6:1012 [Google Scholar]
  16. Buerstmayr H, Stierschneider M, Steiner B, Lemmens M, Griesser M. 16.  et al. 2003. Variation for resistance to head blight caused by Fusarium graminearum in wild emmer (Triticum dicoccoides) originating from Israel. Euphytica 130:17–23 [Google Scholar]
  17. Buerstmayr M, Alimari A, Steiner B, Buerstmayr H. 17.  2013. Genetic mapping of QTL for resistance to Fusarium head blight spread (type 2 resistance) in a Triticum dicoccoides×Triticum durum backcross-derived population. Theor. Appl. Genet. 126:2825–34 [Google Scholar]
  18. Cantrell RG, Joppa LR. 18.  1991. Genetic analysis of quantitative traits in wild emmer (Triticum turgidum L. var. dicoccoides). Crop Sci. 31:645–49 [Google Scholar]
  19. Chen L, Ren J, Shi HY, Chen XD, Zhang MM. 19.  et al. 2013. Physiological and molecular responses to salt stress in wild emmer and cultivated wheat. Plant Mol. Biol. Rep. 31:1212–19 [Google Scholar]
  20. Chen XF, Faris JD, Hu JG, Stack RW, Adhikari T. 20.  et al. 2007. Saturation and comparative mapping of a major Fusarium head blight resistance QTL in tetraploid wheat. Mol. Breed. 19:113–24 [Google Scholar]
  21. Chen XM, Luo YH, Xia XC, Xia LQ, Chen X. 21.  et al. 2005. Chromosomal location of powdery mildew resistance gene Pm16 in wheat using SSR marker analysis. Plant Breed. 124:225–28 [Google Scholar]
  22. Cheng JP, Yan J, Sela HA, Manisterski J, Lewinsohn D. 22.  et al. 2010. Pathogen race determines the type of resistance response in the stripe rust–Triticum dicoccoides pathosystem. Physiol. Plant. 139:269–79 [Google Scholar]
  23. Cheng P, Xu LS, Wang MN, See DR, Chen XM. 23.  2014. Molecular mapping of genes Yr64 and Yr65 for stripe rust resistance in hexaploid derivatives of durum wheat accessions PI 331260 and PI 480016. Theor. Appl. Genet. 127:2267–77 [Google Scholar]
  24. Colmer TD, Flowers TJ, Munns R. 24.  2006. Use of wild relatives to improve salt tolerance in wheat. J. Exp. Bot. 57:1059–78 [Google Scholar]
  25. Cowger C, Parks R, Marshall D. 25.  2009. Appearance of powdery mildew of wheat caused by Blumeria graminis f. sp. tritici on Pm17 bearing cultivars in North Carolina. Plant Dis. 93:1219 [Google Scholar]
  26. Dadkhodaie NA, Karaoglou H, Wellings CR, Park RF. 26.  2011. Mapping genes Lr53 and Yr35 on the short arm of chromosome 6B of common wheat with microsatellite markers and studies of their association with Lr36. Theor. Appl. Genet. 122:479–87 [Google Scholar]
  27. Deyholos MK. 27.  2010. Making the most of drought and salinity transcriptomics. Plant Cell Environ. 33:648–54 [Google Scholar]
  28. Dodds PN, Rathjen JP. 28.  2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11:539–48 [Google Scholar]
  29. Dvorak J, Akhunov ED, Akhunov AR, Deal KR, Luo MC. 29.  2006. Molecular characterization of a diagnostic DNA marker for domesticated tetraploid wheat provides evidence for gene flow from wild tetraploid wheat to hexaploid wheat. Mol. Biol. Evol. 23:1386–96 [Google Scholar]
  30. Erayman M, Sandhu D, Sidhu D, Dilbirligi M, Baenziger PS, Gill KS. 30.  2004. Demarcating the gene-rich regions of the wheat genome. Nucleic Acids Res. 32:3546–65 [Google Scholar]
  31. Ergen NZ, Thimmapuram J, Bohnert HJ, Budak H. 31.  2009. Transcriptome pathways unique to dehydration tolerant relatives of modern wheat. Funct. Integr. Genom. 9:377–96 [Google Scholar]
  32. Fahima T, Roder MS, Grama A, Nevo E. 32.  1998. Microsatellite DNA polymorphism divergence in Triticum dicoccoides accessions highly resistant to yellow rust. Theor. Appl. Genet. 96:187–95 [Google Scholar]
  33. Fahima T, Roder MS, Wendehake K, Kirzhner VM, Nevo E. 33.  2002. Microsatellite polymorphism in natural populations of wild emmer wheat, Triticum dicoccoides, in Israel. Theor. Appl. Genet. 104:17–29 [Google Scholar]
  34. Fahima T, Sun GL, Beharav A, Krugman T, Beiles A, Nevo E. 34.  1999. RAPD polymorphism of wild emmer wheat populations, Triticum dicoccoides, in Israel. Theor. Appl. Genet. 98:434–47 [Google Scholar]
  35. Feldman M, Sears ER. 35.  1981. The wild gene resources of wheat. Sci. Am. 244:102–12 [Google Scholar]
  36. Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B. 36.  2003. Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. PNAS 100:15253–58 [Google Scholar]
  37. Fleury D, Jefferies S, Kuchel H, Langridge P. 37.  2010. Genetic and genomic tools to improve drought tolerance in wheat. J. Exp. Bot. 61:3211–22 [Google Scholar]
  38. Fu DL, Uauy C, Distelfeld A, Blechl A, Epstein L. 38.  et al. 2009. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–60 [Google Scholar]
  39. Garcia-Fernandez A, Iriondo JM, Bartels D, Escudero A. 39.  2013. Response to artificial drying until drought-induced death in different elevation populations of a high-mountain plant. Plant Biol. 15:93–100 [Google Scholar]
  40. Gerechter-Amitai ZK, Sharp EL, Reinhold M. 40.  1984. Temperature-sensitive genes for resistance to Puccinia striiformis in Triticum dicoccoides. Euphytica 33:665–72 [Google Scholar]
  41. Gerechter-Amitai ZK, Stubbs RW. 41.  1970. A valuable source of yellow rust resistance in Israeli populations of wild emmer, Triticum dicoccoides Koern. Euphytica 19:12–21 [Google Scholar]
  42. Gerechter-Amitai ZK, Vansilfhout CH. 42.  1984. Resistance to powdery mildew in wild emmer (Triticum dicoccoides Korn.). Euphytica 33:273–80 [Google Scholar]
  43. Gerechter-Amitai ZK, Vansilfhout CH, Grama A, Kleitman F. 43.  1989. Yr15: a new gene for resistance to Puccinia striiformis in Triticum dicoccoides Sel. G-25. Euphytica 43:187–90 [Google Scholar]
  44. Gladysz C, Lemmens M, Steiner B, Buerstmayr H. 44.  2007. Evaluation and genetic mapping of resistance to Fusarium head blight in Triticum dicoccoides. Isr. J. Plant Sci. 55:263–66 [Google Scholar]
  45. Golan G, Oksenberg A, Peleg Z. 45.  2015. Genetic evidence for differential selection of grain and embryo weight during wheat evolution under domestication. J. Exp. Bot. 66:5703–11 [Google Scholar]
  46. Gonzalez-Hernandez JL, Elias EM, Kianian SF. 46.  2004. Mapping genes for grain protein concentration and grain yield on chromosome 5B of Triticum turgidum (L.) var. dicoccoides. Euphytica 139:217–25 [Google Scholar]
  47. Gou JY, Li K, Wu KT, Wang XD, Lin HQ. 47.  et al. 2015. Wheat stripe rust resistance protein WKS1 reduces the ability of the thylakoid-associated ascorbate peroxidase to detoxify reactive oxygen species. Plant Cell 27:1755–70 [Google Scholar]
  48. Harlan JR, Zohary D. 48.  1966. Distribution of wild wheats and barley. Science 153:1074–80 [Google Scholar]
  49. Hartung W, Sauter A, Hose E. 49.  2002. Abscisic acid in the xylem: Where does it come from, where does it go to?. J. Exp. Bot. 53:27–32 [Google Scholar]
  50. Haudry A, Cenci A, Ravel C, Bataillon T, Brunel D. 50.  et al. 2007. Grinding up wheat: a massive loss of nucleotide diversity since domestication. Mol. Biol. Evol. 24:1506–17 [Google Scholar]
  51. Horovitz A, Ezrati S, Anikster Y. 51.  2013. Are soil seed banks relevant for agriculture in our day?. Crop Wild Relat. 9:27–29 [Google Scholar]
  52. Hovmøller MS, Sørensen CK, Walter S, Justesen AF. 52.  2011. Diversity of Puccinia striiformis on cereals and grasses. Annu. Rev. Phytopathol. 49:197–217 [Google Scholar]
  53. Hu HH, Dai MQ, Yao JL, Xiao BZ, Li XH. 53.  et al. 2006. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. PNAS 103:12987–92 [Google Scholar]
  54. Hu YC, Schmidhalter U. 54.  2005. Drought and salinity: a comparison of their effects on mineral nutrition of plants. J. Plant Nutr. Soil Sci. 168:541–49 [Google Scholar]
  55. Hua W, Liu ZJ, Zhu J, Xie CJ, Yang TM. 55.  et al. 2009. Identification and genetic mapping of pm42, a new recessive wheat powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides). Theor. Appl. Genet. 119:223–30 [Google Scholar]
  56. Huang L, Sela H, Feng LH, Chen QJ, Krugman T. 56.  et al. 2016. Distribution and haplotype diversity of WKS resistance genes in wild emmer wheat natural populations. Theor. Appl. Genet. 129921–34 [Google Scholar]
  57. Hubner S, Korol AB, Schmid KJ. 57.  2015. RNA-Seq analysis identifies genes associated with differential reproductive success under drought-stress in accessions of wild barley Hordeum spontaneum. BMC Plant Biol. 15:134 [Google Scholar]
  58. Husain S, Munns R, Condon AG. 58.  2003. Effect of sodium exclusion trait on chlorophyll retention and growth of durum wheat in saline soil. Aust. J. Agric. Res. 54:589–97 [Google Scholar]
  59. Ji XL, Xie CJ, Ni ZF, Yang TM, Nevo E. 59.  et al. 2008. Identification and genetic mapping of a powdery mildew resistance gene in wild emmer (Triticum dicoccoides) accession IW72 from Israel. Euphytica 159:385–90 [Google Scholar]
  60. Jones DT, Taylor WR, Thornton JM. 60.  1992. The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 8:275–82 [Google Scholar]
  61. Kanzaki H, Yoshida K, Saitoh H, Fujisaki K, Hirabuchi A. 61.  et al. 2012. Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. Plant J. 72:894–907 [Google Scholar]
  62. Kaplan D. 62.  2008. A designated nature reserve for in situ conservation of the wild emmer wheat [Triticum dicoccoides (Körn) Aaronsohn] in northern Israel. Crop Wild Relative Conservation and Use N Maxted, BV Ford-Lloyd, SP Kell, J Iriondo, E Dulloo, J Turok 389–93 Wallingford, UK: CABI [Google Scholar]
  63. Krasensky J, Jonak C. 63.  2012. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 63:1593–608 [Google Scholar]
  64. Krattinger SG, Jordan DR, Mace ES, Raghavan C, Luo MC. 64.  et al. 2013. Recent emergence of the wheat Lr34 multi-pathogen resistance: insights from haplotype analysis in wheat, rice, sorghum and Aegilops tauschii. Theor. Appl. Genet. 126:663–72 [Google Scholar]
  65. Krugman T, Chague V, Peleg Z, Balzergue S, Just J. 65.  et al. 2010. Multilevel regulation and signalling processes associated with adaptation to terminal drought in wild emmer wheat. Funct. Integr. Genom. 10:167–86 [Google Scholar]
  66. Krugman T, Peleg Z, Quansah L, Chague V, Korol AB. 66.  et al. 2011. Alteration in expression of hormone-related genes in wild emmer wheat roots associated with drought adaptation mechanisms. Funct. Integr. Genom. 11:565–83 [Google Scholar]
  67. Kumar S, Stack RW, Friesen TL, Faris JD. 67.  2007. Identification of a novel Fusarium head blight resistance quantitative trait locus on chromosome 7A in tetraploid wheat. Phytopathology 97:592–97 [Google Scholar]
  68. Ladizinsky G. 68.  1985. Founder effect in crop-plant evolution. Econ. Bot. 39:191–99 [Google Scholar]
  69. Leister D. 69.  2004. Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance genes. Trends Genet. 20:116–22 [Google Scholar]
  70. Li GQ, Fang TL, Zhang HT, Xie CJ, Li HJ. 70.  et al. 2009. Molecular identification of a new powdery mildew resistance gene Pm41 on chromosome 3BL derived from wild emmer (Triticum turgidum var. dicoccoides). Theor. Appl. Genet. 119:531–39 [Google Scholar]
  71. Li GQ, Li ZF, Yang WY, Zhang Y, He ZH. 71.  et al. 2006. Molecular mapping of stripe rust resistance gene YrCH42 in Chinese wheat cultivar Chuanmai 42 and its allelism with Yr24 and Yr26. Theor. Appl. Genet. 112:1434–40 [Google Scholar]
  72. Li N, Wen ZR, Wang J, Fu BS, Liu JJ. 72.  et al. 2014. Transfer and mapping of a gene conferring later-growth-stage powdery mildew resistance in a tetraploid wheat accession. Mol. Breed. 33:669–77 [Google Scholar]
  73. Liu ZJ, Zhu J, Cui Y, Liang Y, Wu HB. 73.  et al. 2012. Identification and comparative mapping of a powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides) on chromosome 2BS. Theor. Appl. Genet. 124:1041–49 [Google Scholar]
  74. Liu ZY, Sun QX, Ni ZF, Nevo E, Yang TM. 74.  2002. Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica 123:21–29 [Google Scholar]
  75. Lopes MS, Rebetzke GJ, Reynolds M. 75.  2014. Integration of phenotyping and genetic platforms for a better understanding of wheat performance under drought. J. Exp. Bot. 65:6167–77 [Google Scholar]
  76. Loss SP, Siddique KHM. 76.  1994. Morphological and physiological traits associated with wheat yield increases in Mediterranean environments. Adv. Agron. 52:229–76 [Google Scholar]
  77. Loutre C, Wicker T, Travella S, Galli P, Scofield S. 77.  et al. 2009. Two different CC-NBS-LRR genes are required for Lr10-mediated leaf rust resistance in tetraploid and hexaploid wheat. Plant J. 60:1043–54 [Google Scholar]
  78. Mandoulakani BA, Yaniv E, Kalendar R, Raats D, Bariana HS. 78.  et al. 2015. Development of IRAP- and REMAP-derived SCAR markers for marker-assisted selection of the stripe rust resistance gene Yr15 derived from wild emmer wheat. Theor. Appl. Genet. 128:211–19 [Google Scholar]
  79. Mao HD, Wang HW, Liu SX, Li Z, Yang XH. 79.  et al. 2015. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nat. Commun. 6:8326 [Google Scholar]
  80. Marais GF, Pretorius ZA, Wellings CR, McCallum B, Marais AS. 80.  2005. Leaf rust and stripe rust resistance genes transferred to common wheat from Triticum dicoccoides. Euphytica 143:115–23 [Google Scholar]
  81. Maxwell JJ, Lyerly JH, Srnic G, Parks R, Cowger C. 81.  et al. 2010. MlAB10: a Triticum turgidum subsp. dicoccoides derived powdery mildew resistance gene identified in common wheat. Crop Sci. 50:2261–67 [Google Scholar]
  82. McDonald BA, Linde C. 82.  2002. Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Phytopathol. 40:349–79 [Google Scholar]
  83. McFadden ES, Sears ER. 83.  1946. The origin of Triticum spelta and its free-threshing hexaploid relatives. J. Hered. 37:107–16 [Google Scholar]
  84. McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, Appels R, Xia XC. 84.  2013. Catalogue of gene symbols for wheat: 2013–2014 supplement. 12th Int. Wheat Genet. Symp. http://maswheat.ucdavis.edu/CGSW/2013-2014_Supplement.pdf
  85. McVey DV. 85.  1991. Reaction of a group of related wheat species (AABB genome and an AABBDD) to stem rust. Crop Sci. 31:1145–49 [Google Scholar]
  86. Merchuk L, Krugman T, Barak V, Lidzbarsky G, Fahima T, Saranga Y. 86.  2015. QTLs from wild emmer wheat improve drought resistance in modern wheat cultivars Presented at Plant Anim. Genome Conf., 23rd, San Diego
  87. Michelmore RW, Meyers BC. 87.  1998. Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res. 8:1113–30 [Google Scholar]
  88. Millet E, Rong JK, Qualset CO, Mcguire PE, Bernard M. 88.  et al. 2014. Grain yield and grain protein percentage of common wheat lines with wild emmer chromosome-arm substitutions. Euphytica 195:69–81 [Google Scholar]
  89. Mittler R, Blumwald E. 89.  2010. Genetic engineering for modern agriculture: challenges and perspectives. Annu. Rev. Plant. Biol. 61:443–62 [Google Scholar]
  90. Mohler V, Zeller FJ, Wenzel G, Hsam SLK. 90.  2005. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 9. Gene MlZec1 from the Triticum dicoccoides-derived wheat line Zecoi-1. Euphytica 142:161–67 [Google Scholar]
  91. Moseman JG, Nevo E, Elmorshidy MA, Zohary D. 91.  1984. Resistance of Triticum dicoccoides to infection with Erysiphe graminis tritici. Euphytica 33:41–47 [Google Scholar]
  92. Moseman JG, Nevo E, Gerechter-Amitai ZK, Elmorshidy MA, Zohary D. 92.  1985. Resistance of Triticum dicoccoides collected in Israel to infection with Puccinia recondita tritici. Crop Sci. 25:262–65 [Google Scholar]
  93. Munns R, Tester M. 93.  2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol 59:651–81 [Google Scholar]
  94. Nevo E, Beiles A, Gutterman Y, Storch N, Kaplan D. 94.  1984. Genetic resources of wild cereals in Israel and vicinity. II. Phenotypic variation within and between populations of wild barley, Hordeum Spontaneum. Euphytica 33:737–56 [Google Scholar]
  95. Nevo E, Gerechter-Amitai Z, Beiles A. 95.  1991. Resistance of wild emmer wheat to stem rust: ecological, pathological and allozyme associations. Euphytica 53:121–30 [Google Scholar]
  96. Nevo E, Gorham J, Beiles A. 96.  1992. Variation for 22Na uptake in wild emmer wheat, Triticum dicoccoides in Israel: salt tolerance resources for wheat improvement. J. Exp. Bot. 43:511–18 [Google Scholar]
  97. Nevo E, Korol AB, Beiles A, Fahima T. 97.  2002. Evolution of Wild Emmer and Wheat Improvement: Population Genetics, Genetic Resources, and Genome Organization of Wheat's Progenitor New York: Springer-Verlag
  98. Nevo E, Krugman T, Beiles A. 98.  1993. Genetic resources for salt tolerance in the wild progenitors of wheat (Triticum dicoccoides) and barley (Hordeum spontaneum) in Israel. Plant Breed. 110:338–41 [Google Scholar]
  99. Nevo E, Moseman JG, Beiles A, Zohary D. 99.  1985. Patterns of resistance of Israeli wild emmer wheat to pathogens I. Predictive method by ecology and allozyme genotypes for powdery mildew and leaf rust. Genetica 67:209–22 [Google Scholar]
  100. Otto CD, Kianian SF, Elias EM, Stack RW, Joppa LR. 100.  2002. Genetic dissection of a major Fusarium head blight QTL in tetraploid wheat. Plant Mol. Biol. 48:625–32 [Google Scholar]
  101. Ouyang SH, Zhang D, Han J, Zhao XJ, Cui Y. 101.  et al. 2014. Fine physical and genetic mapping of powdery mildew resistance gene MlIW172 originating from wild emmer (Triticum dicoccoides). PLOS ONE 9:e100160 [Google Scholar]
  102. Pedersen WL, Leath S. 102.  1988. Pyramiding major genes for resistance to maintain residual effects. Annu. Rev. Phytopathol. 26:369–78 [Google Scholar]
  103. Peleg Z, Cakmak I, Ozturk L, Yazici A, Jun Y. 103.  et al. 2009. Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat×wild emmer wheat RIL population. Theor. Appl. Genet. 119:353–69 [Google Scholar]
  104. Peleg Z, Fahima T, Abbo S, Krugman T, Nevo E. 104.  et al. 2005. Genetic diversity for drought resistance in wild emmer wheat and its ecogeographical associations. Plant Cell Environ. 28:176–91 [Google Scholar]
  105. Peleg Z, Fahima T, Abbo S, Krugman T, Saranga Y. 105.  2008. Genetic structure of wild emmer wheat populations as reflected by transcribed versus anonymous SSR markers. Genome 51:187–95 [Google Scholar]
  106. Peleg Z, Fahima T, Krugman T, Abbo S, Yakir D. 106.  et al. 2009. Genomic dissection of drought resistance in durum wheat×wild emmer wheat recombinant inbreed line population. Plant Cell Environ. 32:758–79 [Google Scholar]
  107. Peleg Z, Fahima T, Saranga Y. 107.  2007. Drought resistance in wild emmer wheat: physiology, ecology, and genetics. Isr. J. Plant Sci. 55:289–96 [Google Scholar]
  108. Peleg Z, Saranga Y, Krugman T, Abbo S, Nevo E, Fahima T. 108.  2008. Allelic diversity associated with aridity gradient in wild emmer wheat populations. Plant Cell Environ. 31:39–49 [Google Scholar]
  109. Peng JH, Fahima T, Roder MS, Li YC, Grama A, Nevo E. 109.  2000. Microsatellite high-density mapping of the stripe rust resistance gene YrH52 region on chromosome 1B and evaluation of its marker-assisted selection in the F2 generation in wild emmer wheat. New Phytol. 146:141–54 [Google Scholar]
  110. Peng JH, Ronin Y, Fahima T, Roder MS, Li YC. 110.  et al. 2003. Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. PNAS 100:2489–94 [Google Scholar]
  111. Pierik R, Testerink C. 111.  2014. The art of being flexible: how to escape from shade, salt, and drought. Plant Physiol. 166:5–22 [Google Scholar]
  112. Prat N, Buerstmayr M, Steiner B, Robert O, Buerstmayr H. 112.  2014. Current knowledge on resistance to Fusarium head blight in tetraploid wheat. Mol. Breed. 34:1689–99 [Google Scholar]
  113. Raats D, Frenkel Z, Krugman T, Dodek I, Sela H. 113.  et al. 2013. The physical map of wheat chromosome 1BS provides insights into its gene space organization and evolution. Genome Biol. 14:R138 [Google Scholar]
  114. Randhawa M, Bansal U, Valarik M, Klocova B, Dolezel J, Bariana H. 114.  2014. Molecular mapping of stripe rust resistance gene Yr51 in chromosome 4AL of wheat. Theor. Appl. Genet. 127:317–24 [Google Scholar]
  115. Rong JK, Millet E, Manisterski J, Feldman M. 115.  2000. A new powdery mildew resistance gene: introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica 115:121–26 [Google Scholar]
  116. Sandhu D, Champoux JA, Bondareva SN, Gill KS. 116.  2001. Identification and physical localization of useful genes and markers to a major gene-rich region on wheat group 1S chromosomes. Genetics 157:1735–47 [Google Scholar]
  117. Schachtman DP, Goodger JQD. 117.  2008. Chemical root to shoot signaling under drought. Trends Plant Sci. 13:281–87 [Google Scholar]
  118. Segovia V, Hubbard A, Craze M, Bowden S, Wallington E. 118.  et al. 2014. Yr36 confers partial resistance at temperatures below 18°C to UK isolates of Puccinia striiformis. Phytopathology 104:871–78 [Google Scholar]
  119. Sela H, Ezrati S, Ben-Yehuda P, Manisterski J, Akhunov E. 119.  et al. 2014. Linkage disequilibrium and association analysis of stripe rust resistance in wild emmer wheat (Triticum turgidum ssp. dicoccoides) population in Israel. Theor. Appl. Genet. 127:2453–63 [Google Scholar]
  120. Sela H, Loutre C, Keller B, Schulman A, Nevo E. 120.  et al. 2011. Rapid linkage disequilibrium decay in the Lr10 gene in wild emmer wheat (Triticum dicoccoides) populations. Theor. Appl. Genet. 122:175–87 [Google Scholar]
  121. Sela H, Spiridon LN, Ashkenazi H, Bhullar NK, Brunner S. 121.  et al. 2014. Three-dimensional modeling and diversity analysis reveals distinct AVR recognition sites and evolutionary pathways in wild and domesticated wheat Pm3 R genes. Mol. Plant-Microbe Interact. 27:835–45 [Google Scholar]
  122. Sela H, Spiridon LN, Petrescu AJ, Akerman M, Mandel-Gutfreund Y. 122.  et al. 2012. Ancient diversity of splicing motifs and protein surfaces in the wild emmer wheat (Triticum dicoccoides) LR10 coiled coil (CC) and leucine-rich repeat (LRR) domains. Mol. Plant Pathol. 13:276–87 [Google Scholar]
  123. Shavrukov Y, Langridge P, Tester M, Nevo E. 123.  2010. Wide genetic diversity of salinity tolerance, sodium exclusion and growth in wild emmer wheat, Triticum dicoccoides. Breed. Sci. 60:426–35 [Google Scholar]
  124. Shen JD, Araki H, Chen LL, Chen JQ, Tian DC. 124.  2006. Unique evolutionary mechanism in R-genes under the presence/absence polymorphism in Arabidopsis thaliana. Genetics 172:1243–50 [Google Scholar]
  125. Shinozaki K, Yamaguchi-Shinozaki K. 125.  2007. Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 58:221–27 [Google Scholar]
  126. Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S. 126.  et al. 2011. The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu. Rev. Phytopathol. 49:465–81 [Google Scholar]
  127. Srichumpa P, Brunner S, Keller B, Yahiaoui N. 127.  2005. Allelic series of four powdery mildew resistance genes at the Pm3 locus in hexaploid bread wheat. Plant Physiol. 139:885–95 [Google Scholar]
  128. St. Clair DA. 128.  2010. Quantitative disease resistance and quantitative resistance loci in breeding. Annu. Rev. Phytopathol. 48:247–68 [Google Scholar]
  129. Stahl EA, Dwyer G, Mauricio R, Kreitman M, Bergelson J. 129.  1999. Dynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis. Nature 400:667–71 [Google Scholar]
  130. Sun GL, Fahima T, Korol AB, Turpeinen T, Grama A. 130.  et al. 1997. Identification of molecular markers linked to the Yr15 stripe rust resistance gene of wheat originated in wild emmer wheat, Triticum dicoccoides. Theor. Appl. Genet. 95:622–28 [Google Scholar]
  131. Takahashi F, Tilbrook J, Trittermann C, Berger B, Roy SJ. 131.  et al. 2015. Comparison of leaf sheath transcriptome profiles with physiological traits of bread wheat cultivars under salinity stress. PLOS ONE 10:e0133322 [Google Scholar]
  132. Tanksley SD, McCouch SR. 132.  1997. Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–66 [Google Scholar]
  133. Tester M, Langridge P. 133.  2010. Breeding technologies to increase crop production in a changing world. Science 327:818–22 [Google Scholar]
  134. Tzarfati R, Barak V, Krugman T, Fahima T, Abbo S. 134.  et al. 2014. Novel quantitative trait loci underlying major domestication traits in tetraploid wheat. Mol. Breed. 34:1613–28 [Google Scholar]
  135. Uauy C, Brevis JC, Chen XM, Khan I, Jackson L. 135.  et al. 2005. High-temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theor. Appl. Genet. 112:97–105 [Google Scholar]
  136. Uauy C, Brevis JC, Dubcovsky J. 136.  2006. The high grain protein content gene Gpc-B1 accelerates senescence and has pleiotropic effects on protein content in wheat. J. Exp. Bot. 57:2785–94 [Google Scholar]
  137. Van Silfhout CH. 137.  1989. Identification and characterization of resistance to yellow rust and powdery mildew in wild emmer wheat and their transfer to bread wheat. PhD Thesis, Agric. Univ, Wageningen, Neth.
  138. Volis S. 138.  2016. Seed heteromorphism in Triticum dicoccoides: association between seed positions within a dispersal unit and dormancy. Oecologia 181401–12 [Google Scholar]
  139. Wan A, Chen X, Yuen J. 139.  2016. Races of Puccinia striiformis f. sp. tritici in the United States in 2011 and 2012 and comparison with races in 2010. Plant Dis. 100966–75 [Google Scholar]
  140. Wan YF, Yen C, Yang JL. 140.  1997. Sources of resistance to head scab in Triticum. Euphytica 94:31–36 [Google Scholar]
  141. Xie WL, Ben-David R, Zeng B, Distelfeld A, Roder MS. 141.  et al. 2012. Identification and characterization of a novel powdery mildew resistance gene PmG3M derived from wild emmer wheat, Triticum dicoccoides. Theor. Appl. Genet. 124:911–22 [Google Scholar]
  142. Xu X, Nicholson P. 142.  2009. Community ecology of fungal pathogens causing wheat head blight. Annu. Rev. Phytopathol. 47:83–103 [Google Scholar]
  143. Xue F, Ji WQ, Wang CY, Zhang H, Yang BJ. 143.  2012. High-density mapping and marker development for the powdery mildew resistance gene PmAS846 derived from wild emmer wheat (Triticum turgidum var. dicoccoides). Theor. Appl. Genet. 124:1549–60 [Google Scholar]
  144. Yahiaoui N, Brunner S, Keller B. 144.  2006. Rapid generation of new powdery mildew resistance genes after wheat domestication. Plant J. 47:85–98 [Google Scholar]
  145. Yahiaoui N, Kaur N, Keller B. 145.  2009. Independent evolution of functional Pm3 resistance genes in wild tetraploid wheat and domesticated bread wheat. Plant J. 57:846–56 [Google Scholar]
  146. Yahiaoui N, Srichumpa P, Dudler R, Keller B. 146.  2004. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J. 37:528–38 [Google Scholar]
  147. Yaniv E, Raats D, Ronin Y, Korol AB, Grama A. 147.  et al. 2015. Evaluation of marker-assisted selection for the stripe rust resistance gene Yr15, introgressed from wild emmer wheat. Mol. Breed. 35:1–12 [Google Scholar]
  148. Yu JM, Buckler ES. 148.  2006. Genetic association mapping and genome organization of maize. Curr. Opin. Biotechnol. 17:155–60 [Google Scholar]
  149. Zhang D, Ouyang SH, Wang LL, Yu CUI. 149.  2015. Comparative genetic mapping revealed powdery mildew resistance gene MlWE4 derived from wild emmer is located in same genomic region of Pm36 and Ml3D232 on chromosome 5BL. J. Integr. Agric. 14:603–9 [Google Scholar]
  150. Zhang H, Zhang L, Wang C, Wang Y, Zhou X. 150.  et al. 2016. Molecular mapping and marker development for the Triticum dicoccoides–derived stripe rust resistance gene YrSM139-1B in bread wheat cv. Shaanmai 139. Theor. Appl. Genet. 129:369–76 [Google Scholar]
  151. Zhang HT, Guan HY, Li JT, Zhu J, Xie CJ. 151.  et al. 2010. Genetic and comparative genomics mapping reveals that a powdery mildew resistance gene Ml3D232 originating from wild emmer co-segregates with an NBS-LRR analog in common wheat (Triticum aestivum L.).. Theor. Appl. Genet. 121:1613–21 [Google Scholar]
  152. Zou HD, Tzarfati R, Hübner S, Krugman T, Fahima T. 152.  et al. 2015. Transcriptome profiling of wheat glumes in wild emmer, hulled landraces and modern cultivars. BMC Genom. 16:777 [Google Scholar]
/content/journals/10.1146/annurev-phyto-080614-120254
Loading
/content/journals/10.1146/annurev-phyto-080614-120254
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error