1932

Abstract

Plant-parasitic nematodes cause significant damage to a broad range of vegetables and agricultural crops throughout the world. As the natural enemies of nematodes, nematophagous microorganisms offer a promising approach to control the nematode pests. Some of these microorganisms produce traps to capture and kill the worms from the outside. Others act as internal parasites to produce toxins and virulence factors to kill the nematodes from within. Understanding the molecular basis of microbe-nematode interactions provides crucial insights for developing effective biological control agents against plant-parasitic nematodes. Here, we review recent advances in our understanding of the interactions between nematodes and nematophagous microorganisms, with a focus on the molecular mechanisms by which nematophagous microorganisms infect nematodes and on the nematode defense against pathogenic attacks. We conclude by discussing several key areas for future research and development, including potential approaches to apply our recent understandings to develop effective biocontrol strategies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080614-120336
2015-08-04
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/phyto/53/1/annurev-phyto-080614-120336.html?itemId=/content/journals/10.1146/annurev-phyto-080614-120336&mimeType=html&fmt=ahah

Literature Cited

  1. Abad P, Gouzy J, Aury J-M, Castagnone-Sereno P, Danchin EGJ. 1.  et al. 2008. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat. Biotechnol. 26:909–15 [Google Scholar]
  2. Aballay A, Yorgey P, Ausubel FM. 2.  2000. Salmonella typhimurium proliferates and establishes a persistent infection in the intestine of Caenorhabditis elegans. Curr. Biol. 10:1539–42 [Google Scholar]
  3. Affokpon A, Coyne DL, Htay CC, Agbèdè RD, Lawouin L, Coosemans J. 3.  2011. Biocontrol potential of native Trichoderma isolates against root-knot nematodes in West African vegetable production systems. Soil Biol. Biochem. 43:600–8 [Google Scholar]
  4. Åhman J, Johansson T, Olsson M, Punt PJ, van den Hondel CAMJJ, Tunlid A. 4.  2002. Improving the pathogenicity of a nematode-trapping fungus by genetic engineering of a subtilisin with nematotoxic activity. Appl. Environ. Microbiol. 68:3408–15 [Google Scholar]
  5. Ahrén D, Tholander M, Fekete C, Rajashekar B, Friman E. 5.  et al. 2005. Comparison of gene expression in trap cells and vegetative hyphae of the nematophagous fungus Monacrosporium haptotylum. Microbiology 151:789–803 [Google Scholar]
  6. Ahrén D, Ursing BM, Tunlid A. 6.  1998. Phylogeny of nematode-trapping fungi based on 18S rDNA sequences. FEMS Microbiol. Lett. 158:179–84 [Google Scholar]
  7. Ali NI, Siddiqui IA, Shahid Shaukat S, Zaki M. 7.  2002. Nematicidal activity of some strains of Pseudomonas spp. Soil Biol. Biochem. 34:1051–58 [Google Scholar]
  8. Balogh J, Tunlid A, Rosen S. 8.  2003. Deletion of a lectin gene does not affect the phenotype of the nematode-trapping fungus Arthrobotrys oligospora. Fungal Genet. Biol. 39:128–35 [Google Scholar]
  9. Bird DM, Opperman CH, Davies KG. 9.  2003. Interactions between bacteria and plant-parasitic nematodes: now and then. Int. J. Parasitol. 33:1269–76 [Google Scholar]
  10. Bischof LJ, Kao C-Y, Los FC, Gonzalez MR, Shen Z. 10.  et al. 2008. Activation of the unfolded protein response is required for defenses against bacterial pore-forming toxin in vivo. PLOS Pathog. 4:e1000176 [Google Scholar]
  11. Bishop AH. 11.  2011. Pasteuria penetrans and its parasitic interaction with plant parasitic nematodes. Endospore-Forming Soil Bacteria181–201 Dordrecht, Neth: Springer [Google Scholar]
  12. Cezairliyan B, Vinayavekhin N, Grenfell-Lee D, Yuen GJ, Saghatelian A, Ausubel FM. 12.  2013. Identification of Pseudomonas aeruginosa phenazines that kill Caenorhabditis elegans. PLOS Pathog. 9:e1003101 [Google Scholar]
  13. Charles L, Carbone I, Davies KG, Bird D, Burke M. 13.  et al. 2005. Phylogenetic analysis of Pasteuria penetrans by use of multiple genetic loci. J. Bacteriol. 187:5700–8 [Google Scholar]
  14. Chen L, Liu L, Shi M, Song X, Zheng C. 14.  et al. 2009. Characterization and gene cloning of a novel serine protease with nematicidal activity from Trichoderma pseudokoningii SMF2. FEMS Microbiol. Lett. 299:135–42 [Google Scholar]
  15. Chen T, Hsu C, Tsai P, Ho Y, Lin N. 15.  2001. Heterotrimeric G-protein and signal transduction in the nematode-trapping fungus Arthrobotrys dactyloides. Planta 212:858–63 [Google Scholar]
  16. Chen Y-L, Gao Y, Zhang K-Q, Zou C-G. 16.  2013. Autophagy is required for trap formation in the nematode-trapping fungus Arthrobotrys oligospora. Environ. Microbiol. Rep. 5:511–17 [Google Scholar]
  17. Chen Z, Dickson D. 17.  1998. Review of Pasteuria penetrans: biology, ecology, and biological control potential. J. Nematol. 30:313 [Google Scholar]
  18. Chugani S, Kim BS, Phattarasukol S, Brittnacher MJ, Choi SH. 18.  et al. 2012. Strain-dependent diversity in the Pseudomonas aeruginosa quorum-sensing regulon. Proc. Natl. Acad. Sci. USA 109:E2823–31 [Google Scholar]
  19. Couillault C, Pujol N, Reboul J, Sabatier L, Guichou J-F. 19.  et al. 2004. TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM. Nat. Immunol. 5:488–94 [Google Scholar]
  20. Davies KG. 20.  2009. Understanding the interaction between an obligate hyperparasitic bacterium, Pasteuria penetrans and its obligate plant-parasitic nematode host, Meloidogyne spp. Adv. Parasitol. 68:211–45 [Google Scholar]
  21. Davies KG, Curtis RH. 21.  2011. Cuticle surface coat of plant-parasitic nematodes. Annu. Rev. Phytopathol. 49:135–56 [Google Scholar]
  22. Davies KG, Rowe J, Manzanilla-Lopez R, Opperman CH. 22.  2011. Re-evaluation of the life-cycle of the nematode-parasitic bacterium Pasteuria penetrans in root-knot nematodes, Meloidogyne spp. Nematology 13:825–35 [Google Scholar]
  23. Deng X, Tian Y, Niu Q, Xu X, Shi H. 23.  et al. 2013. The ComP-ComA quorum system is essential for “Trojan horse” like pathogenesis in Bacillus nematocida. PLOS ONE 8:e76920 [Google Scholar]
  24. Dijksterhuis J, Veenhuis M, Harder W, Nordbring-Hertz B. 24.  1994. Nematophagous fungi: physiological aspects and structure-function relationships. Adv. Microb. Physiol. 36:111–43 [Google Scholar]
  25. Dong L, Zhang K. 25.  2006. Microbial control of plant-parasitic nematodes: a five-party interaction. Plant Soil 288:31–45 [Google Scholar]
  26. Dowsett JA, Reid J, Hopkin A. 26.  1984. Microscopic observations on the trapping of nematodes by the predaceous fungus Dactylella cionopaga. Can. J. Bot. 62:674–79 [Google Scholar]
  27. Eilenberg J, Hajek A, Lomer C. 27.  2001. Suggestions for unifying the terminology in biological control. BioControl 46:387–400 [Google Scholar]
  28. Feinbaum RL, Urbach JM, Liberati NT, Djonovic S, Adonizio A. 28.  et al. 2012. Genome-wide identification of Pseudomonas aeruginosa virulence-related genes using a Caenorhabditis elegans infection model. PLOS Pathog. 8e1002813
  29. Friman E, Olsson S, Nordbring-Hertz B. 29.  1985. Heavy trap formation by Arthrobotrys oligospora in liquid culture. FEMS Microbiol. Lett. 31:17–21 [Google Scholar]
  30. Gams W, Zare R. 30.  2003. A taxonomic review of the clavicipitaceous anamorphs parasitizing nematodes and other microinvertebrates. Clavicipitalean Fungi. Evolutionary Biology, Chemistry, Biocontrol, and Cultural Impacts JF White Jr, CW Bacon, NL Hywel-Jones, JW Spatofora 17–74 New York: Marcel Dekker [Google Scholar]
  31. Gan Z, Yang J, Tao N, Lou Z, Mi Q. 31.  et al. 2009. Crystallization and preliminary crystallographic analysis of a chitinase from Clonostachys rosea. Acta Crystallogr. Sect. F. 65:386–88 [Google Scholar]
  32. Garsin DA, Villanueva JM, Begun J, Kim DH, Sifri CD. 32.  et al. 2003. Long-lived C. elegans daf-2 mutants are resistant to bacterial pathogens. Science 300:1921–21 [Google Scholar]
  33. Gibson LJ. 33.  2012. The hierarchical structure and mechanics of plant materials. J. R. Soc. Interface 9:2749–66 [Google Scholar]
  34. Gowda LK, Marie MAM. 34.  2014. Role of quorum-sensing molecules in infections caused by Gram-negative bacteria and host cell response. Rev. Med. Microbiol. 25:66–70 [Google Scholar]
  35. Gravato-Nobre MJ, Hodgkin J. 35.  2005. Caenorhabditis elegans as a model for innate immunity to pathogens. Cell. Microbiol. 7:741–51 [Google Scholar]
  36. Gravato-Nobre MJ, Hodgkin J. 36.  2011. Microbial interactions with Caenorhabditis elegans: lessons from a model organism. Biological Control of Plant-Parasitic Nematodes K Davies, Y Spiegel 65–90 Dordrecht, Neth: Springer [Google Scholar]
  37. Griffitts JS, Haslam SM, Yang T, Garczynski SF, Mulloy B. 37.  et al. 2005. Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science 307:922–25 [Google Scholar]
  38. Guo J, Zhu C, Zhang C, Chu Y, Wang Y. 38.  et al. 2012. Thermolides, potent nematocidal PKS-NRPS hybrid metabolites from thermophilic fungus Talaromyces thermophilus. J. Am. Chem. Soc. 134:20306–9 [Google Scholar]
  39. Guo ZV, Hart AC, Ramanathan S. 39.  2009. Optical interrogation of neural circuits in Caenorhabditis elegans. Nat. Methods 6:891–96 [Google Scholar]
  40. Hasshoff M, Bohnisch C, Tonn D, Hasert B, Schulenburg H. 40.  2007. The role of Caenorhabditis elegans insulin-like signaling in the behavioral avoidance of pathogenic Bacillus thuringiensis. FASEB J. 21:1801–12 [Google Scholar]
  41. Henderson ST, Johnson TE. 41.  2001. daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr. Biol. 11:1975–80 [Google Scholar]
  42. Hsueh YP, Mahanti P, Schroeder FC, Sternberg PW. 42.  2013. Nematode-trapping fungi eavesdrop on nematode pheromones. Curr. Biol. 23:83–86 [Google Scholar]
  43. Huang X-W, Niu Q-H, Zhou W, Zhang K-Q. 43.  2005. Bacillus nematocida sp. nov., a novel bacterial strain with nematotoxic activity isolated from soil in Yunnan, China. Syst. Appl. Microbiol. 28:323–27 [Google Scholar]
  44. Iatsenko I, Corton C, Pickard DJ, Dougan G, Sommer RJ. 44.  2014. Draft genome sequence of highly nematicidal Bacillus thuringiensis DB27. Genome A 2:e00101–14 [Google Scholar]
  45. Jaffee B, Strong D. 45.  2005. Strong bottom-up and weak top-down effects in soil: nematode-parasitized insects and nematode-trapping fungi. Soil Biol. Biochem. 37:1011–21 [Google Scholar]
  46. Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ. 46.  2012. The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol. Mol. Biol. Rev. 76:46–65 [Google Scholar]
  47. Kawli T, Wu C, Tan M-W. 47.  2010. Systemic and cell intrinsic roles of Gqα signaling in the regulation of innate immunity, oxidative stress, and longevity in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 107:13788–93 [Google Scholar]
  48. Khan A, Williams KL, Soon J, Nevalainen HKM. 48.  2008. Proteomic analysis of the knob-producing nematode-trapping fungus Monacrosporium lysipagum. Mycol. Res. 112:1447–52 [Google Scholar]
  49. Kim DH, Feinbaum R, Alloing G, Emerson FE, Garsin DA. 49.  et al. 2002. A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 297:623–26 [Google Scholar]
  50. Kirienko NV, Kirienko DR, Larkins-Ford J, Wählby C, Ruvkun G, Ausubel FM. 50.  2013. Pseudomonas aeruginosa disrupts Caenorhabditis elegans iron homeostasis, causing a hypoxic response and death. Cell Host Microbe 13:406–16 [Google Scholar]
  51. Kulkarni RD, Thon MR, Pan H, Dean RA. 51.  2005. Novel G-protein-coupled receptor-like proteins in the plant pathogenic fungus Magnaporthe grisea. Genome Biol. 6:R24 [Google Scholar]
  52. Lòpez-Llorca L, Maciá-Vicente J, Jansson H-B. 52.  2008. Mode of action and interactions of nematophagous fungi. Integrated Management and Biocontrol of Vegetable and Grain Crops Nematodes A Ciancio, KG Mukherjee 51–76 Dordrecht, Neth: Springer [Google Scholar]
  53. Larriba E, Jaime MDLA, Carbonell-Caballero J, Conesa A, Dopazo J. 53.  et al. 2014. Sequencing and functional analysis of the genome of a nematode egg-parasitic fungus, Pochonia chlamydosporia. Fungal Genet. Biol. 65:69–80 [Google Scholar]
  54. Li G, Zhang K-Q. 54.  2014. Nematode-toxic fungi and their nematicidal metabolites. Nematode-Trapping Fungi K-Q Zhang, KD Hyde 313–75 Dordrecht, Neth: Springer [Google Scholar]
  55. Li G, Zhang K, Xu J, Dong J, Liu Y. 55.  2007. Nematicidal substances from fungi. Recent Pat. Biotechnol. 1:212–33 [Google Scholar]
  56. Li J, Yu L, Yang J, Dong L, Tian B. 56.  et al. 2010. New insights into the evolution of subtilisin-like serine protease genes in Pezizomycotina. BMC Evol. Biol. 9:68 [Google Scholar]
  57. Li L, Wright SJ, Krystofova S, Park G, Borkovich KA. 57.  2007. Heterotrimeric G protein signaling in filamentous fungi. Annu. Rev. Microbiol. 61:423–52 [Google Scholar]
  58. Li X, Wei J, Tan A, Aroian RV. 58.  2007. Resistance to root-knot nematode in tomato roots expressing a nematicidal Bacillus thuringiensis crystal protein. Plant Biotechnol. J. 5:455–64 [Google Scholar]
  59. Li Y, Hyde K, Jeewon R, Cai L, Vijaykrishna D, Zhang K. 59.  2005. Phylogenetics and evolution of nematode-trapping fungi (Orbiliales) estimated from nuclear and protein coding genes. Mycologia 97:1034–46 [Google Scholar]
  60. Liang L, Liu S, Yang J, Meng Z, Lei L, Zhang K. 60.  2011. Comparison of homology models and crystal structures of cuticle-degrading proteases from nematophagous fungi: structural basis of nematicidal activity. FASEB J. 25:1894–902 [Google Scholar]
  61. Liang L, Meng Z, Ye F, Yang J, Liu S. 61.  et al. 2010. The crystal structures of two cuticle-degrading proteases from nematophagous fungi and their contribution to infection against nematodes. FASEB J. 24:1391–400 [Google Scholar]
  62. Liang L, Wu H, Liu Z, Shen R, Gao H. 62.  et al. 2013. Proteomic and transcriptional analyses of Arthrobotrys oligospora cell wall related proteins reveal complexity of fungal virulence against nematodes. Appl. Microbiol. Biotechnol. 97:8683–92 [Google Scholar]
  63. Lin F, Ye J, Wang H, Zhang A, Zhao B. 63.  2013. Host deception: predaceous fungus, Esteya vermicola, entices pine wood nematode by mimicking the scent of pine tree for nutrient. PLOS ONE 8:e71676 [Google Scholar]
  64. Lin K, Hsin H, Libina N, Kenyon C. 64.  2001. Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat. Genet. 28:139–45 [Google Scholar]
  65. Linder T, Gustafsson CM. 65.  2008. Molecular phylogenetics of ascomycotal adhesins—A novel family of putative cell-surface adhesive proteins in fission yeasts. Fungal. Genet. Biol. 45:485–97 [Google Scholar]
  66. Liu K, Zhang W, Lai Y, Xiang M, Wang X. 66.  et al. 2014. Drechslerella stenobrocha genome illustrates the mechanism of constricting rings and the origin of nematode predation in fungi. BMC Genomics 15:114 [Google Scholar]
  67. Lopez-Llorca L. 67.  1990. Purification and properties of extracellular proteases produced by the nematophagous fungus Verticillium suchlasporium. Can. J. Microbiol. 36:530–37 [Google Scholar]
  68. Luo H, Li X, Li G, Pan Y, Zhang K. 68.  2006. Acanthocytes of Stropharia rugosoannulata function as a nematode-attacking device. Appl. Environ. Microbiol. 72:2982–87 [Google Scholar]
  69. Luo H, Liu Y, Fang L, Li X, Tang N, Zhang K. 69.  2007. Coprinus comatus damages nematode cuticles mechanically with spiny balls and produces potent toxins to immobilize nematodes. Appl. Environ. Microbiol. 73:3916–23 [Google Scholar]
  70. Luo H, Xiong J, Zhou Q, Xia L, Yu Z. 70.  2013. The effects of Bacillus thuringiensis Cry6A on the survival, growth, reproduction, locomotion, and behavioral response of Caenorhabditis elegans. Appl. Microbiol. Biot. 97:10135–42 [Google Scholar]
  71. Lysek G, Nordbring-Hertz B. 71.  1981. An endogenous rhythm of trap formation in the nematophagous fungus Arthrobotrys oligospora. Planta 152:50–53 [Google Scholar]
  72. Maguire SM, Clark CM, Nunnari J, Pirri JK, Alkema MJ. 72.  2011. The C. elegans touch response facilitates escape from predacious fungi. Curr. Biol. 21:1326–30 [Google Scholar]
  73. Mahajan-Miklos S, Tan M-W, Rahme LG, Ausubel FM. 73.  1999. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa–Caenorhabditis elegans pathogenesis model. Cell 96:47–56 [Google Scholar]
  74. McGhee JD, Sleumer MC, Bilenky M, Wong K, McKay SJ. 74.  et al. 2007. The ELT-2 GATA-factor and the global regulation of transcription in the C. elegans intestine. Dev. Biol. 302:627–45 [Google Scholar]
  75. Meerupati T, Andersson KM, Friman E, Kumar D, Tunlid A, Ahren D. 75.  2013. Genomic mechanisms accounting for the adaptation to parasitism in nematode-trapping fungi. PLOS Genet. 9:e1003909 [Google Scholar]
  76. Meyer SL, Roberts DP. 76.  2002. Combinations of biocontrol agents for management of plant-parasitic nematodes and soilborne plant-pathogenic fungi. J. Nematol. 34:1 [Google Scholar]
  77. Mohan S, Fould S, Davies K. 77.  2001. The interaction between the gelatin-binding domain of fibronectin and the attachment of Pasteuria penetrans endospores to nematode cuticle. Parasitology 123:271–76 [Google Scholar]
  78. Moosavi MR, Zare R. 78.  2012. Fungi as biological control agents of plant-parasitic nematodes. Plant Defence: Biological Control JM Mérillon, KG Ramawat 67–107 Dordrecth, Neth: Springer [Google Scholar]
  79. Nguyen VL, Bastow JL, Jaffee BA, Strong DR. 79.  2007. Response of nematode-trapping fungi to organic substrates in a coastal grassland soil. Mycol. Res. 111:856–62 [Google Scholar]
  80. Nicholas HR, Hodgkin J. 80.  2004. The ERK MAP kinase cascade mediates tail swelling and a protective response to rectal infection in. C. elegans. Curr. Biol. 14:1256–61 [Google Scholar]
  81. Nielsen-LeRoux C, Gaudriault S, Ramarao N, Lereclus D, Givaudan A. 81.  2012. How the insect pathogen bacteria Bacillus thuringiensis and Xenorhabdus/Photorhabdus occupy their hosts. Curr. Opin. Microbiol. 15:220–31 [Google Scholar]
  82. Niu Q, Huang X, Zhang L, Xu J, Yang D. 82.  et al. 2010. A Trojan horse mechanism of bacterial pathogenesis against nematodes. Proc. Natl. Acad. Sci. USA 107:16631–36 [Google Scholar]
  83. Noel GR, Atibalentja N, Domier LL. 83.  2005. Emended description of Pasteuria nishizawae. Int. J. Syst. Evol. Microbiol. 55:1681–85 [Google Scholar]
  84. Nordbring-Hertz B, Mattiasson B. 84.  1979. Action of a nematode-trapping fungus shows lectin-mediated host–microorganism interaction. Nature 281:477–79 [Google Scholar]
  85. Pradel E, Zhang Y, Pujol N, Matsuyama T, Bargmann CI, Ewbank JJ. 85.  2007. Detection and avoidance of a natural product from the pathogenic bacterium Serratia marcescens by Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 104:2295–300 [Google Scholar]
  86. Pramer D, Stoll NR. 86.  1959. Nemin: a morphogenic substance causing trap formation by predaceous fungi. Science 129:966–67 [Google Scholar]
  87. Prasad SSV, Tilak K, Gollakota K. 87.  1972. Role of Bacillus thuringiensis var. thuringiensis on the larval survivability and egg hatching of Meloidogyne spp., the causative agent of root knot disease. J. Invertebr. Pathol. 20:377–78 [Google Scholar]
  88. Preston J, Dickson D, Maruniak J, Nong G, Brito J. 88.  et al. 2003. Pasteuria spp.: systematics and phylogeny of these bacterial parasites of phytopathogenic nematodes. J. Nematol. 35:198 [Google Scholar]
  89. Raymond B, Johnston PR, Nielsen-LeRoux C, Lereclus D, Crickmore N. 89.  2010. Bacillus thuringiensis: an impotent pathogen?. Trends Microbiol. 18:189–94 [Google Scholar]
  90. Reddy KC, Andersen EC, Kruglyak L, Kim DH. 90.  2009. A polymorphism in npr-1 is a behavioral determinant of pathogen susceptibility in C. elegans. Science 323:382–84 [Google Scholar]
  91. Richardson CE, Kooistra T, Kim DH. 91.  2010. An essential role for XBP-1 in host protection against immune activation in C. elegans. Nature 463:1092–95 [Google Scholar]
  92. Richardson PM, Meerupati T, Andersson K-M, Friman E, Kumar D. 92.  et al. 2013. Genomic mechanisms accounting for the adaptation to parasitism in nematode-trapping fungi. PLOS Genet. 9:e1003909 [Google Scholar]
  93. Sanahuja G, Banakar R, Twyman RM, Capell T, Christou P. 93.  2011. Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol. J. 9:283–300 [Google Scholar]
  94. Schenck S, Chase T, Rosenzweig W, Pramer D. 94.  1980. Collagenase production by nematode-trapping fungi. Appl. Environ. Microbiol. 40:567–70 [Google Scholar]
  95. Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J. 95.  et al. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62:775–806 [Google Scholar]
  96. Scholler M, Hagedorn G, Rubner A. 96.  1999. A reevaluation of predatory orbiliaceous fungi. II. A new generic concept. Sydowia 51:89–113 [Google Scholar]
  97. Shivers RP, Pagano DJ, Kooistra T, Richardson CE, Reddy KC. 97.  et al. 2010. Phosphorylation of the conserved transcription factor ATF-7 by PMK-1 p38 MAPK regulates innate immunity in Caenorhabditis elegans. PLOS Genet. 6:e1000892 [Google Scholar]
  98. Siddiqui IA, Haas D, Heeb S. 98.  2005. Extracellular protease of Pseudomonas fluorescens CHA0, a biocontrol factor with activity against the root-knot nematode Meloidogyne incognita. Appl. Environ. Microbiol. 71:5646–49 [Google Scholar]
  99. Siddiqui IA, Shahid Shaukat S. 99.  2003. Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: importance of bacterial secondary metabolite, 2,4-diacetylpholoroglucinol. Soil Biol. Biochem. 35:1615–23 [Google Scholar]
  100. Sijmons P, Atkinson H, Wyss U. 100.  1994. Parasitic strategies of root nematodes and associated host cell responses. Annu. Rev. Phytopathol. 32:235–59 [Google Scholar]
  101. Spiegel Y, Mor M, Sharon E. 101.  1996. Attachment of Pasteuria penetrans endospores to the surface of Meloidogyne javanica second-stage juveniles. J. Nematol. 28:328 [Google Scholar]
  102. Suarez B, Rey M, Castillo P, Monte E, Llobell A. 102.  2004. Isolation and characterization of PRA1, a trypsin-like protease from the biocontrol agent Trichoderma harzianum CECT 2413 displaying nematicidal activity. Appl. Microbiol. Biotechnol. 65:46–55 [Google Scholar]
  103. Swe A, Li J, Zhang K, Pointing S, Jeewon R, Hyde K. 103.  2011. Nematode-trapping fungi. Curr. Res. Environ. Appl. Mycol. 1:1–26 [Google Scholar]
  104. Szabó M, Csepregi K, Gálber M, Virányi F, Fekete C. 104.  2012. Control plant-parasitic nematodes with Trichoderma species and nematode-trapping fungi: the role of chi18-5 and chi18-12 genes in nematode egg-parasitism. Biol. Control 63:121–28 [Google Scholar]
  105. Szabó M, Urbán P, Virányi F, Kredics L, Fekete C. 105.  2013. Comparative gene expression profiles of Trichoderma harzianum proteases during in vitro nematode egg-parasitism. Biol. Control 67:337–43 [Google Scholar]
  106. Tan M, Mahajan-Miklos S, Ausubel FM. 106.  1999. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc. Natl. Acad. Sci. USA 96:715–20 [Google Scholar]
  107. Tian B, Yang J, Zhang K-Q. 107.  2007. Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS Microbiol. Ecol. 61:197–213 [Google Scholar]
  108. Tikhonov VE, Lopez-Llorca LV, Salinas J, Jansson H-B. 108.  2002. Purification and characterization of chitinases from the nematophagous fungi Verticillium chlamydosporium and V. suchlasporium. Fungal Genet. Biol. 35:67–78 [Google Scholar]
  109. Tosi S, Annovazzi L, Tosi I, Iadarola P, Caretta G. 109.  2002. Collagenase production in an Antarctic strain of Arthrobotrys tortor Jarowaja. Mycopathologia 153:157–62 [Google Scholar]
  110. Troemel ER, Chu SW, Reinke V, Lee SS, Ausubel FM, Kim DH. 110.  2006. p38 MAPK regulates expression of immune response genes and contributes to longevity in C. elegans. PLOS Genet. 2:e183 [Google Scholar]
  111. Tucker SL, Talbot NJ. 111.  2001. Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annu. Rev. Phytopathol. 39:385–417 [Google Scholar]
  112. Tunlid A, Johansson T, Nordbring-Hertz B. 112.  1991. Surface polymers of the nematode-trapping fungus Arthrobotrys oligospora. Microbiology 137:1231 [Google Scholar]
  113. Tunlid A, Rosen S, Ek B, Rask L. 113.  1994. Purification and characterization of an extracellular serine protease from the nematode-trapping fungus Arthrobotrys oligospora. Microbiology 140:1687–95 [Google Scholar]
  114. Vachon V, Laprade R, Schwartz J-L. 114.  2012. Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: a critical review. J. Invertebr. Pathol. 111:1–12 [Google Scholar]
  115. Van Der Hoeven R, McCallum KC, Cruz MR, Garsin DA. 115.  2011. Ce-Duox1/BLI-3 generated reactive oxygen species trigger protective SKN-1 activity via p38 MAPK signaling during infection in C. elegans. PLOS Pathog. 7:e1002453 [Google Scholar]
  116. Veresoglou SD, Rillig MC. 116.  2012. Suppression of fungal and nematode plant pathogens through arbuscular mycorrhizal fungi. Biol. Lett. 8:214–17 [Google Scholar]
  117. Vos C, Claerhout S, Mkandawire R, Panis B, De Waele D, Elsen A. 117.  2012. Arbuscular mycorrhizal fungi reduce root-knot nematode penetration through altered root exudation of their host. Plant Soil 354:335–45 [Google Scholar]
  118. Wang C, St. Leger R. 118.  2007. The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants. Eukaryot. Cell 6:808–16 [Google Scholar]
  119. Wang CY, Wang Z, Fang ZM, Zhang DL, Gu LJ. 119.  et al. 2010. Attraction of pinewood nematode to endoparasitic nematophagous fungus Esteya vermicola. Curr. Microbiol. 60:387–92 [Google Scholar]
  120. Wang J, Wang J, Liu F, Pan C. 120.  2010. Enhancing the virulence of Paecilomyces lilacinus against Meloidogyne incognita eggs by overexpression of a serine protease. Biotechnol. Lett. 32:1159–66 [Google Scholar]
  121. Waweru B, Turoop L, Kahangi E, Coyne D, Dubois T. 121.  2014. Non-pathogenic Fusarium oxysporum endophytes provide field control of nematodes, improving yield of banana Musa sp. Biol. Control 74:82–88 [Google Scholar]
  122. Wei JZ, Hale K, Carta L, Platzer E, Wong C. 122.  et al. 2003. Bacillus thuringiensis crystal proteins that target nematodes. Proc. Natl. Acad. Sci. USA 100:2760–65 [Google Scholar]
  123. Wu D, Zhang C, Zhu C, Wang Y, Guo L. 123.  et al. 2013. Metabolites from carnivorous fungus Arthrobotrys entomopaga and their functional roles in fungal predatory ability. J. Agric. Food Chem. 61:4108–13 [Google Scholar]
  124. Xu LL, Lai YL, Wang L, Liu XZ. 124.  2011. Effects of abscisic acid and nitric oxide on trap formation and trapping of nematodes by the fungus Drechslerella stenobrocha AS6.1. Fungal Biol. 115:97–101 [Google Scholar]
  125. Yang E, Xu L, Yang Y, Zhang X, Xiang M. 125.  et al. 2012. Origin and evolution of carnivorism in the Ascomycota (fungi). Proc. Natl. Acad. Sci. USA 109:10960–65 [Google Scholar]
  126. Yang J, Gan Z, Lou Z, Tao N, Mi Q. 126.  et al. 2010. Crystal structure and mutagenesis analysis of chitinase CrChi1 from the nematophagous fungus Clonostachys rosea in complex with the inhibitor caffeine. Microbiology 156:3566–74 [Google Scholar]
  127. Yang J, Liang L, Li J, Zhang K-Q. 127.  2013. Nematicidal enzymes from microorganisms and their applications. Appl. Microbiol. Biotechnol. 97:7081–95 [Google Scholar]
  128. Yang J, Liang L, Zhang Y, Li J, Zhang L. 128.  et al. 2007. Purification and cloning of a novel serine protease from the nematode-trapping fungus Dactylellina varietas and its potential roles in infection against nematodes. Appl. Microbiol. Biot. 75:557–65 [Google Scholar]
  129. Yang J, Tian B, Liang L, Zhang K-Q. 129.  2007. Extracellular enzymes and the pathogenesis of nematophagous fungi. Appl. Microbiol. Biot. 75:21–31 [Google Scholar]
  130. Yang J, Wang L, Ji X, Feng Y, Li X. 130.  et al. 2011. Genomic and proteomic analyses of the fungus Arthrobotrys oligospora provide insights into nematode-trap formation. PLOS Pathog. 7:e1002179 [Google Scholar]
  131. Yang J, Zhao X, Liang L, Xia Z, Lei L. 131.  et al. 2011. Overexpression of a cuticle-degrading protease Ver112 increases the nematicidal activity of Paecilomyces lilacinus. Appl. Microbiol. Biot. 89:1895–903 [Google Scholar]
  132. Yang JK, Ye FP, Mi QL, Tang SQ, Li J, Zhang KQ. 132.  2008. Purification and cloning of an extracellular serine protease from the nematode-trapping fungus Monacrosporium cystosporium. J. Microbiol. Biotechnol. 18:852–58 [Google Scholar]
  133. Yang Y, Yang E, An Z, Liu X. 133.  2007. Evolution of nematode-trapping cells of predatory fungi of the Orbiliaceae based on evidence from rRNA-encoding DNA and multiprotein sequences. Proc. Natl. Acad. Sci. USA 104:8379–84 [Google Scholar]
  134. Yang Z, Li G, Zhao P, Zheng X, Luo S. 134.  et al. 2010. Nematicidal activity of Trichoderma spp. and isolation of an active compound. World J. Microbiol. Biotechnol. 26:2297–302 [Google Scholar]
  135. Yang Z, Yu Z, Lei L, Xia Z, Shao L. 135.  et al. 2012. Nematicidal effect of volatiles produced by Trichoderma sp. J. Asia-Pac. Entomol. 15:647–50 [Google Scholar]
  136. Yook K, Hodgkin J. 136.  2007. Mos1 mutagenesis reveals a diversity of mechanisms affecting response of Caenorhabditis elegans to the bacterial pathogen Microbacterium nematophilum. Genetics 175:681–97 [Google Scholar]
  137. Yu Z, Luo H, Xiong J, Zhou Q, Xia L. 137.  et al. 2014. Bacillus thuringiensis Cry6A exhibits nematicidal activity to Caenorhabditis elegans bre mutants and synergistic activity with Cry5B to C. elegans. Lett. Appl. Microbiol. 58:511–19 [Google Scholar]
  138. Zaborin A, Romanowski K, Gerdes S, Holbrook C, Lepine F. 138.  et al. 2009. Red death in Caenorhabditis elegans caused by Pseudomonas aeruginosa PAO1. Proc. Natl. Acad. Sci. USA 106:6327–32 [Google Scholar]
  139. Zhang K-Q, Hyde KD. 139.  2014. Nematode-Trapping Fungi Dordrecht, Neth: Springer
  140. Zhang Y, Lu H, Bargmann CI. 140.  2005. Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans. Nature 438:179–84 [Google Scholar]
  141. Zhao X, Wang Y, Zhao Y, Huang Y, Zhang K-Q, Yang J. 141.  2014. Malate synthase gene AoMls in the nematode-trapping fungus Arthrobotrys oligospora contributes to conidiation, trap formation, and pathogenicity. Appl. Microbiol. Biot. 98:2555–63 [Google Scholar]
  142. Ziegler K, Kurz CL, Cypowyj S, Couillault C, Pophillat M. 142.  et al. 2009. Antifungal innate immunity in C. elegans: PKCδ links G protein signaling and a conserved p38 MAPK cascade. Cell Host Microbe 5:341–52 [Google Scholar]
  143. Zou C, Tao N, Liu W, Yang J, Huang X. 143.  et al. 2010. Regulation of subtilisin-like protease prC expression by nematode cuticle in the nematophagous fungus Clonostachys rosea. Environ. Microbiol. 12:3243–52 [Google Scholar]
  144. Zou C, Tu H, Liu X, Tao N, Zhang K-Q. 144.  2010. PacC in the nematophagous fungus Clonostachys rosea controls virulence to nematodes. Environ. Microbiol. 12:1868–77 [Google Scholar]
  145. Zou C, Tu Q, Niu J, Ji X, Zhang K-Q. 145.  2013. The DAF-16/FOXO transcription factor functions as a regulator of epidermal innate immunity. PLOS Pathog. 9:e1003660 [Google Scholar]
  146. Zou C, Xu Y, Liu W, Zhou W, Tao N. 146.  et al. 2010. Expression of a serine protease gene prC is up-regulated by oxidative stress in the fungus Clonostachys rosea: implications for fungal survival. PLOS ONE 5:e13386 [Google Scholar]
  147. Zugasti O, Bose N, Squiban B, Belougne J, Kurz CL. 147.  et al. 2014. Activation of a G protein–coupled receptor by its endogenous ligand triggers the innate immune response of Caenorhabditis elegans. Nat. Immunol. 15:833–38 [Google Scholar]
  148. Wang X, Li GH, Zou CG, Ji XL, Liu T. 148.  et al. 2014. Bacteria can mobilize nematode-trapping fungi to kill nematodes. Nat. Commun. 16:55776 [Google Scholar]
/content/journals/10.1146/annurev-phyto-080614-120336
Loading
/content/journals/10.1146/annurev-phyto-080614-120336
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error