1932

Abstract

Colonization of plants by particular endophytic fungi can provide plants with improved defenses toward nematodes. Evidently, such endophytes can be important in developing more sustainable agricultural practices. The mechanisms playing a role in this quantitative antagonism are poorly understood but most likely multifactorial. This knowledge gap obstructs the progress regarding the development of endophytes or endophyte-derived constituents into biocontrol agents. In part, this may be caused by the fact that endophytic fungi form a rather heterogeneous group. By combining the knowledge of the currently characterized antagonistic endophytic fungi and their effects on nematode behavior and biology with the knowledge of microbial competition and induced plant defenses, the various mechanisms by which this nematode antagonism operates or may operate are discussed. Now that new technologies are becoming available and more accessible, the currently unresolved mechanisms can be studied in greater detail than ever before.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080615-100114
2016-08-04
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/phyto/54/1/annurev-phyto-080615-100114.html?itemId=/content/journals/10.1146/annurev-phyto-080615-100114&mimeType=html&fmt=ahah

Literature Cited

  1. Alabouvette C, Couteaudier Y. 1.  1992. Biological control of Fusarium wilts with non-pathogenic fusaria. Biological Control of Plant Diseases: Progress and Challenges for the Future EC Tjamos, GC Papavizas, RJ Cook 415–26 New York: Plenum Press [Google Scholar]
  2. Aly AH, Debbab A, Proksch P. 2.  2011. Fungal endophytes: unique plant inhabitants with great promises. Appl. Microbiol. Biot. 90:1829–45 [Google Scholar]
  3. Amin N. 3.  1994. Untersuchung über die Bedeutung endophytischer Pilze für die biologosche Bekämpfung des wanderenden Endoparasiten Radopholus similis (Cobb) Thorne an Bananen. PhD Thesis. Univ. Bonn, Ger. [Google Scholar]
  4. Arnold AE, Herre EA. 4.  2003. Canopy cover and leaf age affect colonization by tropical fungal endophytes: ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia 95:388–98 [Google Scholar]
  5. Athman SY, Dubois T, Coyne D, Gold CS, Labuschagne N, Viljoen A. 5.  2006. Effect of endophytic Fusarium oxysporum on host preference of Radopholus similis to tissue culture banana plants. J. Nematol. 38:455–60 [Google Scholar]
  6. Bacetty AA, Snook ME, Glenn AE, Noe JP, Hill N. 6.  et al. 2009. Toxicity of endophyte-infected tall fescue alkaloids and grass metabolites on Pratylenchus scribneri. Phytopathology 99:1336–45 [Google Scholar]
  7. Bacetty AA, Snook ME, Glenn AE, Noe JP, Nagabhyru P, Bacon CW. 7.  2009. Chemotaxis disruption in Pratylenchus scribneri by tall fescue root extracts and alkaloids. J. Chem. Ecol. 35:844–50 [Google Scholar]
  8. Bacon CW, Hinton DM. 8.  1996. Symptomless endophytic colonization of maize by Fusarium moniliforme. Can. J. Bot. 74:1195–202 [Google Scholar]
  9. Bacon CW, Yates IE. 9.  2006. Endophytic root colonization by Fusarium species: histology, plant interactions, and toxicity. Microbial Root Endophytes B Schulz, C Boyle, TN Sieber 133–52 Berlin: Springer [Google Scholar]
  10. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM. 10.  2006. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 57:233–66 [Google Scholar]
  11. Bakker PA, Berendsen RL, Doornbos RF, Wintermans PC, Pieterse CM. 11.  2013. The rhizosphere revisited: root microbiomics. Front. Plant. Sci. 4:165 [Google Scholar]
  12. Baldacci-Cresp F, Chang C, Maucourt M, Deborde C, Hopkins J. 12.  et al. 2012. (Homo)glutathione deficiency impairs root-knot nematode development in Medicago truncatula. PLOS Pathog. 8e1002471
  13. Ball L, Accotto GP, Bechtold U, Creissen G, Funck D. 13.  et al. 2004. Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell 16:2448–62 [Google Scholar]
  14. Bao JR, Lazarovits G. 14.  2001. Differential colonization of tomato roots by nonpathogenic and pathogenic Fusarium oxysporum strains may influence Fusarium wilt control. Phytopathology 91:449–56 [Google Scholar]
  15. Beswetherick JT, Bishop CD. 15.  1993. An ultrastructural-study of tomato roots inoculated with pathogenic and nonpathogenic necrotrophic fungi and a saprophytic fungus. Plant Pathol. 42:577–88 [Google Scholar]
  16. Bird DM, Opperman CH, Davies KG. 16.  2003. Interactions between bacteria and plant-parasitic nematodes: now and then. Int. J. Parasitol. 33:1269–76 [Google Scholar]
  17. Bordallo JJ, Lopez-Llorca LV, Jansson HB, Salinas J, Persmark L, Asensio L. 17.  2002. Colonization of plant roots by egg-parasitic and nematode-trapping fungi. New Phytol. 154:491–99 [Google Scholar]
  18. Borowicz VA. 18.  2001. Do arbuscular mycorrhizal fungi alter plant-pathogen relations?. Ecology 82:3057–68 [Google Scholar]
  19. Brundrett M. 19.  2004. Diversity and classification of mycorrhizal associations. Biol. Rev. Camb. Philos. Soc. 79:473–95 [Google Scholar]
  20. Bush LP, Fannin FF, Siegel MR, Dahlman DL, Burton HR. 20.  1993. Chemistry, occurrence and biological effects of saturated pyrrolizidine alkaloids associated with endophyte grass interactions. Agric. Ecosyst. Environ. 44:81–102 [Google Scholar]
  21. Chan YL, Yang AH, Chen JT, Yeh KW, Chan MT. 21.  2010. Heterologous expression of taro cystatin protects transgenic tomato against Meloidogyne incognita infection by means of interfering sex determination and suppressing gall formation. Plant Cell Rep. 29:231–38 [Google Scholar]
  22. Chen LQ. 22.  2014. SWEET sugar transporters for phloem transport and pathogen nutrition. New Phytol. 201:1150–55 [Google Scholar]
  23. Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML. 23.  et al. 2010. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468:527–32 [Google Scholar]
  24. Compant S, Clement C, Sessitsch A. 24.  2010. Plant growth–promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 42:669–78 [Google Scholar]
  25. Conrath U, Beckers GJM, Flors V, Garcia-Agustin P, Jakab G. 25.  et al. 2006. Priming: getting ready for battle. Mol. Plant-Microbe Interact. 19:1062–71 [Google Scholar]
  26. Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, Lopéz-Bucio J. 26.  2009. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol. 149:1579–92 [Google Scholar]
  27. Cook RJ. 27.  2003. Take-all of wheat. Physiol. Mol. Plant Pathol. 62:73–86 [Google Scholar]
  28. Curtis RHC, Jones JT, Davies KG, Sharon E, Spiegel Y. 28.  2011. Plant nematode surfaces. Biological Control of Plant-Parasitic Nematodes: Building Coherence Between Microbial Ecology and Molecular Mechanisms KG Davies, Y Spiegel 115–44 Heidelberg, Ger: Springer [Google Scholar]
  29. Dababat AEFA, Sikora RA. 29.  2007. Influence of the mutualistic endophyte Fusarium oxysporum 162 on Meloidogyne incognita attraction and invasion. Nematology 9:771–76 [Google Scholar]
  30. Daneshkhah R, Cabello S, Rozanska E, Sobczak M, Grundler FM. 30.  et al. 2013. Piriformospora indica antagonizes cyst nematode infection and development in Arabidopsis roots. J. Exp. Bot. 64:3763–74 [Google Scholar]
  31. De Meutter J, Tytgat T, Witters E, Gheysen G, Van Onckelen H, Gheysen G. 31.  2003. Identification of cytokinins produced by the plant parasitic nematodes Heterodera schachtii and Meloidogyne incognita. Mol. Plant Pathol. 4:271–77 [Google Scholar]
  32. Denison RF, Kiers ET. 32.  2011. Life histories of symbiotic rhizobia and mycorrhizal fungi. Curr. Biol. 21:R775–85 [Google Scholar]
  33. Deshmukh S, Hueckelhoven R, Schaefer P, Imani J, Sharma M. 33.  et al. 2006. The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. PNAS 103:18450–57 [Google Scholar]
  34. Diedhiou PM, Hallmann J, Oerke EC, Dehne HW. 34.  2003. Effects of arbuscular mycorrhizal fungi and a non-pathogenic Fusarium oxysporum on Meloidogyne incognita infestation of tomato. Mycorrhiza 13:199–204 [Google Scholar]
  35. Duffy B, Schouten A, Raaijmakers JM. 35.  2003. Pathogen self-defense: mechanisms to counteract microbial antagonism. Annu. Rev. Phytopathol. 41:501–38 [Google Scholar]
  36. Duijff BJ, Pouhair D, Olivain C, Alabouvette C, Lemanceau P. 36.  1998. Implication of systemic induced resistance in the suppression of Fusarium wilt of tomato by Pseudomonas fluorescens WCS417r and by nonpathogenic Fusarium oxysporum Fo47. Eur. J. Plant Pathol. 104:903–10 [Google Scholar]
  37. Eaton CJ, Cox MP, Ambrose B, Becker M, Hesse U. 37.  et al. 2010. Disruption of signaling in a fungal-grass symbiosis leads to pathogenesis. Plant Physiol. 153:1780–94 [Google Scholar]
  38. Edwards J, Johnson C, Santos-Medellin C, Lurie E, Podishetty NK. 38.  et al. 2015. Structure, variation, and assembly of the root-associated microbiomes of rice. PNAS 112:E911–20 [Google Scholar]
  39. Eilenberg J, Hajek A, Lomer C. 39.  2001. Suggestions for unifying the terminology in biological control. Biocontrol 46:387–400 [Google Scholar]
  40. Elmi AA, West CP, Robbins RT, Kirkpatrick TL. 40.  2000. Endophyte effects on reproduction of a root-knot nematode (Meloidogyne marylandi) and osmotic adjustment in tall fescue. Grass Forage Sci. 55:166–72 [Google Scholar]
  41. Eschweiler J, Messelink G, Kasal T, Main D, Grundler F, Schouten A. 41.  2014. Integration of fungal endophytes in a greenhouse environment to control insect pests. 59. Deutsche Pflanzenschutztagung390 Freiburg, Ger: Julius-Kühn-Archiv [Google Scholar]
  42. Escudero N, Lopez-Llorca LV. 42.  2012. Effects on plant growth and root-knot nematode infection of an endophytic GFP transformant of the nematophagous fungus Pochonia chlamydosporia. Symbiosis 57:33–42 [Google Scholar]
  43. Foyer CH, Noctor G. 43.  2009. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid. Redox Signal. 11:861–905 [Google Scholar]
  44. Freeman S, Rodriguez RJ. 44.  1993. Genetic conversion of a fungal plant pathogen to a nonpathogenic, endophytic mutualist. Science 260:75–78 [Google Scholar]
  45. Frendo P, Harrison J, Norman C, Jimenez MJH, Van de Sype G. 45.  et al. 2005. Glutathione and homoglutathione play a critical role in the nodulation process of Medicago truncatula. Mol. Plant-Microbe Interact. 18:254–59 [Google Scholar]
  46. Frost CJ, Mescher MC, Carlson JE, De Moraes CM. 46.  2008. Plant defense priming against herbivores: getting ready for a different battle. Plant Physiol. 146:818–24 [Google Scholar]
  47. Fuchs J-G, Moënne-Loccoz Y, Défago G. 47.  1997. Nonpathogenic Fusarium oxysporum strain Fo47 induces resistance to Fusarium wilt in tomato. Plant Dis. 81:492–96 [Google Scholar]
  48. Futai K. 48.  2013. Pine wood nematode, Bursaphelenchus xylophilus. Annu. Rev. Phytopathol. 51:61–83 [Google Scholar]
  49. García-Garrido JM, Ocampo JA. 49.  2002. Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. J. Exp. Bot. 53:1377–86 [Google Scholar]
  50. Gheysen G, Mitchum MG. 50.  2011. How nematodes manipulate plant development pathways for infection. Curr. Opin. Plant Biol. 14:415–21 [Google Scholar]
  51. Glazebrook J, Ausubel FM. 51.  1994. Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens. PNAS 91:8955–59 [Google Scholar]
  52. Goswami J, Pandey RK, Tewari JP, Goswami BK. 52.  2008. Management of root knot nematode on tomato through application of fungal antagonists, Acremonium strictum and Trichoderma harzianum. J. Environ. Sci. Health B 43:237–40 [Google Scholar]
  53. Goverse A, Smant G. 53.  2014. The activation and suppression of plant innate immunity by parasitic nematodes. Annu. Rev. Phytopathol. 52:243–65 [Google Scholar]
  54. Griesbach M. 54.  1999. Occurrence of mutualistic fungal endophytes in bananas (Musa spp.) and their potential as biocontrol agents of the banana weevil Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae) in Uganda. PhD Thesis, Univ. Bonn, Germ. [Google Scholar]
  55. Grosskinsky DK, Naseem M, Abdelmohsen UR, Plickert N, Engelke T. 55.  et al. 2011. Cytokinins mediate resistance against Pseudomonas syringae in tobacco through increased antimicrobial phytoalexin synthesis independent of salicylic acid signaling. Plant Physiol. 157:815–30 [Google Scholar]
  56. Hallmann J, Sikora RA. 56.  1994. Influence of Fusarium oxysporum, a mutualistic fungal endophyte, on Meloidogyne incognita infection of tomato. J. Plant Dis. Prot. 101:475–81 [Google Scholar]
  57. Hallmann J, Sikora RA. 57.  1994. Occurrence of plant-parasitic nematodes and nonpathogenic species of Fusarium in tomato plants in Kenya and their role as mutualistic synergists for biological-control of root-knot nematodes. Int. J. Pest Manag. 40:321–25 [Google Scholar]
  58. Hallmann J, Sikora RA. 58.  1996. Toxicity of fungal endophyte secondary metabolites to plant parasitic nematodes and soil-borne plant pathogenic fungi. Eur. J. Plant Pathol. 102:155–62 [Google Scholar]
  59. Hallmann J, Sikora RA. 59.  2011. Endophytic fungi. Biological Control of Plant-Parasitic Nematodes: Building Coherence Between Microbial Ecology and Molecular Mechanisms KG Davies, Y Spiegel 227–58 Heidelberg, Ger: Springer [Google Scholar]
  60. Harrach BD, Baltruschat H, Barna B, Fodor J, Kogel KH. 60.  2013. The mutualistic fungus Piriformospora indica protects barley roots from a loss of antioxidant capacity caused by the necrotrophic pathogen Fusarium culmorum. Mol. Plant-Microbe Interact. 26:599–605 [Google Scholar]
  61. Hartmann A, Schmid M, van Tuinen D, Berg G. 61.  2009. Plant-driven selection of microbes. Plant Soil 321:235–57 [Google Scholar]
  62. Haverkort AJ, Boerma M, Velema R, van de Waart M. 62.  1992. The influence of drought and cyst nematodes on potato growth. 4. Effects on crop growth under field conditions of four cultivars differing in tolerance. Neth. J. Plant Pathol. 98:179–91 [Google Scholar]
  63. Haverkort AJ, de Ruijter FJ, Boerma M, van de Waart M. 63.  1996. Foliar calcium concentration of potato and its relation to genotype lateness and tolerance of cyst nematodes. Eur. J. Plant Pathol. 102:317–24 [Google Scholar]
  64. Heil M, Silva Bueno JC. 64.  2007. Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. PNAS 104:5467–72 [Google Scholar]
  65. Heitefuss R. 65.  1997. Cell wall modifications in relation to resistance. Resistance of Crop Plants Against Fungi H Hartleb, R Heitefuss, HH Hoppe 100–25 Stuttgart, Ger: Gustav Fischer Verlag [Google Scholar]
  66. Hofmann J, Hess PH, Szakasits D, Blochl A, Wieczorek K. 66.  et al. 2009. Diversity and activity of sugar transporters in nematode-induced root syncytia. J. Exp. Bot. 60:3085–95 [Google Scholar]
  67. Hofmann J, Kolev P, Kolev N, Daxböck-Horvath S, Grundler FMW. 67.  2009. The Arabidopsis thaliana sucrose transporter gene AtSUC4 is expressed in Meloidogyne incognita–induced root galls. J. Phytopathol. 157:256–61 [Google Scholar]
  68. Hölscher D, Dhakshinamoorthy S, Alexandrov T, Becker M, Bretschneider T. 68.  et al. 2014. Phenalenone-type phytoalexins mediate resistance of banana plants (Musa spp.) to the burrowing nematode Radopholus similis. PNAS 111:105–10 [Google Scholar]
  69. Hölscher D, Fuchser J, Knop K, Menezes RC, Buerkert A. 69.  et al. 2015. High resolution mass spectrometry imaging reveals the occurrence of phenylphenalenone-type compounds in red paracytic stomata and red epidermis tissue of Musa acuminata ssp. zebrina cv. “Rowe Red”. Phytochemistry 116:239–45 [Google Scholar]
  70. Hoveland CS. 70.  1993. Importance and economic significance of the Acremonium endophytes to performance of animals and grass plant. Agr. Ecosyst. Environ. 44:3–12 [Google Scholar]
  71. Inceoglu O, van Overbeek LS, Falcao Salles J, van Elsas JD. 71.  2013. Normal operating range of bacterial communities in soil used for potato cropping. Appl. Environ. Microbiol. 79:1160–70 [Google Scholar]
  72. Jacobs S, Zechmann B, Molitor A, Trujillo M, Petutschnig E. 72.  et al. 2011. Broad-spectrum suppression of innate immunity is required for colonization of Arabidopsis roots by the fungus Piriformospora indica. Plant Physiol. 156:726–40 [Google Scholar]
  73. Jia C, Ruan WB, Zhu MJ, Ren AZ, Gao YB. 73.  2013. Potential antagonism of cultivated and wild grass–endophyte associations towards Meloidogyne incognita. Biol. Control 64:225–30 [Google Scholar]
  74. Jones DL, Nguyen C, Finlay RD. 74.  2009. Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil 321:5–33 [Google Scholar]
  75. Klinkowski M. 75.  1970. Catastrophic plant diseases. Annu. Rev. Phytopathol. 8:37–60 [Google Scholar]
  76. Krings M, Taylor TN, Hass H, Kerp H, Dotzler N, Hermsen EJ. 76.  2007. Fungal endophytes in a 400-million-yr-old land plant: infection pathways, spatial distribution, and host responses. New Phytol. 174:648–57 [Google Scholar]
  77. Kuldau GA, Yates IE. 77.  2000. Evidence for Fusarium endophytes in cultivated and wild plants. Microbial Endophytes CW Bacon, JF White Jr. 85–117 New York: Marcel Dekker [Google Scholar]
  78. Kunkel BA, Grewal PS. 78.  2003. Endophyte infection in perennial ryegrass reduces the susceptibility of black cutworm to an entomopathogenic nematode. Entomol. Exp. Appl. 107:95–104 [Google Scholar]
  79. Kunkel BA, Grewal PS, Quigley MF. 79.  2004. A mechanism of acquired resistance against an entomopathogenic nematode by Agrotis ipsilon feeding on perennial ryegrass harboring a fungal endophyte. Biol. Control 29:100–8 [Google Scholar]
  80. Kurtz A, Schouten A. 80.  2009. Shifts in banana root exudate profiles after colonization with the non-pathogenic Fusarium oxysporum strain Fo162. Commun. Agric. Appl. Biol. Sci. 74:547–58 [Google Scholar]
  81. Kyndt T, Fernandez D, Gheysen G. 81.  2014. Plant-parasitic nematode infections in rice: molecular and cellular insights. Annu. Rev. Phytopathol. 52:135–53 [Google Scholar]
  82. Larriba E, Jaime MD, Nislow C, Martin-Nieto J, Lopez-Llorca LV. 82.  2015. Endophytic colonization of barley (Hordeum vulgare) roots by the nematophagous fungus Pochonia chlamydosporia reveals plant growth promotion and a general defense and stress transcriptomic response. J. Plant Res. 128:665–78 [Google Scholar]
  83. Le H, Padgham J, Sikora R. 83.  2009. Biological control of the rice root-knot nematode Meloidogyne graminicola on rice, using endophytic and rhizosphere fungi. Int. J. Pest Manag. 55:31–36 [Google Scholar]
  84. Le HTT, Padgham JL, Hagemann MH, Sikora R, Schouten A. 84.  2016. Developmental and behavioral effects of the endophytic Fusarium moniliforme Fe14 toward Meloidogyne graminicola in rice. Ann. Appl. Biol. 169134–43
  85. Lin S, Wu X, Cao JZ, Wang FL. 85.  2013. Biocontrol potential of chitinase-producing nematophagous fungus Acremonioum implicatum against Meloidogyne incognita. Acta Phytopathol. Sin. 43:509–17 [Google Scholar]
  86. Liu J, Poinar GO Jr., Berry RE. 86.  2000. Control of insect pests with entomopathogenic nematodes: the impact of molecular biology and phylogenetic reconstruction. Annu. Rev. Entomol. 45:287–306 [Google Scholar]
  87. Luc M, Sikora RA, Bridge J. 87.  2005. Plant Parasitic Nematodes in Subtropical and Tropical Agriculture Wallingford, UK: CABI
  88. Ludwig-Müller J. 88.  2015. Plants and endophytes: equal partners in secondary metabolite production?. Biotechnol. Lett. 37:1325–34 [Google Scholar]
  89. Luis JG, Fletcher WQ, Echeverri F, Abad T, Kishi MP, Perales A. 89.  1995. New phenalenone-type phytoalexins from Musa acuminata (Colla AAA) Grand Nain. Nat. Prod. Lett. 6:23–30 [Google Scholar]
  90. Ma LJ, van der Does HC, Borkovich KA, Coleman JJ, Daboussi MJ. 90.  et al. 2010. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–73 [Google Scholar]
  91. Maciá-Vicente JG, Jansson HB, Abdullah SK, Descals E, Salinas J, Lopez-Llorca LV. 91.  2008. Fungal root endophytes from natural vegetation in Mediterranean environments with special reference to Fusarium spp. FEMS Microbiol. Ecol. 64:90–105 [Google Scholar]
  92. Malinowski DP, Belesky DP. 92.  2000. Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci. 40:923–40 [Google Scholar]
  93. Manzanilla-López RH, Esteves I, Finetti-Sialer MM, Hirsch PR, Ward E. 93.  et al. 2013. Pochonia chlamydosporia: advances and challenges to improve its performance as a biological control agent of sedentary endo-parasitic nematodes. J. Nematol. 45:1–7 [Google Scholar]
  94. Marquardt S. 94.  2001. “Green havoc”: Panama disease, environmental change, and labor process in the Central American banana industry. Am. Hist. Rev. 106:49–80 [Google Scholar]
  95. Martinuz A, Schouten A, Sikora RA. 95.  2012. Systemically induced resistance and microbial competitive exclusion: implications on biological control. Phytopathology 102:260–66 [Google Scholar]
  96. Martinuz A, Schouten A, Sikora RA. 96.  2013. Post-infection development of Meloidogyne incognita on tomato treated with the endophytes Fusarium oxysporum strain Fo162 and Rhizobium etli strain G12. Biocontrol 58:95–104 [Google Scholar]
  97. Martinuz A, Zewdu G, Ludwig N, Grundler F, Sikora RA, Schouten A. 97.  2015. The application of Arabidopsis thaliana in studying tripartite interactions among plants, beneficial fungal endophytes and biotrophic plant-parasitic nematodes. Planta 241:1015–25 [Google Scholar]
  98. Mendoza AR, Sikora RA. 98.  2009. Biological control of Radopholus similis in banana by combined application of the mutualistic endophyte Fusarium oxysporum strain 162, the egg pathogen Paecilomyces lilacinus strain 251 and the antagonistic bacteria Bacillus firmus. Biocontrol 54:263–72 [Google Scholar]
  99. Menjivar RD, Hagemann MH, Kranz J, Cabrera JA, Dababat AA, Sikora RA. 99.  2011. Biological control of Meloidogyne incognita on cucurbitaceous crops by the non-pathogenic endophytic fungus Fusarium oxysporum strain 162. Int. J. Pest Manag. 57:249–53 [Google Scholar]
  100. Micallef SA, Channer S, Shiaris MP, Colon-Carmona A. 100.  2009. Plant age and genotype impact the progression of bacterial community succession in the Arabidopsis rhizosphere. Plant Signal. Behav. 4:777–80 [Google Scholar]
  101. Micallef SA, Shiaris MP, Colon-Carmona A. 101.  2009. Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates. J. Exp. Bot. 60:1729–42 [Google Scholar]
  102. Miyawaki K, Matsumoto-Kitano M, Kakimoto T. 102.  2004. Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J. 37:128–38 [Google Scholar]
  103. Mostert L, Crous PW, Petrini O. 103.  2000. Endophytic fungi associated with shoots and leaves of Vitis vinifera, with specific reference to the Phomopsis viticola complex. Sydowia 52:46–58 [Google Scholar]
  104. Müller CB, Krauss J. 104.  2005. Symbiosis between grasses and asexual fungal endophytes. Curr. Opin. Plant Biol. 8:450–56 [Google Scholar]
  105. Niere BI. 105.  2001. Significance of non-pathogenic isolates of Fusarium oxysporum Schlecht.: fries for the biological control of the burrowing nematode Radopholus similis (Cobb) Thorne on tissue cultured banana. PhD Thesis, Univ. Bonn, Ger. [Google Scholar]
  106. Olivain C, Alabouvette C. 106.  1997. Colonization of tomato root by a non-pathogenic strain of Fusarium oxysporum. New Phytol. 137:481–94 [Google Scholar]
  107. Olivain C, Trouvelot S, Binet MN, Cordier C, Pugin A, Alabouvette C. 107.  2003. Colonization of flax roots and early physiological responses of flax cells inoculated with pathogenic and nonpathogenic strains of Fusarium oxysporum. Appl. Environ. Microbiol. 69:5453–62 [Google Scholar]
  108. Panaccione DG, Johnson R, Morton J, Kotcon J, Schardl C. 108.  2006. Ergot alkaloids are not essential for endophytic fungus-associated population suppression of the lesion nematode, Pratylenchus scribneri, on perennial ryegrass. Nematology 8:583–90 [Google Scholar]
  109. Papadopoulou J, Triantaphyllou AC. 109.  1982. Sex-differentiation in Meloidogyne incognita and anatomical evidence of sex reversal. J. Nematol. 14:549–66 [Google Scholar]
  110. Parisy V, Poinssot B, Owsianowski L, Buchala A, Glazebrook J, Mauch F. 110.  2007. Identification of PAD2 as a γ-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. Plant J. 49:159–72 [Google Scholar]
  111. Petrini O. 111.  1991. Fungal endophytes of tree leaves. Microbial Ecology of Leaves JH Andrews, SS Hirano 179–97 New York: Springer-Verlag [Google Scholar]
  112. Pineda A, Zheng SJ, van Loon JJA, Pieterse CMJ, Dicke M. 112.  2010. Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends Plant Sci. 15:507–14 [Google Scholar]
  113. Pocasangre L. 113.  2000. Biological enhancement of banana tissue culture plantlets with endophytic fungi for the control of burrowing nematode Radopholus similis and the Panama disease (Fusarium oxysporum f.sp. cubense). PhD thesis, Univ. Bonn, Ger.
  114. Proite K, Carneiro R, Falcão R, Gomes A, Leal-Bertioli S. 114.  et al. 2008. Post-infection development and histopathology of Meloidogyne arenaria race 1 on Arachis spp. Plant Pathol. 57:974–80 [Google Scholar]
  115. Qiang X, Weiss M, Kogel KH, Schafer P. 115.  2012. Piriformospora indica: a mutualistic basidiomycete with an exceptionally large plant host range. Mol. Plant Pathol. 13:508–18 [Google Scholar]
  116. Redman RS, Dunigan DD, Rodriguez RJ. 116.  2001. Fungal symbiosis from mutualism to parasitism: Who controls the outcome, host or invader?. New Phytol. 151:705–16 [Google Scholar]
  117. Redman RS, Kim YO, Woodward CJ, Greer C, Espino L. 117.  et al. 2011. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLOS ONE 6:e14823 [Google Scholar]
  118. Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM. 118.  2002. Thermotolerance generated by plant/fungal symbiosis. Science 298:1581–81 [Google Scholar]
  119. Richmond DS, Kunkel BA, Somasekhar N, Grewal PS. 119.  2004. Top-down and bottom-up regulation of herbivores: Spodoptera frugiperda turns tables on endophyte-mediated plant defence and virulence of an entomopathogenic nematode. Ecol. Entomol. 29:353–60 [Google Scholar]
  120. Rodriguez R, Redman R. 120.  2008. More than 400 million years of evolution and some plants still can't make it on their own: plant stress tolerance via fungal symbiosis. J. Exp. Bot. 59:1109–14 [Google Scholar]
  121. Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L. 121.  et al. 2008. Stress tolerance in plants via habitat-adapted symbiosis. ISME J. 2:404–16 [Google Scholar]
  122. Rodriguez RJ, White JF, Arnold AE, Redman RS. 122.  2009. Fungal endophytes: diversity and functional roles. New Phytol. 182:314–30 [Google Scholar]
  123. Roetschi A, Si-Ammour A, Belbahri L, Mauch F, Mauch-Mani B. 123.  2001. Characterization of an Arabidopsis-Phytophthora pathosystem: resistance requires a functional PAD2 gene and is independent of salicylic acid, ethylene and jasmonic acid signalling. Plant J. 28:293–305 [Google Scholar]
  124. Rouhier N, Lemaire SD, Jacquot JP. 124.  2008. The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. Annu. Rev. Plant Biol. 59:143–66 [Google Scholar]
  125. Rumbos CI, Kiewnick S. 125.  2006. Effect of plant species on persistence of Paecilomyces lilacinus strain 251 in soil and on root colonization by the fungus. Plant Soil 283:25–31 [Google Scholar]
  126. Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN. 126.  2008. Bacterial endophytes: recent developments and applications. FEMS Microbiol. Lett. 278:1–9 [Google Scholar]
  127. Schäfer P, Pfiffi S, Voll LM, Zajic D, Chandler PM. 127.  et al. 2009. Manipulation of plant innate immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with Piriformospora indica. Plant J. 59:461–74 [Google Scholar]
  128. Schardl CL. 128.  2001. Epichloe festucae and related mutualistic symbionts of grasses. Front. Plant. Sci. 33:69–82 [Google Scholar]
  129. Schardl CL, Leuchtmann A, Spiering MJ. 129.  2004. Symbioses of grasses with seedborne fungal endophytes. Annu. Rev. Plant Biol. 55:315–40 [Google Scholar]
  130. Schlaeppi K, Bodenhausen N, Buchala A, Mauch F, Reymond P. 130.  2008. The glutathione-deficient mutant pad2-1 accumulates lower amounts of glucosinolates and is more susceptible to the insect herbivore Spodoptera littoralis. Plant J. 55:774–86 [Google Scholar]
  131. Schouten A, van den Berg G, Edel-Hermann V, Steinberg C, Gautheron N. 131.  et al. 2004. Defense responses of Fusarium oxysporum to 2,4-diacetylphloroglucinol, a broad-spectrum antibiotic produced by Pseudomonas fluorescens. Mol. Plant-Microbe Interact. 17:1201–11 [Google Scholar]
  132. Schulz B, Boyle C. 132.  2005. The endophytic continuum. Mycol. Res. 109:661–86 [Google Scholar]
  133. Selim M. 133.  2010. Biological, chemical and molecular studies on the systemic induced resistance in tomato against Meloidogyne incognita caused by the endophytic Fusarium oxysporum, Fo162. PhD thesis, Univ. Bonn, Ger. [Google Scholar]
  134. Sherameti I, Tripathi S, Varma A, Oelmüller R. 134.  2008. The root-colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves. Mol. Plant-Microbe Interact. 21:799–807 [Google Scholar]
  135. Shoresh M, Yedidia I, Chet I. 135.  2005. Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology 95:76–84 [Google Scholar]
  136. Siddique S, Radakovic ZS, De La Torre CM, Chronis D, Novak O. 136.  et al. 2015. A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host plants. PNAS 112:12669–74 [Google Scholar]
  137. Siddiqui IA, Shaukat SS. 137.  2004. Systemic resistance in tomato induced by biocontrol bacteria against the root-knot nematode, Meloidogyne javanica is independent of salicylic acid production. J. Phytopathol. 152:48–54 [Google Scholar]
  138. Sikora RA. 138.  1992. Management of the antagonistic potential in agricultural ecosystems for the biological control of plant parasitic nematodes. Annu. Rev. Phytopathol. 30:245–70 [Google Scholar]
  139. Sikora RA. 139.  1997. Biological system management in the rhizosphere: an inside-out/outside-in perspective. Med. Fac. Landbouwwet. Rijksuniv. Gent 62:105–12 [Google Scholar]
  140. Sikora RA, Pocasangre L, zum Felde A, Niere B, Vu TT, Dababat AA. 140.  2008. Mutualistic endophytic fungi and in planta suppressiveness to plant parasitic nematodes. Biol. Control 46:15–23 [Google Scholar]
  141. Singh S, Mathur N. 141.  2010. In vitro studies of antagonistic fungi against the root-knot nematode, Meloidogyne incognita. Biocontrol Sci. Techn. 20:275–82 [Google Scholar]
  142. Singh UB, Sahu A, Sahu N, Singh BP, Singh RK. 142.  et al. 2013. Can endophytic Arthrobotrys oligospora modulate accumulation of defence related biomolecules and induced systemic resistance in tomato (Lycopersicon esculentum Mill.) against root knot disease caused by Meloidogyne incognita. Appl. Soil Ecol. 63:45–56 [Google Scholar]
  143. Stone JK, Polihook JD, White JF Jr. 143.  2004. Endophytic fungi. Biodiversity of Fungi: Inventory and Monitoring Methods, GM Mueller, GF Bills, MS Foster 241–70 Boston: Elsevier [Google Scholar]
  144. Tan RX, Zou WX. 144.  2001. Endophytes: a rich source of functional metabolites. Nat. Prod. Rep. 18:448–59 [Google Scholar]
  145. Tian X, Yao Y, Chen G, Mao Z, Wang X, Xie B. 145.  2014. Suppression of Meloidogyne incognita by the endophytic fungus Acremonium implicatum from tomato root galls. Int. J. Pest Manag. 60:239–45 [Google Scholar]
  146. Timper P, Gates RN, Bouton JH. 146.  2005. Response of Pratylenchus spp. in tall fescue infected with different strains of the fungal endophyte Neotyphodium coenophialum. Nematology 7:105–10 [Google Scholar]
  147. Trudgill DL. 147.  1997. Parthenogenetic root-knot nematodes (Meloidogyne spp.); how can these biotrophic endoparasites have such an enormous host range?. Plant Pathol. 46:26–32 [Google Scholar]
  148. Vadassery J, Ritter C, Venus Y, Camehl I, Varma A. 148.  et al. 2008. The role of auxins and cytokinins in the mutualistic interaction between Arabidopsis and Piriformospora indica. Mol. Plant-Microbe Interact. 21:1371–83 [Google Scholar]
  149. Van Loon LC, Bakker PA, Pieterse CM. 149.  1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36:453–83 [Google Scholar]
  150. Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A. 150.  2015. The importance of the microbiome of the plant holobiont. New Phytol. 206:1196–206 [Google Scholar]
  151. Varma A, Verma S, Sudha, Sahay N, Butehorn B, Franken P. 151.  1999. Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl. Environ. Microbiol. 65:2741–44 [Google Scholar]
  152. Vos IA, Moritz L, Pieterse CM, Van Wees SC. 152.  2015. Impact of hormonal crosstalk on plant resistance and fitness under multi-attacker conditions. Front. Plant. Sci. 6:639 [Google Scholar]
  153. Vu T, Hauschild R, Sikora RA. 153.  2006. Fusarium oxysporum endophytes induced systemic resistance against Radopholus similis on banana. Nematology 8:847–52 [Google Scholar]
  154. Walker TS, Bais HP, Grotewold E, Vivanco JM. 154.  2003. Root exudation and rhizosphere biology. Plant Physiol. 132:44–51 [Google Scholar]
  155. Weinert N, Piceno Y, Ding GC, Meincke R, Heuer H. 155.  et al. 2011. PhyloChip hybridization uncovered an enormous bacterial diversity in the rhizosphere of different potato cultivars: many common and few cultivar-dependent taxa. FEMS Microbiol. Ecol. 75:497–506 [Google Scholar]
  156. Weller DM, Landa BB, Mavrodi OV, Schroeder KL, De La Fuente L. 156.  et al. 2007. Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Plant Biol. 9:4–20 [Google Scholar]
  157. Weller DM, Raaijmakers JM, Gardener BB, Thomashow LS. 157.  2002. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol. 40:309–48 [Google Scholar]
  158. West CP, Izekor E, Oosterhuis DM, Robbins RT. 158.  1988. The effect of Acremonium coenophialum on the growth and nematode infestation of tall fescue. Plant Soil 112:3–6 [Google Scholar]
  159. Wilson D. 159.  1995. Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73:274–76 [Google Scholar]
  160. Wuyts N, Swennen R, De Waele D. 160.  2006. Effects of plant phenylpropanoid pathway products and selected terpenoids and alkaloids on the behaviour of the plant-parasitic nematodes Radopholus similis, Pratylenchus penetrans and Meloidogyne incognita. Nematology 8:89–101 [Google Scholar]
  161. Xiang CB, Werner BL, Christensen EM, Oliver DJ. 161.  2001. The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol. 126:564–74 [Google Scholar]
  162. Yan XN, Sikora RA, Zheng JW. 162.  2011. Potential use of cucumber (Cucumis sativus L.) endophytic fungi as seed treatment agents against root-knot nematode Meloidogyne incognita. J. Zhejiang Univ. Sci. B 12:219–25 [Google Scholar]
  163. Yao YR, Tian XL, Shen BM, Mao ZC, Chen GH, Xie BY. 163.  2015. Transformation of the endophytic fungus Acremonium implicatum with GFP and evaluation of its biocontrol effect against Meloidogyne incognita. World J. Microbiol. Biotechnol. 31:549–56 [Google Scholar]
  164. Zamioudis C, Pieterse CMJ. 164.  2012. Modulation of host immunity by beneficial microbes. Mol. Plant-Microbe Interact. 25:139–50 [Google Scholar]
  165. Zhang DX, Nagabhyru P, Schardl CL. 165.  2009. Regulation of a chemical defense against herbivory produced by symbiotic fungi in grass plants. Plant Physiol. 150:1072–82 [Google Scholar]
  166. Zhang HW, Song YC, Tan RX. 166.  2006. Biology and chemistry of endophytes. Nat. Prod. Rep. 23:753–71 [Google Scholar]
  167. Zhang SW, Gan YT, Xu BL. 167.  2014. Efficacy of Trichoderma longibrachiatum in the control of Heterodera avenae. Biocontrol 59:319–31 [Google Scholar]
  168. zum Felde A, Mendoza A, Cabrera JA, Kurtz A, Schouten A. 168.  et al. 2009. The burrowing nematode of banana: strategies for controlling the uncontrollable. Acta Hortic. 828:101–8 [Google Scholar]
/content/journals/10.1146/annurev-phyto-080615-100114
Loading
/content/journals/10.1146/annurev-phyto-080615-100114
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error