1932

Abstract

and other tobamoviruses have served as models for studying the mechanisms of viral RNA replication. In tobamoviruses, genomic RNA replication occurs via several steps: () synthesis of viral replication proteins by translation of the genomic RNA; () translation-coupled binding of the replication proteins to a 5′-terminal region of the genomic RNA; () recruitment of the genomic RNA by replication proteins onto membranes and formation of a complex with host proteins TOM1 and ARL8; () synthesis of complementary (negative-strand) RNA in the complex; and () synthesis of progeny genomic RNA. This article reviews current knowledge on tobamovirus RNA replication, particularly regarding how the genomic RNA is specifically selected as a replication template and how the replication proteins are activated. We also focus on the roles of the replication proteins in evading or suppressing host defense systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080615-100217
2016-08-04
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/phyto/54/1/annurev-phyto-080615-100217.html?itemId=/content/journals/10.1146/annurev-phyto-080615-100217&mimeType=html&fmt=ahah

Literature Cited

  1. Agalarov SC, Sakharov PA, Fattakhova DK, Sogorin EA, Spirin AS. 1.  2014. Internal translation initiation and eIF4F/ATP-independent scanning of mRNA by eukaryotic ribosomal particles. Sci. Rep. 4:4438 [Google Scholar]
  2. Ahlquist P. 2.  2006. Parallels among positive-strand RNA viruses, reverse-transcribing viruses and double-stranded RNA viruses. Nat. Rev. Microbiol. 4:371–82 [Google Scholar]
  3. Ahlquist P, French R, Janda M, Loesch-Fries LS. 3.  1984. Multicomponent RNA plant virus infection derived from cloned viral cDNA. PNAS 81:7066–70 [Google Scholar]
  4. Ahlquist P, Janda M. 4.  1984. cDNA cloning and in vitro transcription of the complete brome mosaic virus genome. Mol. Cell. Biol. 4:2876–82 [Google Scholar]
  5. Ahlquist P, Strauss EG, Rice CM, Strauss JH, Haseloff J, Zimmern D. 5.  1985. Sindbis virus proteins nsP1 and nsP2 contain homology to nonstructural proteins from several RNA plant viruses. J. Virol. 53:536–42 [Google Scholar]
  6. Ahola T, Ahlquist P. 6.  1999. Putative RNA capping activities encoded by brome mosaic virus: methylation and covalent binding of guanylate by replicase protein 1a. J. Virol. 73:10061–69 [Google Scholar]
  7. Ahola T, Kääriäinen L. 7.  1995. Reaction in alphavirus mRNA capping: formation of a covalent complex of nonstructural protein nsP1 with 7-methyl-GMP. PNAS 92:507–11 [Google Scholar]
  8. Anderson J, Phan L, Hinnebusch AG. 8.  2000. The Gcd10p/Gcd14p complex is the essential two-subunit tRNA(1-methyladenosine) methyltransferase of Saccharomyces cerevisiae. PNAS 97:5173–78 [Google Scholar]
  9. Aoki S, Takebe I. 9.  1969. Infection of tobacco mesophyll protoplasts by tobacco mosaic virus ribonucleic acid. Virology 39:439–48 [Google Scholar]
  10. Barajas D, Xu K, Sharma M, Wu CY, Nagy PD. 10.  2014. Tombusviruses upregulate phospholipid biosynthesis via interaction between p33 replication protein and yeast lipid sensor proteins during virus replication in yeast. Virology 471–473:72–80 [Google Scholar]
  11. Barton DJ, Morasco BJ, Flanegan JB. 11.  1999. Translating ribosomes inhibit poliovirus negative-strand RNA synthesis. J. Virol. 73:10104–12 [Google Scholar]
  12. Berger KL, Kelly SM, Jordan TX, Tartell MA, Randall G. 12.  2011. Hepatitis C virus stimulates the phosphatidylinositol 4-kinase III α-dependent phosphatidylinositol 4-phosphate production that is essential for its replication. J. Virol. 85:8870–83 [Google Scholar]
  13. Blumenthal T, Carmichael GG. 13.  1979. RNA replication: function and structure of Qβ-replicase. Annu. Rev. Biochem. 48:525–48 [Google Scholar]
  14. Camborde L, Planchais S, Tournier V, Jakubiec A, Drugeon G. 14.  et al. 2010. The ubiquitin-proteasome system regulates the accumulation of Turnip yellow mosaic virus RNA-dependent RNA polymerase during viral infection. Plant Cell 22:3142–52 [Google Scholar]
  15. Canto T, MacFarlane SA, Palukaitis P. 15.  2004. ORF6 of Tobacco mosaic virus is a determinant of viral pathogenicity in Nicotiana benthamiana. J. Gen. Virol. 85:3123–33 [Google Scholar]
  16. Caplan J, Padmanabhan M, Dinesh-Kumar SP. 16.  2008. Plant NB-LRR immune receptors: from recognition to transcriptional reprogramming. Cell Host Microbe 3:126–35 [Google Scholar]
  17. Carbonell A, Carrington JC. 17.  2015. Antiviral roles of plant ARGONAUTES. Curr. Opin. Plant Biol. 27:111–17 [Google Scholar]
  18. Chen CE, Yeh KC, Wu SH, Wang HI, Yeh HH. 18.  2013. A vicilin-like seed storage protein, PAP85, is involved in Tobacco mosaic virus replication. J. Virol. 87:6888–900 [Google Scholar]
  19. Cherry S, Doukas T, Armknecht S, Whelan S, Wang H. 19.  et al. 2005. Genome-wide RNAi screen reveals a specific sensitivity of IRES-containing RNA viruses to host translation inhibition. Genes Dev. 19:445–52 [Google Scholar]
  20. Chujo T, Ishibashi K, Miyashita S, Ishikawa M. 20.  2015. Functions of the 5′- and 3′-untranslated regions of tobamovirus RNA. Virus Res. 206:82–89 [Google Scholar]
  21. Coyne CB, Bozym R, Morosky SA, Hanna SL, Mukherjee A. 21.  et al. 2011. Comparative RNAi screening reveals host factors involved in enterovirus infection of polarized endothelial monolayers. Cell Host Microbe 9:70–82 [Google Scholar]
  22. Csorba T, Bovi A, Dalmay T, Burgyán J. 22.  2007. The p122 subunit of Tobacco mosaic virus replicase is a potent silencing suppressor and compromises both small interfering RNA- and microRNA-mediated pathways. J. Virol. 81:11768–80 [Google Scholar]
  23. Csorba T, Kontra L, Burgyán J. 23.  2015. Viral silencing suppressors: tools forged to fine-tune host-pathogen coexistence. Virology 479–480:85–103 [Google Scholar]
  24. Dawson WO, Beck DL, Knorr DA, Grantham GL. 24.  1986. cDNA cloning of the complete genome of tobacco mosaic virus and production of infectious transcripts. PNAS 83:1832–36 [Google Scholar]
  25. den Boon JA, Ahlquist P. 25.  2010. Organelle-like membrane compartmentalization of positive-strand RNA virus replication factories. Annu. Rev. Microbiol. 64:241–56 [Google Scholar]
  26. den Boon JA, Diaz A, Ahlquist P. 26.  2010. Cytoplasmic viral replication complexes. Cell Host Microbe 8:77–85 [Google Scholar]
  27. de Ronde D, Butterbach P, Kormelink R. 27.  2014. Dominant resistance against plant viruses. Front. Plant Sci. 5:307 [Google Scholar]
  28. Ding SW. 28.  2010. RNA-based antiviral immunity. Nat. Rev. Immunol. 10:632–44 [Google Scholar]
  29. Ding SW, Voinnet O. 29.  2007. Antiviral immunity directed by small RNAs. Cell 130:413–26 [Google Scholar]
  30. Ding XS, Liu J, Cheng NH, Folimonov A, Hou YM. 30.  et al. 2004. The Tobacco mosaic virus 126-kDa protein associated with virus replication and movement suppresses RNA silencing. Mol. Plant-Microbe Interact. 17:583–92 [Google Scholar]
  31. Dorobantu CM, Albulescu L, Harak C, Feng Q, van Kampen M. 31.  et al. 2015. Modulation of the host lipid landscape to promote RNA virus replication: the picornavirus encephalomyocarditis virus converges on the pathway used by hepatitis C virus. PLOS Pathog. 11:e1005185 [Google Scholar]
  32. Dunigan DD, Zaitlin M. 32.  1990. Capping of tobacco mosaic virus RNA. Analysis of viral-coded guanylyltransferase-like activity. J. Biol. Chem. 265:7779–86 [Google Scholar]
  33. Elena SF, Carrasco P, Daròs JA, Sanjuán R. 33.  2006. Mechanisms of genetic robustness in RNA viruses. EMBO Rep. 7:168–73 [Google Scholar]
  34. Erickson FL, Holzberg S, Calderon-Urrea A, Handley V, Axtell M. 34.  et al. 1999. The helicase domain of the TMV replicase proteins induces the N-mediated defence response in tobacco. Plant J. 18:67–75 [Google Scholar]
  35. Gallie DR, Sleat DE, Watts JW, Turner PC, Wilson TM. 35.  1987. The 5′-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo. Nucleic Acids Res. 15:3257–73 [Google Scholar]
  36. Gamarnik AV, Andino R. 36.  1998. Switch from translation to RNA replication in a positive-stranded RNA virus. Genes Dev. 12:2293–304 [Google Scholar]
  37. Goelet P, Lomonossoff GP, Butler PJ, Akam ME, Gait MJ, Karn J. 37.  1982. Nucleotide sequence of tobacco mosaic virus RNA. PNAS 79:5818–22 [Google Scholar]
  38. Goregaoker SP, Culver JN. 38.  2003. Oligomerization and activity of the helicase domain of the tobacco mosaic virus 126- and 183-kilodalton replicase proteins. J. Virol. 77:3549–56 [Google Scholar]
  39. Gushchin VA, Andreev DE, Taliansky ME, Macfarlane SE, Solovyev AG, Morozov SY. 39.  2013. Single amino acid substitution in the tobacco mosaic virus ORF6 protein suppresses formation of complex with eEF1A and cooperative nucleic acids binding in vitro. Doklady Biochem. Biophys. 448:1–4 [Google Scholar]
  40. Hagiwara Y, Komoda K, Yamanaka T, Tamai A, Meshi T. 40.  et al. 2003. Subcellular localization of host and viral proteins associated with tobamovirus RNA replication. EMBO J. 22:344–53 [Google Scholar]
  41. Hagiwara-Komoda Y, Hirai K, Mochizuki A, Nishiguchi M, Meshi T, Ishikawa M. 41.  2008. Overexpression of a host factor TOM1 inhibits tomato mosaic virus propagation and suppression of RNA silencing. Virology 376:132–39 [Google Scholar]
  42. Hao L, Lindenbach B, Wang X, Dye B, Kushner D. 42.  et al. 2014. Genome-wide analysis of host factors in nodavirus RNA replication. PLOS ONE 9:e95799 [Google Scholar]
  43. Harrison BD, Wilson TM. 43.  1999. Milestones in the research on tobacco mosaic virus. Philos. Trans. R. Soc. Lond. B 354:521–29 [Google Scholar]
  44. Haruna I, Spiegelman S. 44.  1965. Specific template requirments of RNA replicases. PNAS 54:579–87 [Google Scholar]
  45. Haseloff J, Goelet P, Zimmern D, Ahlquist P, Dasgupta R, Kaesberg P. 45.  1984. Striking similarities in amino acid sequence among nonstructural proteins encoded by RNA viruses that have dissimilar genomic organization. PNAS 81:4358–62 [Google Scholar]
  46. Hayes RJ, Buck KW. 46.  1990. Complete replication of a eukaryotic virus RNA in vitro by a purified RNA-dependent RNA polymerase. Cell 63:363–68 [Google Scholar]
  47. Heazlewood JL, Verboom RE, Tonti-Filippini J, Small I, Millar AH. 47.  2007. SUBA: The Arabidopsis Subcellular Database. Nucleic Acids Res. 35:D213–18 [Google Scholar]
  48. Heinlein M, Padgett HS, Gens JS, Pickard BG, Casper SJ. 48.  et al. 1998. Changing patterns of localization of the tobacco mosaic virus movement protein and replicase to the endoplasmic reticulum and microtubules during infection. Plant Cell 10:1107–20 [Google Scholar]
  49. Herold J, Andino R. 49.  2001. Poliovirus RNA replication requires genome circularization through a protein-protein bridge. Mol. Cell 7:581–91 [Google Scholar]
  50. Hills GJ, Plaskitt KA, Young ND, Dunigan DD, Watts JW. 50.  et al. 1987. Immunogold localization of the intracellular sites of structural and nonstructural tobacco mosaic virus proteins. Virology 161:488–96 [Google Scholar]
  51. Holmes F. 51.  1938. Inheritance of resistance to tobacco mosaic in tobacco. Phytopathology 28:553–61 [Google Scholar]
  52. Hsu NY, Ilnytska O, Belov G, Santiana M, Chen YH. 52.  et al. 2010. Viral reorganization of the secretory pathway generates distinct organelles for RNA replication. Cell 141:799–811 [Google Scholar]
  53. Huang YW, Hu CC, Liou MR, Chang BY, Tsai CH. 53.  et al. 2012. Hsp90 interacts specifically with viral RNA and differentially regulates replication initiation of Bamboo mosaic virus and associated satellite RNA. PLOS Pathog. 8:e1002726 [Google Scholar]
  54. Hunter TR, Hunt T, Knowland J, Zimmern D. 54.  1976. Messenger RNA for the coat protein of tobacco mosaic virus. Nature 260:759–64 [Google Scholar]
  55. Hwang J, Oh CS, Kang BC. 55.  2013. Translation elongation factor 1B (eEF1B) is an essential host factor for Tobacco mosaic virus infection in plants. Virology 439:105–14 [Google Scholar]
  56. Hyodo K, Mine A, Taniguchi T, Kaido M, Mise K. 56.  et al. 2013. ADP ribosylation factor 1 plays an essential role in the replication of a plant RNA virus. J. Virol. 87:163–76 [Google Scholar]
  57. Hyodo K, Taniguchi T, Manabe Y, Kaido M, Mise K. 57.  et al. 2015. Phosphatidic acid produced by phospholipase D promotes RNA replication of a plant RNA virus. PLOS Pathog. 11:e1004909 [Google Scholar]
  58. Ishibashi K, Ishikawa M. 58.  2013. The resistance protein Tm-1 inhibits formation of a Tomato mosaic virus replication protein-host membrane protein complex. J. Virol. 87:7933–39 [Google Scholar]
  59. Ishibashi K, Kezuka Y, Kobayashi C, Kato M, Inoue T. 59.  et al. 2014. Structural basis for the recognition-evasion arms race between Tomato mosaic virus and the resistance gene Tm-1. PNAS 111:E3486–95 [Google Scholar]
  60. Ishibashi K, Masuda K, Naito S, Meshi T, Ishikawa M. 60.  2007. An inhibitor of viral RNA replication is encoded by a plant resistance gene. PNAS 104:13833–38 [Google Scholar]
  61. Ishibashi K, Mawatari N, Miyashita S, Kishino H, Meshi T, Ishikawa M. 61.  2012. Coevolution and hierarchical interactions of Tomato mosaic virus and the resistance gene Tm-1. PLOS Pathog. 8:e1002975Revealed that Tm-1 and ToMV have coevolved. [Google Scholar]
  62. Ishibashi K, Meshi T, Ishikawa M. 62.  2011. Gaining replicability in a nonhost compromises the silencing suppression activity of Tobacco mild green mosaic virus in a host. J. Virol. 85:1893–95 [Google Scholar]
  63. Ishibashi K, Naito S, Meshi T, Ishikawa M. 63.  2009. An inhibitory interaction between viral and cellular proteins underlies the resistance of tomato to nonadapted tobamoviruses. PNAS 106:8778–83 [Google Scholar]
  64. Ishikawa M, Meshi T, Motoyoshi F, Takamatsu N, Okada Y. 64.  1986. In vitro mutagenesis of the putative replicase genes of tobacco mosaic virus. Nucleic Acids Res. 14:8291–305 [Google Scholar]
  65. Ishikawa M, Meshi T, Ohno T, Okada Y. 65.  1991. Specific cessation of minus-strand RNA accumulation at an early stage of tobacco mosaic virus infection. J. Virol. 65:861–68 [Google Scholar]
  66. Ishikawa M, Naito S, Ohno T. 66.  1993. Effects of the tom1 mutation of Arabidopsis thaliana on the multiplication of tobacco mosaic virus RNA in protoplasts. J. Virol. 67:5328–38 [Google Scholar]
  67. Ishikawa M, Obata F, Kumagai T, Ohno T. 67.  1991. Isolation of mutants of Arabidopsis thaliana in which accumulation of tobacco mosaic virus coat protein is reduced to low levels. Mol. Gen. Genet. 230:33–38 [Google Scholar]
  68. Ishikawa M, Okada Y. 68.  2004. Replication of tobamovirus RNA. Proc. Jpn. Acad. Ser. B 80:215–24 [Google Scholar]
  69. Janda M, Ahlquist P. 69.  1998. Brome mosaic virus RNA replication protein 1a dramatically increases in vivo stability but not translation of viral genomic RNA3. PNAS 95:2227–32 [Google Scholar]
  70. Jonczyk M, Pathak KB, Sharma M, Nagy PD. 70.  2007. Exploiting alternative subcellular location for replication: tombusvirus replication switches to the endoplasmic reticulum in the absence of peroxisomes. Virology 362:320–30 [Google Scholar]
  71. Kawamura-Nagaya K, Ishibashi K, Huang YP, Miyashita S, Ishikawa M. 71.  2014. Replication protein of tobacco mosaic virus cotranslationally binds the 5′ untranslated region of genomic RNA to enable viral replication. PNAS 111:E1620–28Showed that TMV replication proteins cotranslationally bind 5′ AC-rich region of TMV RNA. [Google Scholar]
  72. Kiberstis PA, Loesch-Fries LS, Hall TC. 72.  1981. Viral protein synthesis in barley protoplasts inoculated with native and fractionated brome mosaic virus RNA. Virology 112:804–8 [Google Scholar]
  73. Kitamura N, Semler BL, Rothberg PG, Larsen GR, Adler CJ. 73.  et al. 1981. Primary structure, gene organization and polypeptide expression of poliovirus RNA. Nature 291:547–53 [Google Scholar]
  74. Klassen MP, Wu YE, Maeder CI, Nakae I, Cueva JG. 74.  et al. 2010. An Arf-like small G protein, ARL-8, promotes the axonal transport of presynaptic cargoes by suppressing vesicle aggregation. Neuron 66:710–23 [Google Scholar]
  75. Komoda K, Mawatari N, Hagiwara-Komoda Y, Naito S, Ishikawa M. 75.  2007. Identification of a ribonucleoprotein intermediate of tomato mosaic virus RNA replication complex formation. J. Virol. 81:2584–91 [Google Scholar]
  76. Komoda K, Naito S, Ishikawa M. 76.  2004. Replication of plant RNA virus genomes in a cell-free extract of evacuolated plant protoplasts. PNAS 101:1863–67Reported the establishment of the BYL translation-replication system for plant positive-strand RNA viruses. [Google Scholar]
  77. Koonin EV, Dolja VV. 77.  1993. Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit. Rev. Biochem. Mol. Biol. 28:375–430 [Google Scholar]
  78. Krishnan MN, Ng A, Sukumaran B, Gilfoy FD, Uchil PD. 78.  et al. 2008. RNA interference screen for human genes associated with West Nile virus infection. Nature 455:242–45 [Google Scholar]
  79. Kubota K, Tsuda S, Tamai A, Meshi T. 79.  2003. Tomato mosaic virus replication protein suppresses virus-targeted posttranscriptional gene silencing. J. Virol. 77:11016–26 [Google Scholar]
  80. Kurihara Y, Inaba N, Kutsuna N, Takeda A, Tagami Y, Watanabe Y. 80.  2007. Binding of tobamovirus replication protein with small RNA duplexes. J. Gen. Virol. 88:2347–52 [Google Scholar]
  81. Kushner DB, Lindenbach BD, Grdzelishvili VZ, Noueiry AO, Paul SM, Ahlquist P. 81.  2003. Systematic, genome-wide identification of host genes affecting replication of a positive-strand RNA virus. PNAS 100:15764–69 [Google Scholar]
  82. Lee WM, Ahlquist P. 82.  2003. Membrane synthesis, specific lipid requirements, and localized lipid composition changes associated with a positive-strand RNA virus RNA replication protein. J. Virol. 77:12819–28 [Google Scholar]
  83. Lee WM, Ishikawa M, Ahlquist P. 83.  2001. Mutation of host Δ9 fatty acid desaturase inhibits brome mosaic virus RNA replication between template recognition and RNA synthesis. J. Virol. 75:2097–106 [Google Scholar]
  84. Lewandowski DJ, Dawson WO. 84.  2000. Functions of the 126- and 183-kDa proteins of tobacco mosaic virus. Virology 271:90–98 [Google Scholar]
  85. Li Q, Brass AL, Ng A, Hu Z, Xavier RJ. 85.  et al. 2009. A genome-wide genetic screen for host factors required for hepatitis C virus propagation. PNAS 106:16410–15 [Google Scholar]
  86. Li YI, Shih TW, Hsu YH, Han YT, Huang YL, Meng M. 86.  2001. The helicase-like domain of plant potexvirus replicase participates in formation of RNA 5′ cap structure by exhibiting RNA 5′-triphosphatase activity. J. Virol. 75:12114–20 [Google Scholar]
  87. Liang Y, Gillam S. 87.  2001. Rubella virus RNA replication is cis-preferential and synthesis of negative- and positive-strand RNAs is regulated by the processing of nonstructural protein. Virology 282:307–19 [Google Scholar]
  88. Liu C, Nelson RS. 88.  2013. The cell biology of Tobacco mosaic virus replication and movement. Front. Plant Sci. 4:12 [Google Scholar]
  89. Liu JZ, Blancaflor EB, Nelson RS. 89.  2005. The tobacco mosaic virus 126-kilodalton protein, a constituent of the virus replication complex, alone or within the complex aligns with and traffics along microfilaments. Plant Physiol. 138:1853–65 [Google Scholar]
  90. Marone D, Russo MA, Laidò G, De Leonardis AM, Mastrangelo AM. 90.  2013. Plant nucleotide binding site–leucine-rich repeat (NBS-LRR) genes: active guardians in host defense responses. Int. J. Mol. Sci. 14:7302–26 [Google Scholar]
  91. Mérai Z, Kerényi Z, Kertész S, Magna M, Lakatos L, Silhavy D. 91.  2006. Double-stranded RNA binding may be a general plant RNA viral strategy to suppress RNA silencing. J. Virol. 80:5747–56 [Google Scholar]
  92. Merits A, Kettunen R, Mäkinen K, Lampio A, Auvinen P. 92.  et al. 1999. Virus-specific capping of tobacco mosaic virus RNA: methylation of GTP prior to formation of covalent complex p126-m7GMP. FEBS Lett. 455:45–48 [Google Scholar]
  93. Meshi T, Ishikawa M, Motoyoshi F, Semba K, Okada Y. 93.  1986. In vitro transcription of infectious RNAs from full-length cDNAs of tobacco mosaic virus. PNAS 83:5043–47 [Google Scholar]
  94. Meshi T, Motoyoshi F, Adachi A, Watanabe Y, Takamatsu N, Okada Y. 94.  1988. Two concomitant base substitutions in the putative replicase genes of tobacco mosaic virus confer the ability to overcome the effects of a tomato resistance gene, Tm-1. EMBO J. 7:1575–81 [Google Scholar]
  95. Meshi T, Watanabe Y, Saito T, Sugimoto A, Maeda T, Okada Y. 95.  1987. Function of the 30 kd protein of tobacco mosaic virus: involvement in cell-to-cell movement and dispensability for replication. EMBO J. 6:2557–63 [Google Scholar]
  96. Miller DJ, Schwartz MD, Dye BT, Ahlquist P. 96.  2003. Engineered retargeting of viral RNA replication complexes to an alternative intracellular membrane. J. Virol. 77:12193–202 [Google Scholar]
  97. Mine A, Hyodo K, Tajima Y, Kusumanegara K, Taniguchi T. 97.  et al. 2012. Differential roles of Hsp70 and Hsp90 in the assembly of the replicase complex of a positive-strand RNA plant virus. J. Virol. 86:12091–104 [Google Scholar]
  98. Mine A, Takeda A, Taniguchi T, Taniguchi H, Kaido M. 98.  et al. 2010. Identification and characterization of the 480-kilodalton template-specific RNA-dependent RNA polymerase complex of Red clover necrotic mosaic virus. J. Virol. 84:6070–81 [Google Scholar]
  99. Miranda G, Schuppli D, Barrera I, Hausherr C, Sogo JM, Weber H. 99.  1997. Recognition of bacteriophage Qβ plus strand RNA as a template by Qβ replicase: role of RNA interactions mediated by ribosomal proteins S1 and host factor. J. Mol. Biol. 267:1089–103 [Google Scholar]
  100. Miyashita S, Ishibashi K, Kishino H, Ishikawa M. 100.  2015. Viruses roll the dice: The stochastic behavior of viral genome molecules accelerates viral adaptation at the cell and tissue levels. PLOS Biol. 13:e1002094 [Google Scholar]
  101. Molla A, Paul AV, Wimmer E. 101.  1991. Cell-free, de novo synthesis of poliovirus. Science 254:1647–51 [Google Scholar]
  102. Morozov SY, Denisenko ON, Zelenina DA, Fedorkin ON, Solovyev AG. 102.  et al. 1993. A novel open reading frame in tobacco mosaic virus genome coding for a putative small, positively charged protein. Biochimie 75:659–65 [Google Scholar]
  103. Nakae I, Fujino T, Kobayashi T, Sasaki A, Kikko Y. 103.  et al. 2010. The arf-like GTPase Arl8 mediates delivery of endocytosed macromolecules to lysosomes in Caenorhabditis elegans. Mol. Biol. Cell 21:2434–42 [Google Scholar]
  104. Nishikiori M, Dohi K, Mori M, Meshi T, Naito S, Ishikawa M. 104.  2006. Membrane-bound tomato mosaic virus replication proteins participate in RNA synthesis and are associated with host proteins in a pattern distinct from those that are not membrane bound. J. Virol. 80:8459–68 [Google Scholar]
  105. Nishikiori M, Meshi T, Ishikawa M. 105.  2012. Guanylylation-competent replication proteins of Tomato mosaic virus are disulfide-linked. Virology 434:118–28 [Google Scholar]
  106. Nishikiori M, Mori M, Dohi K, Okamura H, Katoh E. 106.  et al. 2011. A host small GTP-binding protein ARL8 plays crucial roles in tobamovirus RNA replication. PLOS Pathog. 7:e1002409Showed that TOM1 and ARL8 are required for activation of tobamovirus replication proteins. [Google Scholar]
  107. Nishikiori M, Sugiyama S, Xiang H, Niiyama M, Ishibashi K. 107.  et al. 2012. Crystal structure of the superfamily 1 helicase from Tomato mosaic virus. J. Virol. 86:7565–76 [Google Scholar]
  108. Obbard DJ, Gordon KH, Buck AH, Jiggins FM. 108.  2009. The evolution of RNAi as a defence against viruses and transposable elements. Philos. Trans. R. Soc. Lond. B 364:99–115 [Google Scholar]
  109. Ohshima K, Taniyama T, Yamanaka T, Ishikawa M, Naito S. 109.  1998. Isolation of a mutant of Arabidopsis thaliana carrying two simultaneous mutations affecting tobacco mosaic virus multiplication within a single cell. Virology 243:472–81 [Google Scholar]
  110. Ooi YS, Stiles KM, Liu CY, Taylor GM, Kielian M. 110.  2013. Genome-wide RNAi screen identifies novel host proteins required for alphavirus entry. PLOS Pathog. 9:e1003835 [Google Scholar]
  111. Osman TA, Buck KW. 111.  1996. Complete replication in vitro of tobacco mosaic virus RNA by a template-dependent, membrane-bound RNA polymerase. J. Virol. 70:6227–34 [Google Scholar]
  112. Osman TA, Buck KW. 112.  1997. The tobacco mosaic virus RNA polymerase complex contains a plant protein related to the RNA-binding subunit of yeast eIF-3. J. Virol. 71:6075–82 [Google Scholar]
  113. Osman TA, Buck KW. 113.  2003. Identification of a region of the tobacco mosaic virus 126- and 183-kilodalton replication proteins which binds specifically to the viral 3′-terminal tRNA-like structure. J. Virol. 77:8669–75 [Google Scholar]
  114. Osman TA, Hemenway CL, Buck KW. 114.  2000. Role of the 3′ tRNA-like structure in tobacco mosaic virus minus-strand RNA synthesis by the viral RNA-dependent RNA polymerase in vitro. J. Virol. 74:11671–80 [Google Scholar]
  115. Padmanabhan MS, Dinesh-Kumar SP. 115.  2014. The conformational and subcellular compartmental dance of plant NLRs during viral recognition and defense signaling. Curr. Opin. Microbiol. 20:55–61 [Google Scholar]
  116. Panavas T, Serviene E, Brasher J, Nagy PD. 116.  2005. Yeast genome-wide screen reveals dissimilar sets of host genes affecting replication of RNA viruses. PNAS 102:7326–31 [Google Scholar]
  117. Pelham J. 117.  1966. Resistance in tomato to tobacco mosaic virus. Euphytica 15:258–67 [Google Scholar]
  118. Pogany J, Stork J, Li Z, Nagy PD. 118.  2008. In vitro assembly of the Tomato bushy stunt virus replicase requires the host Heat shock protein 70. PNAS 105:19956–61 [Google Scholar]
  119. Pogany J, White KA, Nagy PD. 119.  2005. Specific binding of tombusvirus replication protein p33 to an internal replication element in the viral RNA is essential for replication. J. Virol. 79:4859–69 [Google Scholar]
  120. Pooggin MM. 120.  2013. How can plant DNA viruses evade siRNA-directed DNA methylation and silencing?. Int. J. Mol. Sci. 14:15233–59 [Google Scholar]
  121. Pumplin N, Voinnet O. 121.  2013. RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nat. Rev. Microbiol. 11:745–60 [Google Scholar]
  122. Restrepo MA, Freed DD, Carrington JC. 122.  1990. Nuclear transport of plant potyviral proteins. Plant Cell 2:987–98 [Google Scholar]
  123. Saito T, Hosokawa D, Meshi T, Okada Y. 123.  1987. Immunocytochemical localization of the 130K and 180K proteins (putative replicase components) of tobacco mosaic virus. Virology 160:477–81 [Google Scholar]
  124. Sasaki A, Nakae I, Nagasawa M, Hashimoto K, Abe F. 124.  et al. 2013. Arl8/ARL-8 functions in apoptotic cell removal by mediating phagolysosome formation in Caenorhabditis elegans. Mol. Biol. Cell 24:1584–92 [Google Scholar]
  125. Scholthof KB. 125.  2004. Tobacco mosaic virus: a model system for plant biology. Annu. Rev. Phytopathol. 42:13–34 [Google Scholar]
  126. Schwartz M, Chen J, Janda M, Sullivan M, den Boon J, Ahlquist P. 126.  2002. A positive-strand RNA virus replication complex parallels form and function of retrovirus capsids. Mol. Cell 9:505–14 [Google Scholar]
  127. Schwartz M, Chen J, Lee WM, Janda M, Ahlquist P. 127.  2004. Alternate, virus-induced membrane rearrangements support positive-strand RNA virus genome replication. PNAS 101:11263–68 [Google Scholar]
  128. Serva S, Nagy PD. 128.  2006. Proteomics analysis of the tombusvirus replicase: Hsp70 molecular chaperone is associated with the replicase and enhances viral RNA replication. J. Virol. 80:2162–69 [Google Scholar]
  129. Sessions OM, Barrows NJ, Souza-Neto JA, Robinson TJ, Hershey CL. 129.  et al. 2009. Discovery of insect and human dengue virus host factors. Nature 458:1047–50 [Google Scholar]
  130. Spiegelman S, Haruna I, Holland IB, Beaudreau G, Mills D. 130.  1965. The synthesis of a self-propagating and infectious nucleic acid with a purified enzyme. PNAS 54:919–27 [Google Scholar]
  131. Strasser M, Pfitzner AJ. 131.  2007. The double-resistance-breaking Tomato mosaic virus strain ToMV1-2 contains two independent single resistance-breaking domains. Arch. Virol. 152:903–14 [Google Scholar]
  132. Sullivan ML, Ahlquist P. 132.  1999. A brome mosaic virus intergenic RNA3 replication signal functions with viral replication protein 1a to dramatically stabilize RNA in vivo. J. Virol. 73:2622–32 [Google Scholar]
  133. Takamatsu N, Ishikawa M, Meshi T, Okada Y. 133.  1987. Expression of bacterial chloramphenicol acetyltransferase gene in tobacco plants mediated by TMV-RNA. EMBO J. 6:307–11 [Google Scholar]
  134. Takeshita D, Tomita K. 134.  2012. Molecular basis for RNA polymerization by Qβ replicase. Nat. Struct. Mol. Biol. 19:229–37 [Google Scholar]
  135. Taylor DN, Carr JP. 135.  2000. The GCD10 subunit of yeast eIF-3 binds the methyltransferase-like domain of the 126 and 183 kDa replicase proteins of tobacco mosaic virus in the yeast two-hybrid system. J. Gen. Virol. 81:1587–91 [Google Scholar]
  136. Tomita Y, Mizuno T, Díez J, Naito S, Ahlquist P, Ishikawa M. 136.  2003. Mutation of host DnaJ homolog inhibits brome mosaic virus negative-strand RNA synthesis. J. Virol. 77:2990–97 [Google Scholar]
  137. Tsujimoto Y, Numaga T, Ohshima K, Yano MA, Ohsawa R. 137.  et al. 2003. Arabidopsis TOBAMOVIRUS MULTIPLICATION (TOM) 2 locus encodes a transmembrane protein that interacts with TOM1. EMBO J. 22335–43
  138. Vogler H, Akbergenov R, Shivaprasad PV, Dang V, Fasler M. 138.  et al. 2007. Modification of small RNAs associated with suppression of RNA silencing by tobamovirus replicase protein. J. Virol. 81:10379–88 [Google Scholar]
  139. Wang LY, Lin SS, Hung TH, Li TK, Lin NC, Shen TL. 139.  2012. Multiple domains of the Tobacco mosaic virus p126 protein can independently suppress local and systemic RNA silencing. Mol. Plant-Microbe Interact. 25:648–57 [Google Scholar]
  140. Weiland JJ, Dreher TW. 140.  1993. Cis-preferential replication of the turnip yellow mosaic virus RNA genome. PNAS 90:6095–99 [Google Scholar]
  141. Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr C, Baker B. 141.  1994. The product of the tobacco mosaic virus resistance gene N: similarity to Toll and the interleukin-1 receptor. Cell 78:1101–15 [Google Scholar]
  142. Xu K, Nagy PD. 142.  2015. RNA virus replication depends on enrichment of phosphatidylethanolamine at replication sites in subcellular membranes. PNAS 112:E1782–91 [Google Scholar]
  143. Yamaji Y, Kobayashi T, Hamada K, Sakurai K, Yoshii A. 143.  et al. 2006. In vivo interaction between Tobacco mosaic virus RNA-dependent RNA polymerase and host translation elongation factor 1A. Virology 347:100–8 [Google Scholar]
  144. Yamaji Y, Sakurai K, Hamada K, Komatsu K, Ozeki J. 144.  et al. 2010. Significance of eukaryotic translation elongation factor 1A in tobacco mosaic virus infection. Arch. Virol. 155:263–68 [Google Scholar]
  145. Yamanaka T, Ohta T, Takahashi M, Meshi T, Schmidt R. 145.  et al. 2000. TOM1, an Arabidopsis gene required for efficient multiplication of a tobamovirus, encodes a putative transmembrane protein. PNAS 97:10107–12 [Google Scholar]
  146. Zeenko VV, Ryabova LA, Spirin AS, Rothnie HM, Hess D. 146.  et al. 2002. Eukaryotic elongation factor 1A interacts with the upstream pseudoknot domain in the 3′ untranslated region of tobacco mosaic virus RNA. J. Virol. 76:5678–91 [Google Scholar]
/content/journals/10.1146/annurev-phyto-080615-100217
Loading
/content/journals/10.1146/annurev-phyto-080615-100217
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error