1932

Abstract

Biotrophy is a pervasive trait that evolved independently in plant pathogenic fungi and oomycetes. Comparative genomics of the first sequenced biotrophic pathogens highlight remarkable convergences, including gene losses in the metabolism of inorganic nitrogen, inorganic sulfur, and thiamine, and genes encoding carbohydrate active enzymes and secondary metabolism enzymes. Some biotrophs, but not all, display marked increases in overall genome size because of a proliferation of retrotransposons. I argue here that the release of constraints on transposon activity is driven by the advantages conferred by the genetic variability that results from transposition, in particular by the creation and diversification of broad palettes of effector genes. Increases in genome size and gene losses are the consequences of this trade-off. Genes that are not necessary for growth on a plant disappeared, but we still do not know what lost functions make some of these pathogens obligate.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-081211-173024
2012-09-08
2024-04-16
Loading full text...

Full text loading...

/content/journals/10.1146/annurev-phyto-081211-173024
Loading
/content/journals/10.1146/annurev-phyto-081211-173024
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error