1932

Abstract

Land plants interact with microbes primarily at roots. Despite the importance of root microbial communities for health and nutrient uptake, the current understanding of the complex plant-microbe interactions in the rhizosphere is still in its infancy. Roots provide different microhabitats at the soil-root interface: rhizosphere soil, rhizoplane, and endorhizosphere. We discuss technical aspects of their differentiation that are relevant for the functional analysis of their different microbiomes, and we assess PCR (polymerase chain reaction)-based methods to analyze plant-associated bacterial communities. Development of novel primers will allow a less biased and more quantitative view of these global hotspots of microbial activity. Based on comparison of microbiome data for the different root-soil compartments and on knowledge of bacterial functions, a three-step enrichment model for shifts in community structure from bulk soil toward roots is presented. To unravel how plants shape their microbiome, a major research field is likely to be the coupling of reductionist and molecular ecological approaches, particularly for specific plant genotypes and mutants, to clarify causal relationships in complex root communities.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-082712-102342
2015-08-04
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/phyto/53/1/annurev-phyto-082712-102342.html?itemId=/content/journals/10.1146/annurev-phyto-082712-102342&mimeType=html&fmt=ahah

Literature Cited

  1. Alquéres S, Meneses C, Rouws L, Rothballer M, Baldani I. 1.  et al. 2013. The bacterial superoxide dismutase and glutathione reductase are crucial for endophytic colonization of rice roots by Gluconacetobacter diazotrophicus PAL5. Mol. Plant-Microbe Interact. 26:937–45 [Google Scholar]
  2. Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA. 2.  1990. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56:1919–25 [Google Scholar]
  3. Andreote FD, Rocha UN, Araujo WL, Azevedo JL, van Overbeek LS. 3.  2010. Effect of bacterial inoculation, plant genotype and developmental stage on root-associated and endophytic bacterial communities in potato (Solanum tuberosum). Ant. Leeuw. 97:389–99 [Google Scholar]
  4. Aßmus B, Schloter M, Kirchhof G, Hutzler P, Hartmann A. 4.  1997. Improved in situ tracking of rhizosphere bacteria using dual staining with fluorescence-labeled antibodies and rRNA-targeted oligonucleotides. Microb. Ecol. 33:32–40 [Google Scholar]
  5. Badri DV, Quintana N, El Kassis EG, Kim HK, Choi YH. 5.  et al. 2009. An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota. Plant Physiol. 151:2006–17 [Google Scholar]
  6. Badri DV, Vivanco JM. 6.  2009. Regulation and function of root exudates. Plant Cell Environ. 32:666–81 [Google Scholar]
  7. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM. 7.  2006. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 57:233–66 [Google Scholar]
  8. Balandreau J, Knowles R. 8.  1978. The rhizosphere. Interactions Between Non-Pathogenic Soil Microorganisms and Plants YR Dommergues, SV Krupa 243–68 Amsterdam: Elsevier [Google Scholar]
  9. Balsanelli E, de Baura VA, Pedrosa FdO, de Souza EM, Monteiro RA. 9.  2014. Exopolysaccharide biosynthesis enables mature biofilm formation on abiotic surfaces by Herbaspirillum seropedicae. PLOS ONE 9:e110392 [Google Scholar]
  10. Balsanelli E, Tuleski TR, de Baura VA, Yates MG, Chubatsu LS. 10.  et al. 2013. Maize root lectins mediate the interaction with Herbaspirillum seropedicae via N-acetyl glucosamine residues of lipopolysaccharides. PLOS ONE 8:e77001 [Google Scholar]
  11. Berendsen RL, Pieterse CM, Bakker PA. 11.  2012. The rhizosphere microbiome and plant health. Trends Plant Sci. 17:478–86 [Google Scholar]
  12. Berg G, Grube M, Schloter M, Smalla K. 12.  2014. Unraveling the plant microbiome: looking back and future perspectives. Front. Microbiol. 5:148 [Google Scholar]
  13. Bertin C, Yang X, Weston LA. 13.  2003. The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83 [Google Scholar]
  14. Bignell DRD, Huguet-Tapia JC, Joshi MV, Pettis GS, Loria R. 14.  2010. What does it take to be a plant pathogen: genomic insights from Streptomyces species. Ant. Leeuw. 98:179–94 [Google Scholar]
  15. Bisseling T, Dangl JL, Schulze-Lefert P. 15.  2009. Next-generation communication. Science 324:691 [Google Scholar]
  16. Böhm M, Hurek T, Reinhold-Hurek B. 16.  2007. Twitching motility is essential for endophytic rice colonization by the N2-fixing endophyte Azoarcus sp. strain BH72. Mol. Plant-Microbe Interact. 20:526–33 [Google Scholar]
  17. Bordiec S, Paquis S, Lacroix H, Dhondt S, Ait Barka E. 17.  et al. 2010. Comparative analysis of defence responses induced by the endophytic plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN and the non-host bacterium Pseudomonas syringae pv. pisi in grapevine cell suspensions. J. Exp. Bot. 62:595–603 [Google Scholar]
  18. Bressan M, Roncato MA, Bellvert F, Comte G, Haichar FZ. 18.  et al. 2009. Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. ISME J. 3:1243–57 [Google Scholar]
  19. Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N. 19.  et al. 2012. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95 [Google Scholar]
  20. Bulgarelli D, Schlaeppi K, Spaepen S, Ver Loren van Themaat E, Schulze-Lefert P. 20.  2013. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64:807–38 [Google Scholar]
  21. Buschart A, Sachs S, Chen X, Herglotz J, Krause A, Reinhold-Hurek B. 21.  2012. Flagella mediate endophytic competence rather than act as MAMPS in rice–Azoarcus sp. strain BH72 interactions. Mol. Plant-Microbe Interact. 25:191–99 [Google Scholar]
  22. Carvalhais LC, Dennis PG, Badri DV, Tyson GW, Vivanco JM, Schenk PM. 22.  2013. Activation of the jasmonic acid plant defence pathway alters the composition of rhizosphere bacterial communities. PLOS ONE 8:e56457 [Google Scholar]
  23. Chelius MK, Triplett EW. 23.  2001. The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb. Ecol. 41:252–63 [Google Scholar]
  24. Chen X, Ronald PC. 24.  2011. Innate immunity in rice. Trends Plant Sci. 16:451–59 [Google Scholar]
  25. Compant S, Clément C, Sessitsch A. 25.  2010. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 42:669–78 [Google Scholar]
  26. Compant S, Reiter B, Sessitsch A, Nowak J, Clement C, Ait Barka E. 26.  2005. Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl. Environ. Microbiol. 71:1685–93 [Google Scholar]
  27. Coombs JT, Franco CM. 27.  2003. Visualization of an endophytic Streptomyces species in wheat seed. Appl. Environ. Microbiol. 69:4260–62 [Google Scholar]
  28. Costa R, Gotz M, Mrotzek N, Lottmann J, Berg G, Smalla K. 28.  2006. Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol. Ecol. 56:236–49 [Google Scholar]
  29. Costa R, Salles JF, Berg G, Smalla K. 29.  2006. Cultivation-independent analysis of Pseudomonas species in soil and in the rhizosphere of field-grown Verticillium dahliae host plants. Environ. Microbiol. 8:2136–49 [Google Scholar]
  30. Coutinho BG, Licastro D, Mendonca-Previato L, Camara M, Venturi V. 30.  2015. Plant-influenced gene expression in the rice endophyte Burkholderia kururiensis M130. Mol. Plant-Microbe Interact. 28:10–21 [Google Scholar]
  31. DeAngelis KM, Brodie EL, DeSantis TZ, Andersen GL, Lindow SE, Firestone MK. 31.  2009. Selective progressive response of soil microbial community to wild oat roots. ISME J. 3:168–78 [Google Scholar]
  32. Delwiche CF, Palmer JD. 32.  1996. Rampant horizontal transfer and duplication of rubisco genes in eubacteria and plastids. Mol. Biol. Evol. 13:873–82 [Google Scholar]
  33. Doornbos RF, Geraats BP, Kuramae EE, Van Loon LC, Bakker PA. 33.  2011. Effects of jasmonic acid, ethylene, and salicylic acid signaling on the rhizosphere bacterial community of Arabidopsis thaliana. Mol. Plant-Microbe Interact. 24:395–407 [Google Scholar]
  34. Dörr J, Hurek T, Reinhold-Hurek B. 34.  1998. Type IV pili are involved in plant-microbe and fungus-microbe interactions. Mol. Microbiol. 30:7–17 [Google Scholar]
  35. Dyer TA, Miller RH. 35.  1971. Leaf nucleic acids. J. Exp. Bot. 22:125–36 [Google Scholar]
  36. Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE. 36.  2013. Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am. J. Bot. 100:1738–50 [Google Scholar]
  37. Garbeva P, Overbeek LS, Vuurde JW, Elsas JD. 37.  2001. Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microb. Ecol. 41:369–83 [Google Scholar]
  38. Geldner N, Salt DE. 38.  2014. Focus on roots. Plant Physiol. 166:453–54 [Google Scholar]
  39. Gherbi H, Markmann K, Svistoonoff S, Estevan J, Autran D. 39.  et al. 2008. SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankia bacteria. PNAS 105:4928–32 [Google Scholar]
  40. Gottel NR, Castro HF, Kerley M, Yang Z, Pelletier DA. 40.  et al. 2011. Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Appl. Environ. Microbiol. 77:5934–44 [Google Scholar]
  41. Gyaneshwar P, James EK, Mathan N, Reddy PM, Reinhold-Hurek B, Ladha JK. 41.  2001. Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J. Bacteriol. 183:2634–45 [Google Scholar]
  42. Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV. 42.  et al. 2011. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21:494–504 [Google Scholar]
  43. Haichar FZ, Marol C, Berge O, Rangel-Castro JI, Prosser JI. 43.  et al. 2008. Plant host habitat and root exudates shape soil bacterial community structure. ISME J. 2:1221–30 [Google Scholar]
  44. Hanshew AS, Mason CJ, Raffa KF, Currie CR. 44.  2013. Minimization of chloroplast contamination in 16S rRNA gene pyrosequencing of insect herbivore bacterial communities. J. Microbiol. Methods 95:149–55 [Google Scholar]
  45. Hardoim PR, Andreote FD, Reinhold-Hurek B, Sessitsch A, van Overbeek LS, van Elsas JD. 45.  2011. Rice root-associated bacteria: insights into community structures across 10 cultivars. FEMS Microbiol. Ecol. 77:154–64 [Google Scholar]
  46. Hardoim PR, van Overbeek LS, Elsas JD. 46.  2008. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 16:463–71 [Google Scholar]
  47. Hein JW, Wolfe GV, Blee KA. 47.  2008. Comparison of rhizosphere bacterial communities in Arabidopsis thaliana mutants for systemic acquired resistance. Microb. Ecol. 55:333–43 [Google Scholar]
  48. Hiltner L. 48.  1904. Über neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter besonderer Berücksichtigung der Gründüngung und Brache. Arb. Landwirtsch. Ges. 98:59–78 [Google Scholar]
  49. Hurek T, Reinhold-Hurek B, Van Montagu M, Kellenberger E. 49.  1991. Infection of intact roots of Kallar grass and rice seedlings by Azoarcus. Nitrogen Fixation M Polsinelli, R Materassi, M Vincenzini 235–42 Dordrecht, Neth: Kluwer [Google Scholar]
  50. Huys G, Vanhoutte T, Joossens M, Mahious AS, De Brandt E. 50.  et al. 2008. Coamplification of eukaryotic DNA with 16S rRNA gene-based PCR primers: possible consequences for population fingerprinting of complex microbial communities. Curr. Microbiol. 56:553–57 [Google Scholar]
  51. Ikeda S, Kaneko T, Okubo T, Rallos LE, Eda S. 51.  et al. 2009. Development of a bacterial cell enrichment method and its application to the community analysis in soybean stems. Microb. Ecol. 58:703–14 [Google Scholar]
  52. Ikeda S, Okubo T, Takeda N, Banba M, Sasaki K. 52.  et al. 2011. The genotype of the calcium/calmodulin-dependent protein kinase gene (CCaMK) determines bacterial community diversity in rice roots under paddy and upland field conditions. Appl. Environ. Microbiol. 77:4399–405 [Google Scholar]
  53. Iniguez AL, Dong Y, Carter HD, Ahmer BM, Stone JM, Triplett EW. 53.  2005. Regulation of enteric endophytic bacterial colonization by plant defenses. Mol. Plant-Microbe Interact. 18:169–78 [Google Scholar]
  54. Jackson RB, Mooney HA, Schulze ED. 54.  1997. A global budget for fine root biomass, surface area, and nutrient contents. PNAS 94:7362–66 [Google Scholar]
  55. James EK, Olivares FL. 55.  1998. Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophs. Crit. Rev. Plant Sci. 17:77–119 [Google Scholar]
  56. Jones JD, Dangl JL. 56.  2006. The plant immune system. Nature 444:323–29 [Google Scholar]
  57. Kallmeyer J, Pockalny R, Adhikari RR, Smith DC, D'Hondt S. 57.  2012. Global distribution of microbial abundance and biomass in subseafloor sediment. PNAS 109:16213–16 [Google Scholar]
  58. Kloepper JW, Beauchamp CJ. 58.  1992. A review of issues related to measuring colonization of plant roots by bacteria. Can. J. Microbiol. 38:1219–32 [Google Scholar]
  59. Knauth S, Hurek T, Brar D, Reinhold-Hurek B. 59.  2005. Influence of different Oryza cultivars on expression of nifH gene pools in roots of rice. Environ. Microbiol. 7:1725–33 [Google Scholar]
  60. Kniskern JM, Traw MB, Bergelson J. 60.  2007. Salicylic acid and jasmonic acid signaling defense pathways reduce natural bacterial diversity on Arabidopsis thaliana. Mol. Plant-Microbe Interact. 20:1512–22 [Google Scholar]
  61. Krause A, Leyser B, Miché L, Battistoni F, Reinhold-Hurek B. 61.  2011. Exploring the function of alcohol dehydrogeanses during the endophytic life of Azoarcus sp. strain BH72. Mol. Plant-Microbe Interact. 24:1325–32 [Google Scholar]
  62. Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G. 62.  2004. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16:3496–507 [Google Scholar]
  63. Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J. 63.  et al. 2012. Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90 [Google Scholar]
  64. Lynch MD. 64.  1982. Interactions between bacteria and plants in the root environment. Bacteria and Plants ME Rhodes-Robert, FA Skinner 1–23 New York: Academic [Google Scholar]
  65. Mano H, Morisaki H. 65.  2008. Endophytic bacteria in the rice plant. Microbes Environ. 23:109–17 [Google Scholar]
  66. Marilley L, Aragno M. 66.  1999. Phylogenetic diversity of bacterial communities differing in degree of proximity of Lolium perenne and Trifolium repens roots. Appl. Soil Ecol. 13:127–36 [Google Scholar]
  67. Martinez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML. 67.  2010. Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J. Soil Sci. Plant Nutr. 10:293–319 [Google Scholar]
  68. McClung CR, Van Berkum P, Davis RE, Sloger C. 68.  1983. Enumeration and localization of N2-fixing bacteria associated with roots of Spartina alterniflora Loisel. Appl. Environ. Microbiol. 45:1914–20 [Google Scholar]
  69. Micallef S, Colón-Carmona A. 69.  2013. Genetic and developmental control of rhizosphere bacterial communities. Molecular Microbial Ecology of the Rhizosphere 1 FJ de Bruijn 257–63 Chichester, UK: Wiley [Google Scholar]
  70. Miché L, Balandreau J. 70.  2001. Effects of rice seed surface sterilization with hypochlorite on inoculated Burkholderia vietnamiensis. Appl. Environ. Microbiol. 67:3046–52 [Google Scholar]
  71. Miché L, Battistoni F, Gemmer S, Belghazi M, Reinhold-Hurek B. 71.  2006. Upregulation of jasmonate-inducible defense proteins and differential colonization of roots of Oryza sativa cultivars with the endophyte Azoarcus sp. Mol. Plant-Microbe Interact. 19:502–11 [Google Scholar]
  72. Mitter B, Petric A, Shin MW, Chain PS, Hauberg-Lotte L. 72.  et al. 2013. Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. Front. Plant Sci. 4:120 [Google Scholar]
  73. Normander B, Prosser JI. 73.  2000. Bacterial origin and community composition in the barley phytosphere as a function of habitat and presowing conditions. Appl. Environ. Microbiol. 66:4372–77 [Google Scholar]
  74. Ofek-Lalzar M, Sela N, Goldman-Voronov M, Green SJ, Hadar Y, Minz D. 74.  2014. Niche and host-associated functional signatures of the root surface microbiome. Nat. Commun. 5:4950 [Google Scholar]
  75. Ofek M, Voronov-Goldman M, Hadar Y, Minz D. 75.  2014. Host signature effect on plant root-associated microbiomes revealed through analyses of resident versus active communities. Environ. Microbiol. 16:2157–67 [Google Scholar]
  76. Oh YM, Kim M, Lee-Cruz L, Lai-Hoe A, Go R. 76.  et al. 2012. Distinctive bacterial communities in the rhizoplane of four tropical tree species. Microb. Ecol. 64:1018–27 [Google Scholar]
  77. Parniske M. 77.  2008. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat. Rev. Microbiol. 6:763–75 [Google Scholar]
  78. Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG. 78.  et al. 2013. Diversity and heritability of the maize rhizosphere microbiome under field conditions. PNAS 110:6548–53 [Google Scholar]
  79. Pieterse CM, van der Does D, Zamioudis C, Leon-Reyes A, van Wees SC. 79.  2012. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 28:489–521 [Google Scholar]
  80. Piques M, Schulze WX, Höhne M, Usadel B, Gibon Y. 80.  et al. 2009. Ribosome and transcript copy numbers, polysome occupancy and enzyme dynamics in Arabidopsis. Mol. Syst. Biol. 5:314–31 [Google Scholar]
  81. Prince AM, Andrus L. 81.  1992. PCR: how to kill unwanted DNA. Biotechniques 12:358–60 [Google Scholar]
  82. Reinhold-Hurek B, Hurek T. 82.  1998. Interactions of gramineous plants with Azoarcus spp. and other diazotrophs: identification, localization and perspectives to study their function. Crit. Rev. Plant Sci. 17:29–54 [Google Scholar]
  83. Reinhold-Hurek B, Hurek T. 83.  1998. Life in grasses: diazotrophic endophytes. Trends Microbiol. 6:139–44 [Google Scholar]
  84. Reinhold-Hurek B, Hurek T. 84.  2006. Endophytic associations of Azoarcus spp. Associative and Endophytic Nitrogen-Fixing Bacteria and Cyanobacterial Associations C Elmerich, WE Newton 191–210 Berlin: Springer [Google Scholar]
  85. Reinhold-Hurek B, Hurek T. 85.  2011. Living inside plants: bacterial endophytes. Curr. Opin. Plant Biol. 14:435–43 [Google Scholar]
  86. Reinhold-Hurek B, Maes T, Gemmer S, Van Montagu M, Hurek T. 86.  2006. An endoglucanase is involved in infection of rice roots by the not-cellulose-metabolizing endophyte Azoarcus sp. BH72. Mol. Plant-Microbe Interact. 19:181–88 [Google Scholar]
  87. Reinhold B, Hurek T, Niemann E-G, Fendrik I. 87.  1986. Close association of Azospirillum and diazotrophic rods with different root zones of Kallar grass. Appl. Environ. Microbiol. 52:520–26 [Google Scholar]
  88. Robinson D. 88.  2007. Implications of a large global root biomass for carbon sink estimates and for soil carbon dynamics. Proc. R. Soc. B 274:2753–59 [Google Scholar]
  89. Rosenblueth M, Martinez-Romero E. 89.  2006. Bacterial endophytes and their interactions with hosts. Mol. Plant-Microbe Interact. 19:827–37 [Google Scholar]
  90. Rousk J, Bååth E. 90.  2011. Growth of saprotrophic fungi and bacteria in soil. FEMS Microbiol. Ecol. 78:17–30 [Google Scholar]
  91. Sakai M, Matsuka A, Komura T, Kanazawa S. 91.  2004. Application of a new PCR primer for terminal restriction fragment length polymorphism analysis of the bacterial communities in plant roots. J. Microbiol. Methods 59:81–89 [Google Scholar]
  92. Saugier B, Roy J, Mooney HA. 92.  2001. Estimations of global terrestrial productivity: converging toward a single number. Terrestrial Global Productivity J Roy, B Saugier, HA Mooney 543–57 San Diego: Academic [Google Scholar]
  93. Schreiter S, Ding GC, Heuer H, Neumann G, Sandmann M. 93.  et al. 2014. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce. Front. Microbiol. 5:144 [Google Scholar]
  94. Sessitsch A, Gyamfi S, Stralis-Pavese N, Weilharter A, Pfeifer U. 94.  2002. RNA isolation from soil for bacterial community and functional analysis: evaluation of different extraction and soil conservation protocols. J. Microbiol. Methods 51:171–79 [Google Scholar]
  95. Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A. 95.  et al. 2011. Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol. Plant-Microbe Interact. 25:28–36 [Google Scholar]
  96. Shidore T, Dinse T, Öhrlein J, Becker A, Reinhold-Hurek B. 96.  2012. Transcriptomic analysis of responses to exudates reveal genes required for rhizosphere competence of the endophyte Azoarcus sp. strain BH72. Environ. Microbiol. 14:2775–87 [Google Scholar]
  97. Smalla K, Wieland G, Buchner A, Zock A, Parzy J. 97.  et al. 2001. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl. Environ. Microbiol. 67:4742–51 [Google Scholar]
  98. Starkey RL. 98.  1938. Some influences of the development of higher plants upon the microorganisms in the soil: VI. Microscopic examination of the rhizosphere. Soil Sci. 45:207–49 [Google Scholar]
  99. Stoddard SF, Smith BJ, Hein R, Roller BR, Schmidt TM. 99.  2015. rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res. 43:D593–98 [Google Scholar]
  100. Sun L, Qiu F, Zhang X, Dai X, Dong X, Song W. 100.  2008. Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb. Ecol. 55:415–24 [Google Scholar]
  101. Tan Z, Hurek T, Reinhold-Hurek B. 101.  2003. Effect of N-fertilization, plant genotype and environmental conditions on nifH gene pools in roots of rice. Environ. Microbiol. 5:1009–15 [Google Scholar]
  102. Tanaka K, Choi J, Cao Y, Stacey G. 102.  2014. Extracellular ATP acts as a damage-associated molecular pattern (DAMP) signal in plants. Front. Plant Sci. 5:446 [Google Scholar]
  103. Torres MS, White JF, Zhang X, Hinton DM, Bacon CW. 103.  2012. Endophyte-mediated adjustments in host morphology and physiology and effects on host fitness traits in grasses. Fungal Ecol. 5:322–30 [Google Scholar]
  104. Torsvik V, Ovreas L, Thingstad TF. 104.  2002. Prokaryotic diversity–magnitude, dynamics, and controlling factors. Science 296:1064–66 [Google Scholar]
  105. Trdá L, Fernandez O, Boutrot F, Héloir MC, Kelloniemi J. 105.  et al. 2014. The grapevine flagellin receptor VvFLS2 differentially recognizes flagellin-derived epitopes from the endophytic growth-promoting bacterium Burkholderia phytofirmans and plant pathogenic bacteria. New Phytol. 201:1371–84 [Google Scholar]
  106. Trujillo ME, Bacigalupe R, Pujic P, Igarashi Y, Benito P. 106.  et al. 2014. Genome features of the endophytic actinobacterium Micromonospora lupini strain Lupac 08: on the process of adaptation to an endophytic life style?. PLOS ONE 9:e108522 [Google Scholar]
  107. Turner TR, James EK, Poole PS. 107.  2013. The plant microbiome. Genome Biol. 14:209 [Google Scholar]
  108. Turner TR, Ramakrishnan K, Walshaw J, Heavens D, Alston M. 108.  et al. 2013. Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J. 7:2248–58 [Google Scholar]
  109. van der Lelie D, Taghavi S, Monchy S, Schwender J, Miller L. 109.  et al. 2009. Poplar and its bacterial endophytes: coexistence and harmony. Crit. Rev. Plant Sci. 28:346–58 [Google Scholar]
  110. Van Overbeek L, van Doorn J, Wichers J, van Amerongen A, van Roermund H, Willemsen P. 110.  2014. The arable ecosystem as battleground for emergence of new human pathogens. Front. Microbiol. 5:104 [Google Scholar]
  111. Venkateshwaran M, Volkening JD, Sussman MR, Ané JM. 111.  2013. Symbiosis and the social network of higher plants. Curr. Opin. Plant Biol. 16:118–27 [Google Scholar]
  112. Watt M, Hugenholtz P, White R, Vinall K. 112.  2006. Numbers and locations of native bacteria on field-grown wheat roots quantified by fluorescence in situ hybridization (FISH). Environ. Microbiol. 8:871–84 [Google Scholar]
  113. Whitman WB, Coleman DC, Wiebe WJ. 113.  1998. Prokaryotes: the unseen majority. PNAS 95:6578–83 [Google Scholar]
  114. Yang CH, Crowley DE. 114.  2000. Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl. Environ. Microbiol. 66:345–51 [Google Scholar]
  115. Yang D, Oyaizu Y, Oyaizu H, Olsen GJ, Woese CR. 115.  1985. Mitochondrial origins. PNAS 82:4443–47 [Google Scholar]
  116. Yu Y, Lee C, Kim J, Hwang S. 116.  2005. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotech. Bioeng. 89:670–79 [Google Scholar]
  117. Zamioudis C, Pieterse CM. 117.  2012. Modulation of host immunity by beneficial microbes. Mol. Plant-Microbe Interact. 25:139–50 [Google Scholar]
  118. Zúniga A, Poupin MJ, Donoso R, Ledger T, Guiliani N. 118.  et al. 2013. Quorum sensing and indole-3-acetic acid degradation play a role in colonization and plant growth promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN. Mol. Plant-Microbe Interact. 26:546–53 [Google Scholar]
/content/journals/10.1146/annurev-phyto-082712-102342
Loading
/content/journals/10.1146/annurev-phyto-082712-102342
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error