1932

Abstract

Grapevine leafroll is the most complex and intriguing viral disease of grapevine ( spp.). Several monopartite closteroviruses (family ) from grapevines have been molecularly characterized, yet their role in disease etiology is not completely resolved. Hence, these viruses are currently designated under the umbrella term of Grapevine leafroll–associated viruses (GLRaVs). This review examines our current understanding of the genetically divergent GLRaVs and highlights the emerging picture of several unique aspects of the leafroll disease pathosystem. A systems biology approach using contemporary technologies in molecular biology, -omics, and cell biology aids in exploring the comparative molecular biology of GLRaVs and deciphering the complex network of host-virus-vector interactions to bridge the gap between genomics and phenomics of leafroll disease. In addition, grapevine-infecting closteroviruses have a great potential as designer viruses to pursue functional genomics and for the rational design of novel disease intervention strategies in this agriculturally important perennial fruit crop.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-102313-045946
2015-08-04
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/phyto/53/1/annurev-phyto-102313-045946.html?itemId=/content/journals/10.1146/annurev-phyto-102313-045946&mimeType=html&fmt=ahah

Literature Cited

  1. Abou Ghanem-Sabanadzovic N, Sabanadzovic S, Uyemoto JK, Golino D, Rowhani A. 1.  2010. A putative new ampelovirus associated with grapevine leafroll disease. Arch. Virol. 155:1871–76 [Google Scholar]
  2. Abou Ghanem-Sabanadzovic NA, Sabanadzovic S, Gugerli P, Rowhani A. 2.  2012. Genome organization, serology and phylogeny of Grapevine leafroll-associated viruses 4 and 6: taxonomic implications. Virus Res. 163:120–28 [Google Scholar]
  3. Afoufa-Bastien D, Medici A, Jeauffre J, Coutos-Thevenot P, Lemoine R. 3.  et al. 2010. The Vitis vinifera sugar transporter gene family: phylogenetic overview and macroarray expression profiling. BMC Plant Biol. 10:245 [Google Scholar]
  4. Ainsworth EA, Bush DR. 4.  2011. Carbohydrate export from the leaf: a highly regulated process and target to enhance photosynthesis and productivity. Plant Physiol. 155:64–69 [Google Scholar]
  5. Alabi OJ, Al Rwahnih M, Karthikeyan G, Poojari S, Fuchs M. 5.  et al. 2011. Grapevine leafroll-associated virus 1 occurs as genetically diverse populations. Phytopathology 101:1446–56 [Google Scholar]
  6. Alabi OJ, Gutha LR, Casassa LF, Harbertson J, Mirales M. 6.  et al. 2012. Impacts of grapevine leafroll disease on own-rooted wine grape cultivar in cool climate viticulture. Proc. Congr. Int. Counc. Study Virus Virus-Like Dis. Grapevine (ICVG), 17th, Davis, Calif. Oct. 7–14 170–71 Davis, CA: Found. Plant Serv. [Google Scholar]
  7. Alabi OJ, Zheng Y, Jagadeeswaran G, Sunkar R, Naidu RA. 7.  2012. High-throughput sequence analysis of small RNAs in grapevine (Vitis vinifera L.) affected by grapevine leafroll disease. Mol. Plant Pathol. 13:1060–76 [Google Scholar]
  8. Almeida RPP, Daane KM, Bell VA, Blaisdell GK, Cooper ML. 8.  et al. 2013. Ecology and management of grapevine leafroll disease. Front. Microbiol. 4:94 [Google Scholar]
  9. Al Rwahnih M, Dolja VV, Daubert S, Koonin EV, Rowhani A. 9.  2012. Genomic and biological analysis of Grapevine leafroll-associated virus 7 reveals a possible new genus within the family Closteroviridae. Virus Res. 163:302–9 [Google Scholar]
  10. Alzhanova DV, Hagiwara Y, Peremyslov VV, Dolja VV. 10.  2000. Genetic analysis of the cell-to-cell movement of beet yellows closterovirus. Virology 268:192–200 [Google Scholar]
  11. Alzhanova DV, Prokhnevsky AI, Peremyslov VV, Dolja VV. 11.  2007. Virion tails of Beet yellows virus: coordinated assembly by three structural proteins. Virology 359:220–26 [Google Scholar]
  12. Amari K, Franck A, Heinlein M. 12.  2012. Manipulation of plant host susceptibility: an emerging role for viral movement proteins?. Front. Plant Sci. 3:10 [Google Scholar]
  13. Atallah S, Gomez M, Fuchs M, Martinson T. 13.  2012. Economic impact of grapevine leafroll disease on Vitis vinifera cv. Cabernet franc in Finger Lakes vineyards of New York. Am. J. Enol. Vitic. 63:73–79 [Google Scholar]
  14. Axtell MJ. 14.  2013. Classification and comparison of small RNAs from plants. Annu. Rev. Plant Biol. 64:137–59 [Google Scholar]
  15. Bacilieri R, Lacombe T, Cunff L, Di Vecchi-Staraz M, Laucou V. 15.  et al. 2013. Genetic structure in cultivated grapevines is linked to geography and human selection. BMC Plant Biol. 13:25 [Google Scholar]
  16. Basso MF, Fajardo TVM, Santos HP, Guerra CC, Ayub RA, Nickel O. 16.  2010. Leaf physiology and enologic grape quality of virus-infected plants. Trop. Plant Pathol. 35:351–59 [Google Scholar]
  17. Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V. 17.  2013. Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9:39 [Google Scholar]
  18. Bergua M, Zwart MP, El-Mohtar C, Shilts T, Elena SF, Folimonova SY. 18.  2014. A viral protein mediates superinfection exclusion at the whole-organism level but is not required for exclusion at the cellular level. J. Virol. 88:11327–38 [Google Scholar]
  19. Bertamini M, Muthuchelian K, Nedunchezhian N. 19.  2004. Effect of grapevine leafroll on the photosynthesis of field grown grapevine plants (Vitis vinifera L. cv. Lagrein). J. Phytopathol. 152:145–52 [Google Scholar]
  20. Bertamini M, Nedunchezhian N. 20.  2002. Leaf age effects on chlorophyll, Rubisco, photosynthetic electron transport activities and thylakoid membrane protein in field grown grapevine leaves. J. Plant Physiol. 159:799–803 [Google Scholar]
  21. Bester R, Maree HJ, Burger JT. 21.  2012. Complete nucleotide sequence of a new strain of grapevine leafroll-associated virus 3 in South Africa. Arch. Virol. 157:1815–19 [Google Scholar]
  22. Bologna NG, Voinnet O. 22.  2014. The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu. Rev. Plant Biol. 65:473–503 [Google Scholar]
  23. Boss PK, Buckeridge EJ, Poole A, Thomas MR. 23.  2003. New insights into grapevine flowering. Funct. Plant Biol. 30:593–606 [Google Scholar]
  24. Braun DM. 24.  2012. SWEET! The pathway is complete. Science 335:173–74 [Google Scholar]
  25. Brosnan CA, Voinnet O. 25.  2011. Cell-to-cell and long-distance siRNA movement in plants: mechanisms and biological implications. Curr. Opin. Plant Biol. 14:580–87 [Google Scholar]
  26. Burgyán J, Havelda Z. 26.  2011. Viral suppressors of RNA silencing. Trends Plant Sci. 16:265–72 [Google Scholar]
  27. Cao M, Du P, Wang X, Yu Y-Q, Diu Y-H. 27.  et al. 2014. Virus infection triggers widespread silencing of host genes by a distinct class of endogenous siRNAs in Arabidopsis. Proc. Natl. Acad. Sci. USA 111:14613–18 [Google Scholar]
  28. Carmona MJ, Chaïb J, Martínez-Zapater JM, Thomas MR. 28.  2008. A molecular genetic perspective of reproductive development in grapevine. J. Exp. Bot. 59:2579–96 [Google Scholar]
  29. Castellano MA, Abou-Ghanem N, Choueiri E, Martelli GP. 29.  2000. Ultrastructure of Grapevine leafroll-associated virus 2 and 7 infections. J. Plant Pathol. 82:9–15 [Google Scholar]
  30. Charles JG, Cohen D, Walker JTS, Forgie SA, Bell VA, Breen KC. 30.  2006. A review of the ecology of Grapevine leafroll-associated virus type 3 (GLRaV-3). N. Z. Plant Prot. 59:330–37 [Google Scholar]
  31. Chen AYS, Walker GP, Carter D, Ng JCK. 31.  2011. A virus capsid component mediates virion retention and transmission by its insect vector. Proc. Natl. Acad. Sci. USA 108:16777–82 [Google Scholar]
  32. Chiba M, Reed JC, Prokhnevsky AI, Chapman EJ, Mawassi M. 32.  et al. 2006. Diverse suppressors of RNA silencing enhance agroinfection by a viral replicon. Virology 346:7–14 [Google Scholar]
  33. Coombe BG, McCarthy MG. 33.  2000. Dynamics of grape berry growth and physiology of ripening. Aust. J. Grape Wine Res. 6:131–35 [Google Scholar]
  34. Culver JN, Padmanabhan MS. 34.  2007. Virus-induced disease: altering host physiology one interaction at a time. Annu. Rev. Phytopathol. 45:221–43 [Google Scholar]
  35. Dal Santo S, Tornielli GB, Zenoni S, Fasoli M, Farina L. 35.  et al. 2013. The plasticity of the grapevine berry transcriptome. Genome Biol. 14:R54 [Google Scholar]
  36. Dawson WO. 36.  2010. Molecular genetics of Citrus tristeza virus. Citrus tristeza virus Complex and Tristeza Diseases AV Karasev, ME Hilf 53–72 St. Paul, MN: Am. Phytopathol. Soc. [Google Scholar]
  37. Dawson WO, Folimonova SY. 37.  2013. Virus-based transient expression vectors for woody crops: a new frontier for vector design and use. Annu. Rev. Phytopathol. 51:321–37 [Google Scholar]
  38. Dawson WO, Garnsey SM, Tatineni S, Folimonova SY, Harper SJ, Gowda S. 38.  2013. Citrus tristeza virus-host interactions. Front. Microbiol. 4:88 [Google Scholar]
  39. Dolja VV. 39.  2003. Beet yellows virus: the importance of being different. Mol. Plant Pathol. 4:91–98 [Google Scholar]
  40. Dolja VV, Koonin EV. 40.  2013. The closterovirus-derived gene expression and RNA interference vectors as tools for research and plant biotechnology. Front. Microbiol. 4:83 [Google Scholar]
  41. Dolja VV, Kreuze JF, Valkonen JPT. 41.  2006. Comparative and functional genomics of closteroviruses. Virus Res. 117:38–51 [Google Scholar]
  42. Domingo E, Martin V, Perales C, Grande-Perez A, Garcia-Arriaza J, Arias A. 42.  2006. Viruses as quasispecies: biological implications. Curr. Top. Microb. Immunol. 299:51–82 [Google Scholar]
  43. Dress AWM, Huson DH. 43.  2004. Constructing splits graphs. IEEE/ACM Trans. Comput. Biol. Bioinform. 1:109–15 [Google Scholar]
  44. Elena SF, Carrera J, Rodrigo G. 44.  2011. A systems biology approach to the evolution of plant-virus interactions. Curr. Opin. Plant Biol. 14:372–77 [Google Scholar]
  45. El-Mohtar C, Dawson WO. 45.  2014. Exploring the limits of vector construction based on Citrus tristeza virus. Virology 448:274–83 [Google Scholar]
  46. Endeshaw ST, Sabbatini P, Romanazzi G, Schilder AC, Neri D. 46.  2014. Effects of grapevine leafroll associated virus 3 infection on growth, leaf gas exchange, yield and basic fruit chemistry of Vitis vinifera L. cv. Cabernet Franc. Sci. Hortic. 170:228–36 [Google Scholar]
  47. Espinoza C, Vega A, Medina C, Schlauch K, Cramer G, Arce-Johnson P. 47.  2007. Gene expression associated with compatible viral diseases in grapevine cultivars. Funct. Integr. Genomics 7:95–110 [Google Scholar]
  48. Espinoza C, Medina C, Somerville S, Arce-Johnson P. 48.  2007. Senescence-associated genes induced during compatible viral interactions with grapevine and Arabidopsis. J. Exp. Bot. 58:3197–12 [Google Scholar]
  49. Fasoli M, Dal Santo S, Zenoni S, Tornielli GB, Farina L. 49.  et al. 2012. The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program. Plant Cell 24:3489–505 [Google Scholar]
  50. Fei F, Lyu MD, Li J, Fan ZF, Cheng YQ. 50.  2013. Complete nucleotide sequence of a Chinese isolate of Grapevine leafroll-associated virus 3 reveals a 5′ UTR of 802 nucleotides. Virus Genes 46:182–85 [Google Scholar]
  51. Gale G. 51.  2002. Saving the vine from phylloxera: a never ending battle. Wine: A Scientific Exploration J Sandler, R Pidler 70–91 London: Taylor and Francis [Google Scholar]
  52. Gamalei Y. 52.  1989. Structure and function of leaf minor veins in trees and herbs: a taxonomic review. Trees 3:96–110 [Google Scholar]
  53. Gambette P, Huson DH. 53.  2008. Improved layout of phylogenetic networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 5:472–79 [Google Scholar]
  54. Giribaldi M, Purrotti M, Pacifico D, Santini D, Mannini F. 54.  et al. 2011. A multidisciplinary study on the effects of phloem-limited viruses on the agronomical performance and berry quality of Vitis vinifera cv. Nebbiolo. J. Proteomics 75:306–15 [Google Scholar]
  55. Gouthu S, O'Neal ST, Di Y, Ansarolia M, Megraw M, Deluc LG. 55.  2014. A comparative study of ripening among berries of the grape cluster reveals an altered transcriptional programme and enhanced ripening rate in delayed berries. J. Exp. Bot. 65:5889–902 [Google Scholar]
  56. Gouveia P, Nolasco G. 56.  2012. The p19.7 RNA silencing suppressor from Grapevine leafroll-associated virus 3 shows different levels of activity across phylogenetic groups. Virus Genes 45:333–39 [Google Scholar]
  57. Gowda S, Satyanarayana T, Ayllón MA, Moreno PRF, Dawson WO. 57.  2003. The conserved structures of the 5′ nontranslated region of Citrus tristeza virus are involved in replication and virion assembly. Virology 317:50–64 [Google Scholar]
  58. Gutha LR, Alabi OJ, Naidu RA. 58.  2012. Effects of grapevine leafroll disease on photosynthesis in a red-fruited wine grape cultivar. Proc. Congr. Int. Counc. Study Virus Virus-Like Dis. Grapevine (ICVG), 17th, Davis, Calif. Oct. 7–14 168–69 Davis, CA: Found. Plant Serv. [Google Scholar]
  59. Gutha LR, Casassa LF, Harbertson JF, Naidu RA. 59.  2010. Modulation of flavonoid biosynthetic pathway genes and anthocyanins due to virus infection in grapevine (Vitis vinifera L.) leaves. BMC Plant Biol. 10:187 [Google Scholar]
  60. Hajeri S, Killiny N, El-Mohtar C, Dawson WO, Gowda S. 60.  2014. Citrus tristeza virus–based RNAi in citrus plants induces gene silencing in Diaphorina citri, a phloem-sap sucking insect vector of citrus greening disease (Huanglongbing). J. Biotechnol. 176:42–49 [Google Scholar]
  61. Haritatos E, Medville R, Turgeon R. 61.  2000. Minor vein structure and sugar transport in Arabidopsis thaliana. Planta 211:105–11 [Google Scholar]
  62. Harper SJ, Cowell SJ, Robertson CJ, Dawson WO. 62.  2014. Differential tropism in roots and shoots infected by Citrus tristeza virus. Virology 460–61:91–99 [Google Scholar]
  63. He F, Mu L, Yan GL, Liang NN, Pan QH. 63.  et al. 2010. Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules 15:9057–91 [Google Scholar]
  64. Hunter JJ, Visser JH. 64.  1988. Distribution of 14C-photosynthates in the shoot of Vitis vinifera L. cv. Cabernet Sauvignon. I. The effect of leaf position and developmental stage of the vine. South Afr. J. Enol. Vitic. 9:3–9 [Google Scholar]
  65. Huson DH, Bryant D. 65.  2006. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23:254–67 [Google Scholar]
  66. Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C. 66.  et al. 2007. French-Italian public consortium for grapevine genome characterization. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–67 [Google Scholar]
  67. Jarugula S, Alabi OJ, Martin RR, Naidu RA. 67.  2010. Genetic variability of natural populations of Grapevine leafroll-associated virus 2 in Pacific Northwest vineyards. Phytopathology 100:698–707 [Google Scholar]
  68. Jarugula S, Gowda S, Dawson WO, Naidu RA. 68.  2010. 3′-coterminal subgenomic RNAs and putative cis-acting elements of Grapevine leafroll-associated virus 3 reveals “unique” features of gene expression. Virol. J. 7:180 [Google Scholar]
  69. Jarugula S, Gowda S, Dawson WO, Naidu RA. 69.  2012. Development of full-length infectious cDNA clone of Grapevine leafroll-associated virus 3. Proc. Congr. Int. Counc. Study Virus Virus-Like Dis. Grapevine (ICVG), 17th, Davis, Calif. Oct. 7–14 70–71 Davis, CA: Found. Plant Serv. [Google Scholar]
  70. Jooste AEC, Maree HJ, Bellstedt DU, Goszczynski DE, Pietersen G, Burger JT. 70.  2010. Three genetic grapevine leafroll-associated virus 3 variants identified from South African vineyards show high variability in their 5′ UTR. Arch. Virol. 155:1997–2006 [Google Scholar]
  71. Jridi C, Martin JF, Marie-Jeanne V, Labonne G, Blanc S. 71.  2006. Distinct viral populations differentiate and evolve independently in a single perennial host plant. J. Virol. 80:2349–57 [Google Scholar]
  72. Karasev AV. 72.  2000. Genetic diversity and evolution of closteroviruses. Annu. Rev. Phytopathol. 38:293–324 [Google Scholar]
  73. Karasev AV, Agranovsky AA, Rogov VV, Miroshnichenko NA, Dolja VV, Atabekov JG. 73.  1989. Virion RNA of beet yellows closterovirus: cell-free translation and some properties. J. Gen. Virol. 70:241–45 [Google Scholar]
  74. Katoh K, Standley DM. 74.  2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30:772–80 [Google Scholar]
  75. Klaassen V, Mayhew D, Fisher D, Falk BW. 75.  1996. In vitro transcripts from cloned cDNAs of the lettuce infectious yellows closterovirus bipartite genomic RNAs are competent for replication in Nicotiana benthamiana protoplasts. Virology 222:169–75 [Google Scholar]
  76. Komar V, Vigne E, Demangeat G, Lemaire O, Fuchs M. 76.  2010. Comparative performance analysis of virus-infected Vitis vinifera cv. Savagnin rose grafted onto three rootstocks. Am. J. Enol. Vitic. 61:68–73 [Google Scholar]
  77. Kurth EG, Peremyslov VV, Prokhnevsky AI, Kasschau KD, Miller M. 77.  et al. 2012. Virus-derived gene expression and RNA interference vector for grapevine. J. Virol. 86:6002–9 [Google Scholar]
  78. Kyselakova H, Prokopova J, Naus J, Novak O, Navratil M. 78.  et al. 2011. Photosynthetic alterations of pea leaves infected systemically by Pea enation mosaic virus: a coordinated decrease in efficiencies of CO2 assimilation and photosystem II photochemistry. Plant Physiol. Biochem. 49:1279–89 [Google Scholar]
  79. Laimer M, Lemaire O, Herrbach E, Goldschmidt V, Minafra A. 79.  et al. 2009. Resistance to viruses, phytoplasmas and their vectors in the grapevine in Europe: a review. J. Plant Pathol. 91:7–23 [Google Scholar]
  80. Lebon G, Wojnarowiez G, Holzapfel B, Fontaine F, Vaillant-Gaveau N, Clément C. 80.  2008. Sugars and flowering in the grapevine (Vitis vinifera L.). J. Exp. Bot. 59:2565–78 [Google Scholar]
  81. Lecourieux F, Kappel C, Lecourieux D, Serrano A, Torres E. 81.  et al. 2014. An update on sugar transport and signalling in grapevine. J. Exp. Bot. 65:821–32 [Google Scholar]
  82. Lee J, Keller KE, Rennaker C, Martin RR. 82.  2009. Influence of grapevine leafroll associated viruses (GLRaV-2 and -3) on the fruit composition of Oregon Vitis vinifera L. cv. Pinot noir: free amino acids, sugars, and organic acids. Food Chem. 117:99–105 [Google Scholar]
  83. Lee J, Martin RR. 83.  2009. Influence of grapevine leafroll associated viruses (GLRaV-2 and -3) on the fruit composition of Oregon Vitis vinifera L. cv. Pinot noir: phenolics. Food Chem. 112:889–96 [Google Scholar]
  84. Le Maguet J, Beuve M, Herrbach E, Lemaire O. 84.  2012. Transmission of six ampeloviruses and two vitiviruses to grapevine by Phenacoccus aceris. Phytopathology 102:717–23 [Google Scholar]
  85. Liu Y-P, Peremyslov VV, Medina V, Dolja VV. 85.  2009. Tandem leader proteases of Grapevine leafroll-associated virus 2: host-specific functions in the infection cycle. Virology 383:291–99 [Google Scholar]
  86. Lu R, Folimonov AS, Shintaku M, Li WX, Falk BW. 86.  et al. 2004. Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proc. Natl. Acad. Sci. USA 101:15742–47 [Google Scholar]
  87. Maree HJ, Almeida RPP, Bester R, Chooi KM, Cohen D. 87.  et al. 2013. Grapevine leafroll-associated virus 3. Front. Microbiol. 4:82 [Google Scholar]
  88. Maree HJ, Freeborough M-J, Burger JT. 88.  2008. Complete nucleotide sequence of a South African isolate of Grapevine leafroll-associated virus 3 reveals a 5′ UTR of 737 nucleotides. Arch. Virol. 153:755–57 [Google Scholar]
  89. Maree HJ, Gardner HFJ, Freeborough M-J, Burger JT. 89.  2010. Mapping of the 5′ terminal nucleotides of Grapevine leafroll-associated virus 3 sgRNAs. Virus Res. 151:252–55 [Google Scholar]
  90. Maree HJ, Pirie MD, Bester R, Oosthuizen K, Burger JT. 89a.  2015. Phylogenomic analysis reveals deep divergence and recombination in an economically important grapevine virus. PLOS ONE 10:e0126819 [Google Scholar]
  91. Martelli GP. 90.  2000. Major graft-transmissible diseases of grapevines: nature, diagnosis, and sanitation. Am. J. Enol. Vitic. 51:231–36 [Google Scholar]
  92. Martelli GP. 91.  2014. Directory of virus and virus-like diseases of the grapevine and their agents. J. Plant Pathol. 96:Suppl. 11–136 [Google Scholar]
  93. Martelli GP, Abou Ghanem-Sabanadzovic N, Agranowsky AA, Al Rawhanih M, Dolja VV. 92.  et al. 2012. Taxonomic revision of the family Closteroviridae with special reference to the grapevine leafroll-associated member of the genus Ampelovirus and the putative species unassigned to the family. J. Plant Pathol. 94:7–19 [Google Scholar]
  94. Martelli GP, Agranovsky AA, Bar-Joseph M, Boscia D, Candresse T. 93.  et al. 2002. ICTV Study Group on closteroviruses. The family Closteroviridae revised. Arch. Virol. 147:2039–44 [Google Scholar]
  95. Matus JT, Aquea F, Arce-Johnson P. 94.  2008. Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes. BMC Plant Biol. 8:83 [Google Scholar]
  96. Miozzi L, Gambino G, Burgyan J, Pantaleo V. 95.  2013. Genome-wide identification of viral and host transcripts targeted by viral siRNAs in Vitis vinifera. Mol. Plant Pathol. 14:30–43 [Google Scholar]
  97. Mittler R. 96.  2006. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11:15–19 [Google Scholar]
  98. Molnar A, Melnyk C, Baulcombe DC. 97.  2011. Silencing signals in plants: a long journey for small RNAs. Genome Biol. 12:215 [Google Scholar]
  99. Motomura Y. 98.  1993. 14C-assimilate partitioning in grapevine shoots: effects of shoot pinching, girdling of shoot, and leaf halving on assimilates partitioning from leaves into clusters. Am. J. Enol. Vitic. 44:1–7 [Google Scholar]
  100. Moutinho-Pereira J, Correia CM, Gonçalves B, Bacelar EA, Coutinho JF. 99.  et al. 2012. Impacts of leafroll-associated viruses (GLRaV-1 and -3) on the physiology of the Portuguese grapevine cultivar “Touriga Nacional” growing under field conditions. Ann. Appl. Biol. 160:237–49 [Google Scholar]
  101. Mullins MG, Bouquet A, Williams LE. 100.  1992. Biology of the Grapevine Cambridge: Cambridge Univ. Press
  102. Myles SBA, Owens CL, Brown PJ, Grassi F, Aradhya MK. 101.  et al. 2011. Genetic structure and domestication history of the grape. Proc. Natl. Acad. Sci. USA 108:3530–35 [Google Scholar]
  103. Naidu RA, Rowhani A, Fuchs M, Golino D, Martelli GP. 102.  2014. Grapevine leafroll: a complex viral disease affecting a high-value fruit crop. Plant Dis. 98:1172–85 [Google Scholar]
  104. Namba S, Yamashita S, Doi Y, Yora K, Terai Y, Yano R. 103.  1979. Grapevine leafroll virus, a possible member of closteroviruses. Ann. Phytopathol. Soc. Jpn. 45:497–502 [Google Scholar]
  105. Navarro B, Pantaleo V, Gisel A, Moxon S, Dalmay T. 104.  et al. 2009. Deep sequencing of viroid-derived small RNAs from grapevine provides new insights on the role of RNA silencing in plant–viroid interaction. PLOS ONE 4:e7686 [Google Scholar]
  106. Ng JCK, Falk BW. 105.  2006. Virus-vector interactions mediating nonpersistent and semipersistent plant virus transmission. Annu. Rev. Phytopathol. 44:183–212 [Google Scholar]
  107. Oliver JE, Fuchs M. 106.  2011. Tolerance and resistance to viruses and their vectors in Vitis sp.: a virologist's perspective of the literature. Am. J. Enol. Vitic. 62:438–51 [Google Scholar]
  108. Pallas V, Garcia JA. 107.  2011. How do plant viruses induce disease? Interactions and interference with host components. J. Gen. Virol. 92:2691–705 [Google Scholar]
  109. Pantaleo V, Saldarelli P, Miozzi L, Giampetruzzi A, Gisel A. 108.  et al. 2010. Deep sequencing analysis of viral short RNAs from an infected Pinot Noir grapevine. Virology 408:49–56 [Google Scholar]
  110. Peremyslov VV, Andreev IA, Prokhnevsky AI, Duncan GH, Taliansky ME, Dolja VV. 109.  2004. Complex molecular architecture of beet yellows virus particles. Proc. Natl. Acad. Sci. USA 101:5030–35 [Google Scholar]
  111. Peremyslov VV, Hagiwara Y, Dolja VV. 110.  1999. HSP70 homolog functions in cell-to-cell movement of a plant virus. Proc. Natl. Acad. Sci. USA 96:14771–76 [Google Scholar]
  112. Peremyslov VV, Pan Y, Dolja VV. 111.  2004. Movement protein of a Closterovirus is a type II integral trans membrane protein localized to the endoplasmic reticulum. J. Virol. 78:3704–9 [Google Scholar]
  113. Poojari S, Alabi OJ, Naidu RA. 112.  2013. Molecular characterization and impacts of a strain of Grapevine leafroll-associated virus 2 causing asymptomatic infection in a wine grape cultivar. Virol. J. 10:324 [Google Scholar]
  114. Postnikova OA, Nemchinov LG. 113.  2012. Comparative analysis of microarray data in Arabidopsis transcriptome during compatible interactions with plant viruses. Virol. J. 9:101 [Google Scholar]
  115. Prokhnevsky AI, Peremyslov VV, Napuli AJ, Dolja VV. 114.  2002. Interaction between long-distance transport factor and Hsp70-related movement protein of beet yellows virus. J. Virol. 76:11003–11 [Google Scholar]
  116. Pumplin N, Voinnet O. 115.  2013. RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nat. Rev. Microbiol. 11:745–60 [Google Scholar]
  117. Rayapati AN, O'Neil S, Walsh D. 116.  2008. Grapevine leafroll disease Wash. State Univ. Ext. Bull., Wash. State Univ., Pullman, WA. http://cru.cahe.wsu.edu/CEPublications/eb2027e/eb2027e.pdf
  118. Rahoutei J, García-Luque I, Barón M. 117.  2000. Inhibition of photosynthesis by viral infection: effect on PSII structure and function. Physiol. Plant 110:286–92 [Google Scholar]
  119. Rennie EA, Turgeon R. 118.  2009. A comprehensive picture of phloem loading strategies. Proc. Natl. Acad. Sci. USA 106:14162–67 [Google Scholar]
  120. Reed JC, Kasschau KD, Prokhnevsky AI, Gopinath K, Pogue GP. 119.  et al. 2003. Suppressor of RNA silencing encoded by Beet yellows virus. Virology 306:203–09 [Google Scholar]
  121. Rubio L, Guerri J, Moreno P. 120.  2013. Genetic variability and evolutionary dynamics of viruses of the family Closteroviridae. Front. Microbiol. 4:151 [Google Scholar]
  122. Sampol B, Bota J, Riera D, Medrano H, Flexas J. 121.  2003. Analysis of the virus-induced inhibition of photosynthesis in malmsey grapevines. New Phytol. 160:403–12 [Google Scholar]
  123. Satyanarayana T, Gowda S, Ayllon MA, Dawson WO. 122.  2004. Closterovirus bipolar virion: evidence for initiation of assembly by minor coat protein and its restriction to the genomic RNA 5′ region. Proc. Natl. Acad. Sci. USA 101:799–804 [Google Scholar]
  124. Satyanarayana T, Gowda S, Boyko VP, Albiach-Marti MR, Mawassi M. 123.  et al. 1999. An engineered closterovirus RNA replicon and analysis of heterologous terminal sequences for replication. Proc. Natl. Acad. Sci. USA 96:7433–38 [Google Scholar]
  125. Scheu G. 124.  1935. Die Rollkrankheit des Rebstockes. Der Deutsche Weinbau 14:222–23, 345–46, 356–58 [Google Scholar]
  126. Seah YM, Sharma AM, Zhang S, Almeida RPP, Duffy S. 125.  2012. A divergent variant of Grapevine leafroll-associated virus 3 is present in California. Virol. J. 9:235 [Google Scholar]
  127. Shimazaki M, Fujita K, Kobayashi H, Suzuki S. 126.  2011. Pink-colored grape berry is the result of short insertion in intron of color regulatory gene. PLOS ONE 6:e21308 [Google Scholar]
  128. Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P. 127.  2006. Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol. 140:637–46 [Google Scholar]
  129. Solofoharivelo MC, van der Walt AP, Stephan D, Burger JT, Murray SL. 128.  2014. MicroRNAs in fruit trees: discovery, diversity and future research directions. Plant Biol. 16:856–65 [Google Scholar]
  130. Steinhauer DA, Domingo E, Holland JJ. 129.  1992. Lack of evidence for proofreading mechanisms associated with an RNA virus polymerase. Gene 122:281–88 [Google Scholar]
  131. Syller J. 130.  2012. Facilitative and antagonistic interactions between plant viruses in mixed infections. Mol. Plant Pathol. 13:204–21 [Google Scholar]
  132. Syller J. 131.  2014. Biological and molecular events associated with simultaneous transmission of plant viruses by invertebrate and fungal vectors. Mol. Plant Pathol. 15:417–26 [Google Scholar]
  133. Tatineni S, Robertson CJ, Garnsey SM, Dawson WO. 132.  2011. A plant virus evolved by acquiring multiple nonconserved genes to extend its host range. Proc. Natl. Acad. Sci. USA 108:17366–71 [Google Scholar]
  134. This P, Lacombe T, Thomas M. 133.  2004. Historical origins and genetic diversity of wine grapes. Trends Genet. 22:511–19 [Google Scholar]
  135. Tian T, Rubio L, Yeh H-H, Crawford B, Falk BW. 134.  1999. Lettuce infectious yellows virus: in vitro acquisition analysis using partially purified virions and the whitefly Bemisia tabaci. J. Gen. Virol. 80:1111–17 [Google Scholar]
  136. Tsai CW, Daugherty MP, Almeida RPP. 135.  2012. Seasonal dynamics and virus translocation of Grapevine leafroll-associated virus 3 in grapevine cultivars. Plant Pathol. 61:977–85 [Google Scholar]
  137. Tsai CW, Rowhani A, Golino DA, Daane KM, Almeida RPP. 136.  2010. Mealybug transmission of grapevine leafroll viruses: an analysis of virus-vector specificity. Phytopathology 100:830–34 [Google Scholar]
  138. Turgeon R, Wolf S. 137.  2009. Phloem transport: cellular pathways and molecular trafficking. Annu. Rev. Plant Biol. 60:207–21 [Google Scholar]
  139. Vaillant-Gaveau N, Maillard P, Wojnarowiez G, Gross P, Clément C, Fontaine F. 138.  2011. Inflorescence of grapevine (Vitis vinifera L.): a high ability to distribute its own assimilates. J. Exp. Bot. 62:4183–90 [Google Scholar]
  140. Van den Born E, Omelchenko MV, Bekkelund A, Leihne V, Koonin EV. 139.  et al. 2008. Viral AlkB proteins repair RNA damage by oxidative demethylation. Nucleic Acids Res. 36:5451–61 [Google Scholar]
  141. Vega A, Gutierrez RA, Pena-Neira A, Cramer GR, Arce-Johnson P. 140.  2011. Compatible GLRaV-3 viral infection affect berry ripening decreasing sugar accumulation and anthocyanin biosynthesis in Vitis vinifera. Plant Mol. Biol. 77:261–74 [Google Scholar]
  142. Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A. 141.  et al. 2007. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLOS ONE 2:e1326 [Google Scholar]
  143. Visser M, Maree HJ, Rees DJG, Burger JT. 142.  2014. High-throughput sequencing reveals small RNAs involved in ASGV infection. BMC Genomics 15:568 [Google Scholar]
  144. Walker AR, Lee E, Bogs J, McDavid DAJ, Thomas MR, Robinson SP. 143.  2007. White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant J. 49:772–85 [Google Scholar]
  145. Whitham SA, Yang C, Goodin MM. 144.  2006. Global impact: elucidating plant responses to viral infection. Mol. Plant-Microbe Interact. 19:1207–15 [Google Scholar]
  146. Wieczorek P, Obrępalska-Stęplowska A. 145.  2015. Suppress to survive: implication of plant viruses in PTGS. Plant Mol. Biol. Rep. 33:335–46 [Google Scholar]
  147. Xue X-Y, Zhao B, Chao L-M, Chen D-Y, Cui W-R. 146.  et al. 2014. Interaction between two timing microRNAs controls trichome distribution in Arabidopsis. PLOS Genet. 10:e1004266 [Google Scholar]
  148. Yin Z, Chrzanowska M, Michalak K, Ewa Zimnoch-Guzowska E. 147.  2014. Alteration of host-encoded miRNAs in virus infected plants—experimentally verified. Plant Virus-Host Interaction: Molecular Approaches and Viral Evolution RK Gaur, T Hohn, P Sharma 17–55 New York: Academic [Google Scholar]
  149. Zhang XY, Wang XL, Wang XF, Xia GH, Pan QH. 148.  et al. 2006. A shift of phloem unloading from symplasmic to apoplasmic pathway is involved in developmental onset of ripening in grape berry. Plant Physiol. 142:220–32 [Google Scholar]
  150. Zheng Y, Tian L, Liu H, Pan Q, Zhan J, Huang W. 149.  2009. Sugars induce anthocyanin accumulation and flavanone 3-hydroxylase expression in grape berries. Plant Growth Reg. 58:251–60 [Google Scholar]
/content/journals/10.1146/annurev-phyto-102313-045946
Loading
/content/journals/10.1146/annurev-phyto-102313-045946
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error