1932

Abstract

This review examines the provision of public goods and the prevention of negative externalities in forest management. It focuses on three issues: () biodiversity conservation and maintenance, () the role of forestry in carbon policies, and () internalizing negative water externalities. Public goods and negative externalities appear differently under different forest management regimes. A distinction is made between even-aged management, defined by the rotation framework, and uneven-aged management, defined by continuous cover models. Although the review focuses mostly on analytical models, it briefly considers recent numerical models relying on the detailed description of forest management. Both conventional instruments and new payments for ecosystem services are discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-resource-100815-095450
2016-10-05
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/resource/8/1/annurev-resource-100815-095450.html?itemId=/content/journals/10.1146/annurev-resource-100815-095450&mimeType=html&fmt=ahah

Literature Cited

  1. Adams DM, Ek AR. 1974. Optimizing the management of uneven-aged forest stands. Can. J. For. Res. 4:274–87 [Google Scholar]
  2. Amacher G, Koskela E, Ollikainen M. 2009. Economics of Forest Resources Cambridge, MA: MIT Press
  3. Amacher G, Ollikainen M, Uusivuori J. 2014. Forests and ecosystem services: outline for new policy options. For. Policy Econ. 47:1–3 [Google Scholar]
  4. Anglesen A. 2014. The economics of REDD+. See Kant & Alavalapati 2014 290–306
  5. Armsworth P, Kendall B, Davis F. 2004. An introduction to biodiversity concepts for environmental economists. Resour. Energy Econ. 26:115–36 [Google Scholar]
  6. Arnott J, Beese W. 1997. Alternatives to clearcutting in BC coastal montane forests. For. Chron. 73:670–78 [Google Scholar]
  7. Barua S, Uusivuori J, Kuuluvainen J. 2012. Impacts of carbon-based policy instruments and taxes on tropical deforestation. Ecol. Econ. 73:211–19 [Google Scholar]
  8. Bjornstad E, Skonhoft A. 2002. Wood fuel or carbon sink? Aspects of forestry in the climate question. Environ. Resour. Econ. 23:447–65 [Google Scholar]
  9. Bosetti V, Lubowski R. 2010. Deforestation and Climate Change: Reducing Carbon Emissions from Deforestation and Forest Degradation Cheltenham, UK: Edward Elgar
  10. Buongiorno J, Halvorsen E, Bollandsås O, Gobakken T, Hofstad O. 2012. Optimizing management regimes for carbon storage and other benefits in uneven-aged stands dominated by Norway spruce with a derivation of economic supply of carbon storage. Scand. J. For. Res. 23:167–78 [Google Scholar]
  11. Buongiorno J, Zhu S. 2013. Consequences of carbon offset payments for the global forest sector. J. For. Econ. 19:384–401 [Google Scholar]
  12. Cattaneo A. 2010. Incentives to reduce emissions from deforestation: a stock-flow approach with target reductions. Deforestation and Climate Change: Reducing Carbon Emissions from Deforestation and Forest Degradation V Bosetti, R Lubowski 93–120 Cheltenham, UK: Edward Elgar [Google Scholar]
  13. Caurla S, Delacote P, Lecocq F, Barthes J, Barkanoui A. 2013. Combining an inter-sectoral carbon tax with sectoral mitigation policies: impacts on the French forest sector. J. For. Econ. 19:450–61 [Google Scholar]
  14. Chang S. 1983. Rotation age, management intensity, and the economic factors of timber production: Do changes in stumpage price, interest rate, regeneration cost and forest taxation matter?. For. Sci. 29:267–77 [Google Scholar]
  15. Chang S. 1998. A generalized Faustmann model for the determination of optimal harvest age. Can. J. For. Res. 28:652–59 [Google Scholar]
  16. Creedy J, Wurzbacher A. 2001. The economic value of a forested catchment with timber, water and carbon sequestration. Ecol. Econ. 38:71–83 [Google Scholar]
  17. Engel S, Pagiola S, Wunder S. 2008. Designing payments for environmental services in theory and practice: an overview of the issues. Ecol. Econ. 65:663–74 [Google Scholar]
  18. Faustmann M. 1995. (1849). Calculation of the value which forest land and immature stands possesses. J. For. Econ. 1:89–114 [Google Scholar]
  19. Gaston K. 1996. Biodiversity: A Biology of Numbers and Difference Oxford, UK: Blackwell
  20. Goetz R, Hritonenko N, Mur R, Xabadia A, Yatsenko Y. 2010. Forest management and carbon sequestration in size-structured forests: the case of Pinus sylvestris in Spain. For. Sci. 56:242–56 [Google Scholar]
  21. Gong Y, Hedge R, Bull G. 2014. Payments for ecosystem services. Lessons from developing countries. See Kant & Alavalapati 2014 210–24
  22. Haight R. 1985. Comparison of dynamic and static economic models of uneven-aged stand management. For. Sci. 31:957–74 [Google Scholar]
  23. Hallmann F, Amacher G. 2014. Uncertain emerging biomass markets, ecosystem services, and optimal land use. For. Policy Econ. 47:46–56 [Google Scholar]
  24. Hartman R. 1976. The harvesting decision when a standing forest has value. Econ. Inq. 14:52–58 [Google Scholar]
  25. Jalonen J, Vanha-Majamaa I. 2001. Immediate effects of four different felling methods on mature boreal spruce forest understorey vegetation in southern Finland. For. Ecol. Manag. 146:25–34 [Google Scholar]
  26. Jonsell M, Nittérus K, Stighäll K. 2004. Saproxylic beetles in natural and man-made deciduous high stumps retained for conservation. Biol. Conserv. 118:163–73 [Google Scholar]
  27. Jonsson M, Ranius T, Ekvall H, Bosted G, Dahlberg A. et al. 2006. Cost-effectiveness of silvicultural measures to increase substrate availability for red-listed wood-living organisms in Norway spruce forests. Biol. Conserv. 127:443–62 [Google Scholar]
  28. Juutinen A, Mäntymaa E, Mönkkönen M, Svento R. 2008. Voluntary agreements in protecting privately owned forests in Finland—to buy or to lease?. For. Policy Econ. 10:230–39 [Google Scholar]
  29. Juutinen A, Mäntymaa E, Ollikainen M. 2013. Landowners' conservation motives and the size of information rents in environmental bidding systems. J. For. Econ. 19:128–48 [Google Scholar]
  30. Juutinen A, Ollikainen M. 2010. Trading in nature values as a means of biodiversity conservation in boreal forests: theory and experience from Finland. For. Sci. 56:201–11 [Google Scholar]
  31. Juutinen A, Ollikainen M, Mönkkönen M, Reunanen P, Tikkanen O-P, Kouki J. 2014. Optimal contract length for biodiversity conservation under conservation budget constraint. For. Policy Econ. 47:14–24 [Google Scholar]
  32. Kallio M, Salminen O, Sievänen R. 2013. Sequester or substitute—consequences of increased production of wood based energy on the carbon balance in Finland. J. For. Econ. 19:402–15 [Google Scholar]
  33. Kant S, Alavalapati J. 2014. Handbook of Forest Economics London/New York: Routledge
  34. Karsenty A, Vogel A, Castell F. 2014. “Carbon rights,” REDD+ and payments for environmental services. Environ. Sci. Policy 35:20–29 [Google Scholar]
  35. Koskela E, Ollikainen M. 2001. Forest taxation and rotation age under private amenity valuation: new results. J. Environ. Econ. Manag. 42:374–84 [Google Scholar]
  36. Koskela E, Ollikainen M, Pukkala T. 2007a. Biodiversity conservation in boreal forests: optimal rotation age and volume of retention trees. For. Sci. 53:443–52 [Google Scholar]
  37. Koskela E, Ollikainen M, Pukkala T. 2007b. Biodiversity policies in commercial boreal forests: optimal design of subsidy and tax combinations. For. Econ. Policy 9:982–95 [Google Scholar]
  38. Lal P, Alavalapati J. 2014. Economics of forest biomass-based energy. See Kant & Alavalapati 2014 275–89
  39. Latacz-Lohmann U, Schillizi S. 2005. Auctions for conservation contracts: a review of the theoretical and empirical literature Rep., Scott. Exec. Environ. Rural Aff. Dep., Edinburgh, Scotl. http://www.gov.scot/resource/doc/93853/0022574.pdf
  40. Latacz-Lohmann U, van der Hamsvoort C. 1997. Auctioning conservation contracts: a theoretical analysis and an application. Am. J. Agric. Econ. 79:407–18 [Google Scholar]
  41. Lauren A, Koivusalo H, Ahtikoski A, Kokkonen T, Finer L. 2007. Water protection and buffer zones: How much does it reduce cost to reduce nitrogen load in a forest cutting?. Scand. J. For. Res. 22:537–44 [Google Scholar]
  42. Lecocq F, Caurla, Delacote P, Barkaoui A, Sauquet A. 2011. Paying for carbon or stimulating fuelwood demand? Insights from the French Forest Sector Model. J. For. Econ. 17:157–68 [Google Scholar]
  43. Lindhjem H. 2007. 20 years of stated preference valuation of non-timber benefits from Fennoscandian forests: a meta-analysis. J. For. Econ. 12:251–77 [Google Scholar]
  44. Lintunen J, Uusivuori J. 2014. On the economics of forest carbon: renewable and carbon neutral but not emission free Work. Pap. 13, Fond. Eni Enrico Mattei, Milan. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2397843
  45. MAF (Minist. Agric. For.) 2010. A guide to forestry in the emissions trading scheme Rep., Minist. Agric. For., Wellington, NZ. http://maxa.maf.govt.nz/sustainable-forestry/2010-ets-guide.pdf
  46. Manley B, MacLaren P. 2012. Potential impact of carbon trading on forest management in New Zealand. For. Policy Econ. 24:35–40 [Google Scholar]
  47. Maron M, Bobbs R, Moilanen A, Matthews J, Christie K. et al. 2012. Faustian bargains? Restoration realities in the context of biodiversity offset policies. Biol. Conserv. 155:141–48 [Google Scholar]
  48. Miettinen J, Ollikainen M, Finer L, Koivusalo H, Lauren A, Valsta L. 2012. Diffuse load management with biodiversity co-benefits: the optimal rotation age and buffer zone size. For. Sci. 58:342–57 [Google Scholar]
  49. Miettinen J, Ollikainen M, Finer L, Koivusalo H, Lauren A, Valsta L. 2015. Peatland forests: optimal rotation age, improvement ditching and water protection. Book of Abstracts—Managing Forests to Promote Environmental Services I Stupak, TF Nielsen, L Högbom, N Clarke, L Finer, p. 18 (Abstr.). Copenhagen, Den: Dep. Geosci. Nat. Resour. Manag., Univ. Copenhagen
  50. Miettinen J, Ollikainen M, Nieminen T, Ukonmaanaho L, Lauren A. et al. 2014. Whole-tree harvesting with stump removal versus stem-only harvesting in peatlands when water quality, biodiversity conservation and climate change mitigation matter. For. Policy Econ. 47:25–35 [Google Scholar]
  51. Millennium Ecosystem Assessment 2005. Ecosystems and Human Well-Being—Synthesis. Washington, DC: Island. http://www.millenniumassessment.org/documents/document.356.aspx.pdf/
  52. Moilanen A, Teeffelen A, Ben-Haim Y, Ferrier S. 2009. How much compensation is enough? A framework for incorporating uncertainty and time discounting when calculating offset ratios for impacted habitat. Restor. Ecol. 17:470–78 [Google Scholar]
  53. Mönkkönen M, Juutinen A, Mazziotta A, Miettinen K, Podkopaev D. et al. 2014. Spatially dynamic forest management to sustain biodiversity and economic returns. J. Environ. Manag. 134:80–89 [Google Scholar]
  54. Montgomery C, Crandall M. 2014. The economics of old-growth forests. See Kant & Alavalapati 2014 149–61
  55. Niinimäki S, Tahvonen O, Mäkelä A, Linkosalo T. 2013. On the economics of Norway spruce stands and carbon storage. Can. J. Forest Res. 43:637–48 [Google Scholar]
  56. OECD (Organ. Econ. Coop. Dev.) 2010. Paying for biodiversity: enhancing the cost-effectiveness of payments for ecosystem services. Rep., Organ. Econ. Coop. Dev., Paris
  57. Pagiola S, Platais G. 2007. Payments for Environmental Services: From Theory to Practice Washington, DC: World Bank
  58. Pandey S, Cockfield G, Maraseni T. 2014. Dynamic of carbon and biodiversity under REDD+ regime: a case from Nepal. Environ. Sci. Policy 38:272–81 [Google Scholar]
  59. Parajuli R, Chang S. 2012. Carbon sequestration and uneven-aged management of loblolly pine stands in the Southern USA: a joint optimization approach. For. Policy Econ. 22:65–71 [Google Scholar]
  60. Pihlainen S, Tahvonen O, Niinimäki S. 2014. The economics of timber and bioenergy production and carbon storage in Scots pine stands. Can. J. For. Res. 44:1091–102 [Google Scholar]
  61. Pohjola J, Valsta L. 2007. Carbon credits and management of Scots pine and Norway spruce stands in Finland. For. Policy Econ. 9:789–98 [Google Scholar]
  62. Polasky S, Camm J, Solow A, Csuti B, White D, Ding R. 2000. Choosing reserve networks with imcomplete information. Biol. Conserv. 94:1–10 [Google Scholar]
  63. Pukkala T, Lähde E, Laiho O, Salo K, Hotanen J-P. 2011. A multifunctional comparison of even-aged and uneven-aged forest management in a boreal region. Can. J. For. Res. 41:851–62 [Google Scholar]
  64. Rämö J, Tahvonen O. 2014. Economics of harvesting uneven-aged forest stands in Fennoscandia. Scand. J. For. Res. 29:777–92 [Google Scholar]
  65. Ranius T, Ekvall H, Jonsson M, Bostedt G. 2005. Cost-efficiency of measures to increase the amount of coarse woody debris in managed Norway spruce forests. For. Ecol. Manag. 206:119–33 [Google Scholar]
  66. Repo A, Tuomi M, Liski J. 2011. Indirect carbon dioxide emissions from producing bioenergy from forest harvest residues. Bioenergy 3:107–15 [Google Scholar]
  67. Robert N, Stenger A. 2013. Can payments solve the problem of undersupply of ecosystem services?. For. Policy Econ. 35:83–91 [Google Scholar]
  68. Rockström J, Steffen W, Noone K, Persson Å, Chapin FS III. et al. 2009. A safe operating space for humanity. Nature 461:472–75 [Google Scholar]
  69. Schaefer M. 1957. Some considerations of population dynamics and economics in relation to the management of the commercial marine fisheries. J. Fish. Res. Board Can. 14:699–81 [Google Scholar]
  70. Spangenberg J. 2007. Biodiversity pressure and the driving forces behind. Ecol. Econ. 61:146–58 [Google Scholar]
  71. Stoneham G, Chaudhri V, Ha A, Strappazzon L. 2003. Auctions for conservation contracts: an empirical examination of Victoria's BushTender trial. Aust. J. Agric. Resour. Econ. 47:477–500 [Google Scholar]
  72. Strang W. 1983. On the optimal forest harvesting decision. Econ. Inq. 21:576–83 [Google Scholar]
  73. Sullivan J, Amacher G, Chapman S. 2005. Forest banking and forest landowners: forgoing management rights for guaranteed financial returns. For. Policy Econ. 7:381–92 [Google Scholar]
  74. Tacconi L, Mahanty S, Suich H. 2010. Payments for Environmental Services, Forest Conservation and Climate Change. Livelihoods in the REDD? Cheltenham, UK: Edward Elgar [Google Scholar]
  75. Tahvonen O. 1995. Net national emissions, CO2 taxation and the role of forestry. Resour. Energy Econ. 17:307–15 [Google Scholar]
  76. Tahvonen O. 2009. Optimal choice between even- and uneven-aged forestry. Nat. Resour. Model. 22:289–321 [Google Scholar]
  77. Tahvonen O. 2015. Economics of naturally regenerating heterogeneous forests. J. Assoc. Environ. Resour. Econ. 2:309–37 [Google Scholar]
  78. Tahvonen O. 2016. Economics of rotation and thinning revisited: the optimality of clearcuts versus continuous cover forestry. For. Policy Econ. 62:88–94 [Google Scholar]
  79. Uusivuori J, Laturi J. 2007. Carbon rentals and silvicultural subsidies for private forests as climate policy instruments. Can. J. For. Res. 37:2541–51 [Google Scholar]
  80. van Kooten GC, Binkley C, Delcourt G. 1995. Effect of carbon taxes and subsidies on optimal forest rotation age and supply of carbon services. Am. J. Agric. Econ. 77:365–74 [Google Scholar]
  81. Wissel S, Wätzhold F. 2010. Conceptual analysis of the application of tradable permits to biodiversity conservation. Conserv. Biol. 24:404–11 [Google Scholar]
  82. Zobrist K, Lippke B. 2007. Economic costs and different riparian management regulations in the Pacific Northwest. West. J. Appl. For. 22:36–41 [Google Scholar]
/content/journals/10.1146/annurev-resource-100815-095450
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error