1932

Abstract

This article presents an overview of the economics and management of a population. It reviews the biology of survival and reproduction and various feedback effects that exist between the population and the environment. This discussion leads to an assessment of the potential complexities characterizing population dynamics. The review evaluates the options available in population management, with a focus on the choice of decision rules used by managers and policy makers. The analysis investigates several important concepts in bioeconomics, including dynamics, viability, sustainability, efficiency, and resilience.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-resource-110514-092245
2015-10-05
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/resource/7/1/annurev-resource-110514-092245.html?itemId=/content/journals/10.1146/annurev-resource-110514-092245&mimeType=html&fmt=ahah

Literature Cited

  1. Allee WC. 1931. Animal Aggregation: A Study in General Sociology Chicago: Univ. Chicago Press
  2. Arrow KJ. 1965. Aspects of the Theory of Risk Bearing Helsinki: Yrjo Jahnssonin Saatio
  3. Aubin JP. 1991. Viability Theory Boston: Birkhauser
  4. Aubin JP. 1997. Dynamic Economic Theory: A Viability Approach New York: Springer
  5. Béné C, Doyen L, Gabay D. 2001. A viability analysis for a bio-economic model. Ecol. Econ. 36:385–96 [Google Scholar]
  6. Bertsekas DP. 1995. Dynamic Programming and Optimal Control Belmont, MA: Athena Sci.
  7. Beverton RJH, Holt SJ. 1957. On the Dynamics of Exploited Fish Populations (Fishery Investigations, Ser. 2, Vol. 19). London: HMSO
  8. Billingsley P. 1986. Probability and Measures New York: Wiley
  9. Brock WA, Scheinkman JA. 1976. Global asymptotic stability of optimal control systems with applications to the theory of economic growth. J. Econ. Theory 12:164–90 [Google Scholar]
  10. Caswell H. 2001. Matrix Population Models Sunderland, MA: Sinauer, 2nd ed..
  11. Chavas JP. 1999. On the economic rationality of market participants: the case of expectations in the U.S. pork market. J. Agric. Resour. Econ. 24:19–37 [Google Scholar]
  12. Chavas JP. 2000. On information and market dynamics: the case of the U.S. beef market. J. Econ. Dyn. Control 24:833–53 [Google Scholar]
  13. Chavas JP, Holt MT. 1991. On nonlinear dynamics: the case of the pork cycle. Am. J. Agric. Econ. 73:819–28 [Google Scholar]
  14. Chavas JP, Holt MT. 1993. Market instability and nonlinear dynamics. Am. J. Agric. Econ. 75:113–20 [Google Scholar]
  15. Chavas JP, Holt MT. 1995. Nonlinear dynamics and economic instability: the optimal management of a biological population. J. Agric. Resour. Econ. 20:231–46 [Google Scholar]
  16. Clark CW. 2010. Mathematical Bioeconomics: The Mathematics of Conservation New York: Wiley, 3rd ed..
  17. Dawid H, Kopel M. 1999. On optimal cycles in dynamic programming models with convex return functions. Econ. Theory 13:309–27 [Google Scholar]
  18. De Lara M, Doyen L. 2008. Sustainable Management of Natural Resources: Mathematical Models and Methods Berlin: Springer
  19. Dechert WD, Nishimura K. 1983. A complete characterization of optimal growth paths in an aggregated model with a non-concave production function. J. Econ. Theory 31:332–54 [Google Scholar]
  20. Deneckere R, Pelikan S. 1986. Competitive chaos. J. Econ. Theory 40:13–25 [Google Scholar]
  21. Doyen L, De Lara M. 2010. Stochastic viability and dynamic programming. Syst. Control Lett. 59:629–34 [Google Scholar]
  22. Ellsberg D. 1961. Risk, ambiguity and the savage axioms. Q. J. Econ. 75:643–69 [Google Scholar]
  23. Epstein LG, Zin SE. 1989. Substitution, risk aversion, and the temporal behavior of consumption and asset returns: a theoretical framework. Econometrica 57:937–69 [Google Scholar]
  24. Epstein LG, Zin SE. 1991. Substitution, risk aversion, and the temporal behavior of consumption and asset returns: an empirical analysis. J. Polit. Econ. 99:263–86 [Google Scholar]
  25. Geritz SAH, Kisdi E. 2004. On the mechanistic underpinning of discrete-time population models with complex dynamics. J. Theor. Biol. 228:261–69 [Google Scholar]
  26. Gunderson LH. 2000. Ecological resilience in theory and application. Annu. Rev. Ecol. Syst. 31:427–39 [Google Scholar]
  27. Hanski I. 1999. Metapopulation Ecology Oxford, UK: Oxford Univ. Press
  28. Harlow AA. 1960. The hog cycle and the cobweb theorem. J. Farm Econ. 42:842–53 [Google Scholar]
  29. Hassell MP. 1975. Density-dependence in single-species populations. J. Anim. Ecol. 44:283–95 [Google Scholar]
  30. Hassell MP, Comins HN. 1976. Discrete time models for two-species competition. Theor. Popul. Biol. 9:202–21 [Google Scholar]
  31. Holling CS. 1973. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4:1–23 [Google Scholar]
  32. Kahneman D, Tversky A. 1979. Prospect theory: an analysis of decision under risk. Econometrica 47:263–91 [Google Scholar]
  33. Keenan DC, Snow A. 2009. Greater downside risk aversion in the large. J. Econ. Theory 144:1092–101 [Google Scholar]
  34. Klibanoff P, Marinacci M, Mukerji S. 2005. A smooth model of decision making under ambiguity. Econometrica 73:1849–92 [Google Scholar]
  35. Knight FH. 1921. Risk, Uncertainty, and Profit Boston: Houghton Mifflin
  36. Lande R, Engen S, Sæther B-E. 2003. Stochastic Population Dynamics in Ecology and Conservation Oxford, UK: Oxford Univ. Press
  37. Lefkovitch LP. 1965. The study of population growth in organisms grouped by stages. Biometrics 21:1–18 [Google Scholar]
  38. Leslie PH. 1948. Some further notes on the use of matrices in population mathematics. Biometrika 35:213–45 [Google Scholar]
  39. Levins R. 1969. Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull. Entomol. Soc. Am. 15:237–40 [Google Scholar]
  40. Lotka AJ. 1925. Elements of Physical Biology New York: Dover [Repr. 1956]
  41. Luenberger D. 1996. Welfare from a benefit viewpoint. Econ. Theory 7:445–62 [Google Scholar]
  42. Martinet V, Doyen L. 2007. Sustainable management of an exhaustible resource: a viable control approach. Resour. Energy Econ. 29:17–39 [Google Scholar]
  43. May RM. 1976. Simple mathematical models with very complicated dynamics. Nature 261:459–67 [Google Scholar]
  44. Menezes C, Geiss C, Tressler J. 1980. Increasing downside risk. Am. Econ. Rev. 70:921–32 [Google Scholar]
  45. Mitra T. 1996. An exact discount factor restriction for period-three cycles in dynamic optimization models. J. Econ. Theory 69:281–305 [Google Scholar]
  46. Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B. 2011. How many species on earth and in the ocean?. PLOS Biol. 9:1–8 [Google Scholar]
  47. Mundlak Y, Huang H. 1996. International comparisons of cattle cycles. Am. J. Agric. Econ. 78:855–68 [Google Scholar]
  48. Murray JD. 2002. Mathematical Biology: An Introduction New York: Springer
  49. Pratt JW. 1964. Risk aversion in the small and in the large. Econometrica 32:122–36 [Google Scholar]
  50. Quiggin J. 1993. Generalized Expected Utility Theory: The Rank-Dependent Expected Utility Model Amsterdam: Kluwer-Nijhoff
  51. Raup DM. 1991. Extinction: Bad Genes or Bad Luck? New York: W.W. Norton
  52. Ricker WE. 1954. Stock and recruitment. J. Fish. Res. Board Can. 11:559–623 [Google Scholar]
  53. Rockwood LL. 2006. Introduction to Population Ecology Malden, MA: Blackwell
  54. Rosen S, Murphy KM, Scheinkman JA. 1994. Cattle cycles. J. Polit. Econ. 102:468–92 [Google Scholar]
  55. Savage L. 1954. The Foundations of Statistics New York: Wiley
  56. Sundaram R. 1996. A First Course in Optimization Theory Cambridge, UK: Cambridge Univ. Press
  57. Taylor MS. 2011. Buffalo hunt: international trade and the virtual extinction of the North American bison. Am. Econ. Rev. 101:3162–95 [Google Scholar]
  58. Turchin P. 2003. Complex Population Dynamics: A Theoretical/Empirical Synthesis Princeton, NJ: Princeton Univ. Press
  59. Tversky A, Kahneman D. 1992. Advances in prospect theory: cumulative representation of risk. J. Risk Uncertain. 5:297–323 [Google Scholar]
  60. Volterra V. 1926. Fluctuations in the abundance of a species considered mathematically. Nature 118:558–60 [Google Scholar]
  61. Weitzman ML. 2009. On modeling and interpreting the economics of catastrophic climate change. Rev. Econ. Stat. 91:1–19 [Google Scholar]
/content/journals/10.1146/annurev-resource-110514-092245
Loading
/content/journals/10.1146/annurev-resource-110514-092245
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error