1932

Abstract

Larry Shepp worked extensively in the field of medical imaging for almost 40 years. He made seminal contributions to the areas of computed tomography (CT), positron emission tomography (PET), and functional magnetic resonance imaging (fMRI). In this review, I highlight some of these important contributions, with the goal of illustrating the important role that mathematics and statistics played in their development.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-041715-033514
2016-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/statistics/3/1/annurev-statistics-041715-033514.html?itemId=/content/journals/10.1146/annurev-statistics-041715-033514&mimeType=html&fmt=ahah

Literature Cited

  1. Bouman C, Sauer K. 1993. A generalized Gaussian image model for edge-preserving MAP estimation. IEEE Trans. Image Proc. 2:3296–310 [Google Scholar]
  2. Bracewell RN, Riddle A. 1967. Inversion of fan-beam scans in radio astronomy. Astrophys. J. 150:427–34 [Google Scholar]
  3. Brownell GL, Budinger TF, Lauterbur PC, McGeer PL. 1982. Positron tomography and nuclear magnetic resonance imaging. Science 215:4533619–26 [Google Scholar]
  4. Cormack AM. 1963. Representation of a function by its line integrals, with some radiological applications. J. Appl. Phys. 34:92722–27 [Google Scholar]
  5. Cormack AM. 1964. Representation of a function by its line integrals, with some radiological applications. II.. J. Appl. Phys. 35:102908–13 [Google Scholar]
  6. Cormack AM. 1980. Early two-dimensional reconstruction and recent topics stemming from it. Science 209:44641482–86 [Google Scholar]
  7. Epstein CL. 2008. Introduction to the Mathematics of Medical Imaging Philadelphia, PA: Soc. Ind. Appl. Math, 2nd ed..
  8. Fessler JA, Hero AO. 1995. Penalized maximum-likelihood image reconstruction using space-alternating generalized EM algorithms. IEEE Trans. Image Proc. 4:101417–29 [Google Scholar]
  9. Green PJ. 1990. Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Trans. Med. Imaging 9:184–93 [Google Scholar]
  10. Haacke EM, Brown RW, Thompson MR, Venkatesan R. 1999. Magnetic Resonance Imaging: Physical Principles and Sequence Design. New York: Wiley
  11. Hebert T, Leahy R. 1989. A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors. IEEE Trans. Med. Imaging 8:2194–202 [Google Scholar]
  12. Hilal SK, Joseph PM, Stein JA, Shepp LA. 1978. Development of a new computed tomography scanner with stationary detectors. Part I: design considerations. Radiology
  13. Hilal SK, Shepp LA, Joseph PM, Stein JA. 1975. Desirable features for advanced computerized tomography scanners. Proc. Workshop Reconstr. Tomogr. Diagn. Radiol. Nucl. Med., Apr. 17–19, San Juan, Puerto Rico541–49 Baltimore, MD: Univ. Park Press [Google Scholar]
  14. Horn BK. 1979. Fan-beam reconstruction methods. Proc. IEEE 67:121616–23 [Google Scholar]
  15. Hounsfield GN. 1976. Apparatus for examining a body by radiation such as X or gamma radiation. US Patent No. 3944833
  16. Hounsfield GN. 1980. Computed medical imaging. J. Comput. Assist. Tomogr. 4:5665–74 [Google Scholar]
  17. Hudson HM, Larkin RS. 1994. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans. Med. Imaging 13:4601–9 [Google Scholar]
  18. Huettel SA, Song AW, McCarthy G. 2004. Functional Magnetic Resonance Imaging 1 Sunderland, MA: Sinauer
  19. Kaufman L. 1987. Implementing and accelerating the EM algorithm for positron emission tomography. IEEE Trans. Med. Imaging 6:137–51 [Google Scholar]
  20. Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM. et al. 1992. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. PNAS 89:125675–79 [Google Scholar]
  21. Landau HJ, Pollak HO. 1961. Prolate spheroidal wave functions, Fourier analysis and uncertainty—II. Bell Syst. Tech. J. 40:165–84 [Google Scholar]
  22. Landau HJ, Pollak HO. 1962. Prolate spheroidal wave functions, Fourier analysis and uncertainty—III: the dimension of the space of essentially time- and band-limited signals. Bell Syst. Tech. J. 41:41295–336 [Google Scholar]
  23. Lange K, Carson R. 1984. EM reconstruction algorithms for emission and transmission tomography. J. Comput. Assist. Tomogr. 8:2306–16 [Google Scholar]
  24. Lindquist MA. 2003. Optimal data acquisition in fMRI using prolate spheroidal wave functions. Int. J. Imaging Syst. Technol. 13:2126–32 [Google Scholar]
  25. Lindquist MA. 2008. The statistical analysis of fMRI data. Stat. Sci. 23:4439–64 [Google Scholar]
  26. Lindquist MA. 2010. The benefits of rapid 3D fMRI. Int. J. Imaging Syst. Technol. 20:114–22 [Google Scholar]
  27. Lindquist MA, Zhang C-H, Glover G, Shepp L. 2008a. Rapid three-dimensional functional magnetic resonance imaging of the initial negative BOLD response. J. Magn. Reson. 191:1100–11 [Google Scholar]
  28. Lindquist MA, Zhang C-H, Glover G, Shepp L. 2008b. The acquisition and statistical analysis of rapid 3D fMRI data. Stat. Sin. 18:41395 [Google Scholar]
  29. Lindquist MA, Zhang C-H, Glover G, Shepp L, Yang QX. 2006. A generalization of the two-dimensional prolate spheroidal wave function method for nonrectilinear MRI data acquisition methods. IEEE Trans. Image Proc. 15:92792–804 [Google Scholar]
  30. Logothetis NK. 2000. Can current fMRI techniques reveal the micro-architecture of cortex?. Nat. Neurosci. 3:413 [Google Scholar]
  31. Lustig M, Donoho D, Pauly JM. 2007. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58:61182–95 [Google Scholar]
  32. Malonek D, Grinvald A. 1996. Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science 272:551–54 [Google Scholar]
  33. Mechelli A, Price CJ, Friston KJ. 2001. Nonlinear coupling between evoked rCBF and BOLD signals: a simulation study of hemodynamic responses. NeuroImage 14:862–72 [Google Scholar]
  34. Moeller S, Yacoub E, Olman CA, Auerbach E, Strupp J. et al. 2010. Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn. Reson. Med. 63:51144–53 [Google Scholar]
  35. Natterer F. 1986. The Mathematics of Computerized Tomography New York: Wiley
  36. Ogawa S, Lee T, Kay A, Tank D. 1990. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. PNAS 87:249868–72 [Google Scholar]
  37. Phelps ME, Hoffman EJ, Mullani NA, Ter-Pogossian MM. 1975. Application of annihilation coincidence detection to transaxial reconstruction tomography. J. Nucl. Med. 16:3210–24 [Google Scholar]
  38. Radon J. 1917. On determination of functions by their integral values along certain manifolds. Ber. Sächsische Akad. Wiss. 69:262–77 [Google Scholar]
  39. Ramachandran G, Lakshminarayanan A. 1971. Three-dimensional reconstruction from radiographs and electron micrographs: application of convolutions instead of Fourier transforms. PNAS 68:92236–40 [Google Scholar]
  40. Shepp LA. 1980. Computerized tomography and nuclear magnetic resonance. J. Comput. Assist. Tomogr. 4:194–107 [Google Scholar]
  41. Shepp LA. 2007. Statistical thinking: from Tukey to Vardi and beyond. Complex Datasets and Inverse Problems: Tomography, Networks and Beyond R Liu, W Strawderman, C-H Zhang 268–73 Beachwood, OH: Inst. Math. Stat. [Google Scholar]
  42. Shepp LA, Hilal S, Schulz R. 1979. The tuning fork artifact in computerized tomography. Comput. Graph. Image Proc. 10:3246–55 [Google Scholar]
  43. Shepp LA, Kruskal J. 1978. Computerized tomography: the new medical X-ray technology. Am. Math. Mon. 85:420–39 [Google Scholar]
  44. Shepp LA, Logan BF. 1974. The Fourier reconstruction of a head section. IEEE Trans. Nucl. Sci. 21:321–43 [Google Scholar]
  45. Shepp LA, Stein JA. 1975. Simulated reconstruction artifacts in computerized X-ray tomography. Proc. Workshop Reconstr. Tomogr. Diagn. Radiol. Nucl. Med., Apr. 17–19, San Juan, Puerto Rico33–48 Baltimore, MD: Univ. Park Press [Google Scholar]
  46. Shepp LA, Vardi Y. 1982. Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imaging 1:2113–22 [Google Scholar]
  47. Shepp LA, Zhang C-H. 2000. Fast functional magnetic resonance imaging via prolate wavelets. Appl. Comput. Harmon. Anal. 9:299–119 [Google Scholar]
  48. Slepian D. 1978. Prolate spheroidal wave functions, Fourier analysis, and uncertainty—V: the discrete case. Bell Syst. Tech. J. 57:51371–430 [Google Scholar]
  49. Slepian D, Pollak HO. 1961. Prolate spheroidal wave functions, Fourier analysis and uncertainty—I. Bell Syst. Tech. J. 40:143–63 [Google Scholar]
  50. Ter-Pogossian MM, Phelps ME, Hoffman EJ, Mullani NA. 1975. A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology 114:189–98 [Google Scholar]
  51. Ter-Pogossian MM, Raichle ME, Sobel BE. 1980. Positron-emission tomography. Sci. Am. 243:4170–81 [Google Scholar]
  52. Vardi Y, Ra J, Hilal S, Cho Z. 1984. Maximum likelihood PET with real data. IEEE Trans. Nucl. Sci. 3:1910–13 [Google Scholar]
  53. Vardi Y, Shepp L, Kaufman L. 1985. A statistical model for positron emission tomography. J. Am. Stat. Assoc. 80:3898–20 [Google Scholar]
  54. Yang QX, Lindquist MA, Shepp L, Zhang C-H, Wang J, Smith MB. 2002. Two dimensional prolate spheroidal wave functions for MRI. J. Magn. Reson. 158:143–51 [Google Scholar]
  55. Zhang C, Lindquist M, Cho Z, Glover G, Shepp L. 2008. Fast functional magnetic resonance imaging—a new approach towards neuroimaging. Stat. Interface 1:13–22 [Google Scholar]
/content/journals/10.1146/annurev-statistics-041715-033514
Loading
/content/journals/10.1146/annurev-statistics-041715-033514
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error