1932

Abstract

Genetically engineered mice (GEMs) have provided valuable insights into the carcinogenic properties of various human tumor viruses, which, in aggregate, are etiologically associated with over 15% of all human cancers. This review provides an overview of seminal discoveries made through the use of GEM models for human DNA tumor viruses. Emphasis is placed on the discoveries made in the study of human papillomaviruses, Merkel cell carcinoma–associated polyomavirus, Epstein-Barr virus, and Kaposi's sarcoma–associated herpesvirus, because GEMs have contributed extensively to our understanding of how these DNA tumor viruses directly contribute to human cancers.

Keyword(s): cancerEBVGEMHPVin vivoKSHVMCPyVtransgenic
Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-100114-054908
2016-09-29
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/virology/3/1/annurev-virology-100114-054908.html?itemId=/content/journals/10.1146/annurev-virology-100114-054908&mimeType=html&fmt=ahah

Literature Cited

  1. Lindgren V, Sippola-Thiele M, Skowronski J, Wetzel E, Howley PM, Hanahan D. 1.  1989. Specific chromosomal abnormalities characterize fibrosarcomas of bovine papillomavirus type 1 transgenic mice. PNAS 86:5025–29 [Google Scholar]
  2. Sippola-Thiele M, Hanahan D, Howley PM. 2.  1989. Cell-heritable stages of tumor progression in transgenic mice harboring the bovine papillomavirus type 1 genome. Mol. Cell. Biol. 9:925–34 [Google Scholar]
  3. Griep AE, Herber R, Jeon S, Lohse JK, Dubielzig RR, Lambert PF. 3.  1993. Tumorigenicity by human papillomavirus type 16 E6 and E7 in transgenic mice correlates with alterations in epithelial cell growth and differentiation. J. Virol. 67:1373–84 [Google Scholar]
  4. Lambert PF, Pan H, Pitot HC, Liem A, Jackson M, Griep AE. 4.  1993. Epidermal cancer associated with expression of human papillomavirus type 16 E6 and E7 oncogenes in the skin of transgenic mice. PNAS 90:5583–87 [Google Scholar]
  5. Pan H, Griep AE. 5.  1994. Altered cell cycle regulation in the lens of HPV-16 E6 or E7 transgenic mice: Implications for tumor suppressor gene function in development. Genes Dev 8:1285–99 [Google Scholar]
  6. McCaffrey J, Yamasaki L, Dyson NJ, Harlow E, Griep AE. 6.  1999. Disruption of retinoblastoma protein family function by human papillomavirus type 16 E7 oncoprotein inhibits lens development in part through E2F-1. Mol. Cell. Biol. 19:6458–68 [Google Scholar]
  7. Pan H, Griep AE. 7.  1995. Temporally distinct patterns of p53-dependent and p53-independent apoptosis during mouse lens development. Genes Dev 9:2157–69 [Google Scholar]
  8. Nguyen MM, Nguyen ML, Caruana G, Bernstein A, Lambert PF, Griep AE. 8.  2003. Requirement of PDZ-containing proteins for cell cycle regulation and differentiation in the mouse lens epithelium. Mol. Cell. Biol. 23:8970–81 [Google Scholar]
  9. Howes KA, Ransom N, Papermaster DS, Lasudry JG, Albert DM, Windle JJ. 9.  1994. Apoptosis or retinoblastoma: alternative fates of photoreceptors expressing the HPV-16 E7 gene in the presence or absence of p53. Genes Dev 8:1300–10 [Google Scholar]
  10. Herber R, Liem A, Pitot H, Lambert PF. 10.  1996. Squamous epithelial hyperplasia and carcinoma in mice transgenic for the human papillomavirus type 16 E7 oncogene. J. Virol. 70:1873–81 [Google Scholar]
  11. Song S, Pitot HC, Lambert PF. 11.  1999. The human papillomavirus type 16 E6 gene alone is sufficient to induce carcinomas in transgenic animals. J. Virol. 73:5887–93 [Google Scholar]
  12. Maufort JP, Williams SM, Pitot HC, Lambert PF. 12.  2007. Human papillomavirus 16 E5 oncogene contributes to two stages of skin carcinogenesis. Cancer Res 67:6106–12 [Google Scholar]
  13. Song S, Liem A, Miller JA, Lambert PF. 13.  2000. Human papillomavirus types 16 E6 and E7 contribute differently to carcinogenesis. Virology 267:141–50 [Google Scholar]
  14. Arbeit JM, Howley PM, Hanahan D. 14.  1996. Chronic estrogen-induced cervical and vaginal squamous carcinogenesis in human papillomavirus type 16 transgenic mice. PNAS 93:2930–35 [Google Scholar]
  15. Brake T, Connor JP, Petereit DG, Lambert PF. 15.  2003. Comparative analysis of cervical cancer in women and in a human papillomavirus-transgenic mouse model: identification of minichromosome maintenance protein 7 as an informative biomarker for human cervical cancer. Cancer Res 63:8173–80 [Google Scholar]
  16. Riley RR, Duensing S, Brake T, Munger K, Lambert PF, Arbeit JM. 16.  2003. Dissection of human papillomavirus E6 and E7 function in transgenic mouse models of cervical carcinogenesis. Cancer Res 63:4862–71 [Google Scholar]
  17. Chung SH, Wiedmeyer K, Shai A, Korach KS, Lambert PF. 17.  2008. Requirement for estrogen receptor alpha in a mouse model for human papillomavirus-associated cervical cancer. Cancer Res 68:9928–34 [Google Scholar]
  18. Brake T, Lambert PF. 18.  2005. Estrogen contributes to the onset, persistence, and malignant progression of cervical cancer in a human papillomavirus-transgenic mouse model. PNAS 102:2490–95 [Google Scholar]
  19. Chung SH, Lambert PF. 19.  2009. Prevention and treatment of cervical cancer in mice using estrogen receptor antagonists. PNAS 106:19467–72 [Google Scholar]
  20. Spurgeon ME, Chung SH, Lambert PF. 20.  2014. Recurrence of cervical cancer in mice after selective estrogen receptor modulator therapy. Am. J. Pathol. 184:530–40 [Google Scholar]
  21. Chung SH, Shin MK, Korach KS, Lambert PF. 21.  2013. Requirement for stromal estrogen receptor alpha in cervical neoplasia. Horm. Cancer 4:50–59 [Google Scholar]
  22. den Boon JA, Pyeon D, Wang SS, Horswill M, Schiffman M. 22.  et al. 2015. Molecular transitions from papillomavirus infection to cervical precancer and cancer: role of stromal estrogen receptor signaling. PNAS 112:E3255–64 [Google Scholar]
  23. Maufort JP, Shai A, Pitot HC, Lambert PF. 23.  2010. A role for HPV16 E5 in cervical carcinogenesis. Cancer Res 70:2924–31 [Google Scholar]
  24. Shai A, Brake T, Somoza C, Lambert PF. 24.  2007. The human papillomavirus E6 oncogene dysregulates the cell cycle and contributes to cervical carcinogenesis through two independent activities. Cancer Res 67:1626–35 [Google Scholar]
  25. Jabbar SF, Abrams L, Glick A, Lambert PF. 25.  2009. Persistence of high-grade cervical dysplasia and cervical cancer requires the continuous expression of the human papillomavirus type 16 E7 oncogene. Cancer Res 69:4407–14 [Google Scholar]
  26. Jabbar SF, Park S, Schweizer J, Berard-Bergery M, Pitot HC. 26.  et al. 2012. Cervical cancers require the continuous expression of the human papillomavirus type 16 E7 oncoprotein even in the presence of the viral E6 oncoprotein. Cancer Res 72:4008–16 [Google Scholar]
  27. Goodwin EC, DiMaio D. 27.  2000. Repression of human papillomavirus oncogenes in HeLa cervical carcinoma cells causes the orderly reactivation of dormant tumor suppressor pathways. PNAS 97:12513–18 [Google Scholar]
  28. Goodwin EC, DiMaio D. 28.  2001. Induced senescence in HeLa cervical carcinoma cells containing elevated telomerase activity and extended telomeres. Cell Growth Differ 12:525–34 [Google Scholar]
  29. Goodwin EC, Yang E, Lee CJ, Lee HW, DiMaio D, Hwang ES. 29.  2000. Rapid induction of senescence in human cervical carcinoma cells. PNAS 97:10978–83 [Google Scholar]
  30. Hwang ES, Riese DJ II, Settleman J, Nilson LA, Honig J. 30.  et al. 1993. Inhibition of cervical carcinoma cell line proliferation by the introduction of a bovine papillomavirus regulatory gene. J. Virol. 67:3720–29 [Google Scholar]
  31. Wells SI, Aronow BJ, Wise TM, Williams SS, Couget JA, Howley PM. 31.  2003. Transcriptome signature of irreversible senescence in human papillomavirus-positive cervical cancer cells. PNAS 100:7093–98 [Google Scholar]
  32. Wells SI, Francis DA, Karpova AY, Dowhanick JJ, Benson JD, Howley PM. 32.  2000. Papillomavirus E2 induces senescence in HPV-positive cells via pRB- and p21CIP-dependent pathways. EMBO J 19:5762–71 [Google Scholar]
  33. Shai A, Pitot HC, Lambert PF. 33.  2010. E6-associated protein is required for human papillomavirus type 16 E6 to cause cervical cancer in mice. Cancer Res 70:5064–73 [Google Scholar]
  34. Shai A, Pitot HC, Lambert PF. 34.  2008. p53 loss synergizes with estrogen and papillomaviral oncogenes to induce cervical and breast cancers. Cancer Res 68:2622–31 [Google Scholar]
  35. Kiyono T, Hiraiwa A, Fujita M, Hayashi Y, Akiyama T, Ishibashi M. 35.  1997. Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein. PNAS 94:11612–16 [Google Scholar]
  36. Lee SS, Weiss RS, Javier RT. 36.  1997. Binding of human virus oncoproteins to hDlg/SAP97, a mammalian homolog of the Drosophila discs large tumor suppressor protein. PNAS 94:6670–75 [Google Scholar]
  37. Bonilla-Delgado J, Bulut G, Liu X, Cortes-Malagon EM, Schlegel R. 37.  et al. 2012. The E6 oncoprotein from HPV16 enhances the canonical Wnt/β-catenin pathway in skin epidermis in vivo. Mol. Cancer Res. 10:250–58 [Google Scholar]
  38. Rivera C, Simonson SJ, Yamben IF, Shatadal S, Nguyen MM. 38.  et al. 2013. Requirement for Dlgh-1 in planar cell polarity and skeletogenesis during vertebrate development. PLOS ONE 8:e54410 [Google Scholar]
  39. Yamben IF, Rachel RA, Shatadal S, Copeland NG, Jenkins NA. 39.  et al. 2013. Scrib is required for epithelial cell identity and prevents epithelial to mesenchymal transition in the mouse. Dev. Biol. 384:41–52 [Google Scholar]
  40. Shin MK, Sage J, Lambert PF. 40.  2012. Inactivating all three Rb family pocket proteins is insufficient to initiate cervical cancer. Cancer Res 72:5418–27 [Google Scholar]
  41. Funk JO, Waga S, Harry JB, Espling E, Stillman B, Galloway DA. 41.  1997. Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein. Genes Dev 11:2090–100 [Google Scholar]
  42. Jones DL, Alani RM, Munger K. 42.  1997. The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21Cip1-mediated inhibition of cdk2. Genes Dev 11:2101–11 [Google Scholar]
  43. Shin MK, Balsitis S, Brake T, Lambert PF. 43.  2009. Human papillomavirus E7 oncoprotein overrides the tumor suppressor activity of p21Cip1 in cervical carcinogenesis. Cancer Res 69:5656–63 [Google Scholar]
  44. Genther Williams SM, Disbrow GL, Schlegel R, Lee D, Threadgill DW, Lambert PF. 44.  2005. Requirement of epidermal growth factor receptor for hyperplasia induced by E5, a high-risk human papillomavirus oncogene. Cancer Res 65:6534–42 [Google Scholar]
  45. Pim D, Collins M, Banks L. 45.  1992. Human papillomavirus type 16 E5 gene stimulates the transforming activity of the epidermal growth factor receptor. Oncogene 7:27–32 [Google Scholar]
  46. Leechanachai P, Banks L, Moreau F, Matlashewski G. 46.  1992. The E5 gene from human papillomavirus type 16 is an oncogene which enhances growth factor-mediated signal transduction to the nucleus. Oncogene 7:19–25 [Google Scholar]
  47. Ocadiz-Delgado R, Castaneda-Saucedo E, Indra AK, Hernandez-Pando R, Flores-Guizar P. 47.  et al. 2012. RXRα deletion and E6E7 oncogene expression are sufficient to induce cervical malignant lesions in vivo. Cancer Lett 317:226–36 [Google Scholar]
  48. Bulut G, Fallen S, Beauchamp EM, Drebing LE, Sun J. 48.  et al. 2011. β-Catenin accelerates human papilloma virus type-16 mediated cervical carcinogenesis in transgenic mice. PLOS ONE 6:e27243 [Google Scholar]
  49. Diaz-Chavez J, Hernandez-Pando R, Lambert PF, Gariglio P. 49.  2008. Down-regulation of transforming growth factor-β type II receptor (TGF-βRII) protein and mRNA expression in cervical cancer. Mol. Cancer 7:3 [Google Scholar]
  50. Hobbs RP, Batazzi AS, Han MC, Coulombe PA. 50.  2016. Loss of Keratin 17 induces tissue-specific cytokine polarization and cellular differentiation in HPV16-driven cervical tumorigenesis in vivo. Oncogene. doi: 10.1038/onc.2016.102
  51. Stelzer MK, Pitot HC, Liem A, Schweizer J, Mahoney C, Lambert PF. 51.  2010. A mouse model for human anal cancer. Cancer Prev. Res. 3:1534–41 [Google Scholar]
  52. Thomas MK, Pitot HC, Liem A, Lambert PF. 52.  2011. Dominant role of HPV16 E7 in anal carcinogenesis. Virology 421:114–18 [Google Scholar]
  53. Stelzer MK, Pitot HC, Liem A, Lee D, Kennedy GD, Lambert PF. 53.  2010. Rapamycin inhibits anal carcinogenesis in two preclinical animal models. Cancer Prev. Res. 3:1542–51 [Google Scholar]
  54. Strati K, Pitot HC, Lambert PF. 54.  2006. Identification of biomarkers that distinguish human papillomavirus (HPV)-positive versus HPV-negative head and neck cancers in a mouse model. PNAS 103:14152–57 [Google Scholar]
  55. Strati K, Lambert PF. 55.  2007. Role of Rb-dependent and Rb-independent functions of papillomavirus E7 oncogene in head and neck cancer. Cancer Res 67:11585–93 [Google Scholar]
  56. Jabbar S, Strati K, Shin MK, Pitot HC, Lambert PF. 56.  2010. Human papillomavirus type 16 E6 and E7 oncoproteins act synergistically to cause head and neck cancer in mice. Virology 407:60–67 [Google Scholar]
  57. Shin MK, Pitot HC, Lambert PF. 57.  2012. Pocket proteins suppress head and neck cancer. Cancer Res 72:1280–89 [Google Scholar]
  58. Schreiber K, Cannon RE, Karrison T, Beck-Engeser G, Huo D. 58.  et al. 2004. Strong synergy between mutant ras and HPV16 E6/E7 in the development of primary tumors. Oncogene 23:3972–79 [Google Scholar]
  59. Park JW, Pitot HC, Strati K, Spardy N, Duensing S. 59.  et al. 2010. Deficiencies in the Fanconi anemia DNA damage response pathway increase sensitivity to HPV-associated head and neck cancer. Cancer Res 70:9959–68 [Google Scholar]
  60. Park JW, Shin MK, Lambert PF. 60.  2014. High incidence of female reproductive tract cancers in FA-deficient HPV16-transgenic mice correlates with E7's induction of DNA damage response, an activity mediated by E7's inactivation of pocket proteins. Oncogene 33:3383–91 [Google Scholar]
  61. Sauter SL, Wells SI, Zhang X, Hoskins EE, Davies SM. 61.  et al. 2015. Oral human papillomavirus is common in individuals with Fanconi anemia. Cancer Epidemiol. Biomark. Prev. 24:864–72 [Google Scholar]
  62. de Araujo MR, Rubira-Bullen IR, Santos CF, Dionisio TJ, Bonfim CM. 62.  et al. 2011. High prevalence of oral human papillomavirus infection in Fanconi's anemia patients. Oral Dis 17:572–76 [Google Scholar]
  63. Wilkinson EJ, Morgan LS, Friedrich EG Jr. 63.  1984. Association of Fanconi's anemia and squamous-cell carcinoma of the lower female genital tract with condyloma acuminatum. A report of two cases. J. Reprod. Med. 29:447–53 [Google Scholar]
  64. Kutler DI, Wreesmann VB, Goberdhan A, Ben-Porat L, Satagopan J. 64.  et al. 2003. Human papillomavirus DNA and p53 polymorphisms in squamous cell carcinomas from Fanconi anemia patients. J. Natl. Cancer Inst. 95:1718–21 [Google Scholar]
  65. van Zeeburg HJ, Snijders PJ, Wu T, Gluckman E, Soulier J. 65.  et al. 2008. Clinical and molecular characteristics of squamous cell carcinomas from Fanconi anemia patients. J. Natl. Cancer Inst. 100:1649–53 [Google Scholar]
  66. Alter BP, Giri N, Savage SA, Quint WG, de Koning MN, Schiffman M. 66.  2013. Squamous cell carcinomas in patients with Fanconi anemia and dyskeratosis congenita: a search for human papillomavirus. Int. J. Cancer 133:1513–15 [Google Scholar]
  67. Park S, Park JW, Pitot HC, Lambert PF. 67.  2016. Loss of dependence on continued expression of the human papillomavirus 16 E7 oncogene in cervical cancers and precancerous lesions arising in Fanconi anemia pathway-deficient mice. mBio 7:e00628–16 [Google Scholar]
  68. Schaper ID, Marcuzzi GP, Weissenborn SJ, Kasper HU, Dries V. 68.  et al. 2005. Development of skin tumors in mice transgenic for early genes of human papillomavirus type 8. Cancer Res 65:1394–400 [Google Scholar]
  69. Hufbauer M, Lazic D, Reinartz M, Akgul B, Pfister H, Weissenborn SJ. 69.  2011. Skin tumor formation in human papillomavirus 8 transgenic mice is associated with a deregulation of oncogenic miRNAs and their tumor suppressive targets. J. Dermatol. Sci. 64:7–15 [Google Scholar]
  70. Dong W, Kloz U, Accardi R, Caldeira S, Tong WM. 70.  et al. 2005. Skin hyperproliferation and susceptibility to chemical carcinogenesis in transgenic mice expressing E6 and E7 of human papillomavirus type 38. J. Virol. 79:14899–908 [Google Scholar]
  71. Viarisio D, Decker KM, Aengeneyndt B, Flechtenmacher C, Gissmann L, Tommasino M. 71.  2013. Human papillomavirus type 38 E6 and E7 act as tumour promoters during chemically induced skin carcinogenesis. J. Gen. Virol. 94:749–52 [Google Scholar]
  72. Saenz Robles MT, Pipas JM. 72.  2009. T antigen transgenic mouse models. Semin. Cancer Biol. 19:229–35 [Google Scholar]
  73. Spurgeon ME, Cheng J, Bronson RT, Lambert PF, DeCaprio JA. 73.  2015. Tumorigenic activity of Merkel cell polyomavirus T antigens expressed in the stratified epithelium of mice. Cancer Res 75:1068–79 [Google Scholar]
  74. Verhaegen ME, Mangelberger D, Harms PW, Vozheiko TD, Weick JW. 74.  et al. 2015. Merkel cell polyomavirus small T antigen is oncogenic in transgenic mice. J. Investig. Dermatol. 135:1415–24 [Google Scholar]
  75. Shuda M, Guastafierro A, Geng X, Shuda Y, Ostrowski SM. 75.  et al. 2015. Merkel Cell polyomavirus small T antigen induces cancer and embryonic Merkel cell proliferation in a transgenic mouse model. PLOS ONE 10:e0142329 [Google Scholar]
  76. Kilger E, Kieser A, Baumann M, Hammerschmidt W. 76.  1998. Epstein-Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. EMBO J 17:1700–9 [Google Scholar]
  77. Kulwichit W, Edwards RH, Davenport EM, Baskar JF, Godfrey V, Raab-Traub N. 77.  1998. Expression of the Epstein-Barr virus latent membrane protein 1 induces B cell lymphoma in transgenic mice. PNAS 95:11963–68 [Google Scholar]
  78. Thornburg NJ, Kulwichit W, Edwards RH, Shair KH, Bendt KM, Raab-Traub N. 78.  2006. LMP1 signaling and activation of NF-κB in LMP1 transgenic mice. Oncogene 25:288–97 [Google Scholar]
  79. Shair KH, Bendt KM, Edwards RH, Bedford EC, Nielsen JN, Raab-Traub N. 79.  2007. EBV latent membrane protein 1 activates Akt, NFκB, and Stat3 in B cell lymphomas. PLOS Pathog 3:e166 [Google Scholar]
  80. Uchida J, Yasui T, Takaoka-Shichijo Y, Muraoka M, Kulwichit W. 80.  et al. 1999. Mimicry of CD40 signals by Epstein-Barr virus LMP1 in B lymphocyte responses. Science 286:300–3 [Google Scholar]
  81. Stunz LL, Busch LK, Munroe ME, Sigmund CD, Tygrett LT. 81.  et al. 2004. Expression of the cytoplasmic tail of LMP1 in mice induces hyperactivation of B lymphocytes and disordered lymphoid architecture. Immunity 21:255–66 [Google Scholar]
  82. Arcipowski KM, Stunz LL, Bishop GA. 82.  2014. TRAF6 is a critical regulator of LMP1 functions in vivo. Int. Immunol. 26:149–58 [Google Scholar]
  83. Arcipowski KM, Bishop GA. 83.  2012. TRAF binding is required for a distinct subset of in vivo B cell functions of the oncoprotein LMP1. J. Immunol. 189:5165–70 [Google Scholar]
  84. Ontiveros EP, Halwani A, Stunz LL, Kamberos N, Olivier AK. 84.  et al. 2014. A new model of LMP1-MYC interaction in B cell lymphoma. Leuk. Lymphoma 55:2917–23 [Google Scholar]
  85. Shair KH, Bendt KM, Edwards RH, Nielsen JN, Moore DT, Raab-Traub N. 85.  2012. Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) and LMP2A function cooperatively to promote carcinoma development in a mouse carcinogenesis model. J. Virol. 86:5352–65 [Google Scholar]
  86. Longan L, Longnecker R. 86.  2000. Epstein-Barr virus latent membrane protein 2A has no growth-altering effects when expressed in differentiating epithelia. J. Gen. Virol. 81:2245–52 [Google Scholar]
  87. Zhang Q, Yu L, Liu L, Wang S, Yang Y. 87.  et al. 2011. LMP1 antagonizes WNT/β-catenin signalling through inhibition of WTX and promotes nasopharyngeal dysplasia but not tumourigenesis in LMP1B95-8 transgenic mice. J. Pathol. 223:574–83 [Google Scholar]
  88. Caldwell RG, Wilson JB, Anderson SJ, Longnecker R. 88.  1998. Epstein-Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity 9:405–11 [Google Scholar]
  89. Caldwell RG, Brown RC, Longnecker R. 89.  2000. Epstein-Barr virus LMP2A-induced B-cell survival in two unique classes of EμLMP2A transgenic mice. J. Virol. 74:1101–13 [Google Scholar]
  90. Merchant M, Caldwell RG, Longnecker R. 90.  2000. The LMP2A ITAM is essential for providing B cells with development and survival signals in vivo. J. Virol. 74:9115–24 [Google Scholar]
  91. Merchant M, Longnecker R. 91.  2001. LMP2A survival and developmental signals are transmitted through Btk-dependent and Btk-independent pathways. Virology 291:46–54 [Google Scholar]
  92. Rovedo M, Longnecker R. 92.  2008. Epstein-Barr virus latent membrane protein 2A preferentially signals through the Src family kinase Lyn. J. Virol. 82:8520–28 [Google Scholar]
  93. Portis T, Longnecker R. 93.  2004. Epstein-Barr virus (EBV) LMP2A mediates B-lymphocyte survival through constitutive activation of the Ras/PI3K/Akt pathway. Oncogene 23:8619–28 [Google Scholar]
  94. Portis T, Longnecker R. 94.  2003. Epstein-Barr virus LMP2A interferes with global transcription factor regulation when expressed during B-lymphocyte development. J. Virol. 77:105–14 [Google Scholar]
  95. Portis T, Dyck P, Longnecker R. 95.  2003. Epstein-Barr Virus (EBV) LMP2A induces alterations in gene transcription similar to those observed in Reed-Sternberg cells of Hodgkin lymphoma. Blood 102:4166–78 [Google Scholar]
  96. Anderson LJ, Longnecker R. 96.  2009. Epstein-Barr virus latent membrane protein 2A exploits Notch1 to alter B-cell identity in vivo. Blood 113:108–16 [Google Scholar]
  97. Anderson LJ, Longnecker R. 97.  2008. EBV LMP2A provides a surrogate pre-B cell receptor signal through constitutive activation of the ERK/MAPK pathway. J. Gen. Virol. 89:1563–68 [Google Scholar]
  98. Bultema R, Longnecker R, Swanson-Mungerson M. 98.  2009. Epstein-Barr virus LMP2A accelerates MYC-induced lymphomagenesis. Oncogene 28:1471–76 [Google Scholar]
  99. Bieging KT, Amick AC, Longnecker R. 99.  2009. Epstein-Barr virus LMP2A bypasses p53 inactivation in a MYC model of lymphomagenesis. PNAS 106:17945–50 [Google Scholar]
  100. Fish K, Chen J, Longnecker R. 100.  2014. Epstein-Barr virus latent membrane protein 2A enhances MYC-driven cell cycle progression in a mouse model of B lymphoma. Blood 123:530–40 [Google Scholar]
  101. Repellin CE, Tsimbouri PM, Philbey AW, Wilson JB. 101.  2010. Lymphoid hyperplasia and lymphoma in transgenic mice expressing the small non-coding RNA, EBER1 of Epstein-Barr virus. PLOS ONE 5:e9092 [Google Scholar]
  102. Curran JA, Laverty FS, Campbell D, Macdiarmid J, Wilson JB. 102.  2001. Epstein-Barr virus encoded latent membrane protein-1 induces epithelial cell proliferation and sensitizes transgenic mice to chemical carcinogenesis. Cancer Res 61:6730–38 [Google Scholar]
  103. Drotar ME, Silva S, Barone E, Campbell D, Tsimbouri P. 103.  et al. 2003. Epstein-Barr virus nuclear antigen-1 and Myc cooperate in lymphomagenesis. Int. J. Cancer 106:388–95 [Google Scholar]
  104. Tsimbouri P, Drotar ME, Coy JL, Wilson JB. 104.  2002. bcl-xL and RAG genes are induced and the response to IL-2 enhanced in EμEBNA-1 transgenic mouse lymphocytes. Oncogene 21:5182–87 [Google Scholar]
  105. Wilson JB, Bell JL, Levine AJ. 105.  1996. Expression of Epstein-Barr virus nuclear antigen-1 induces B cell neoplasia in transgenic mice. EMBO J 15:3117–26 [Google Scholar]
  106. Kang MS, Lu H, Yasui T, Sharpe A, Warren H. 106.  et al. 2005. Epstein-Barr virus nuclear antigen 1 does not induce lymphoma in transgenic FVB mice. PNAS 102:820–25 [Google Scholar]
  107. Tornell J, Farzad S, Espander-Jansson A, Matejka G, Isaksson O, Rymo L. 107.  1996. Expression of Epstein-Barr nuclear antigen 2 in kidney tubule cells induce tumors in transgenic mice. Oncogene 12:1521–28 [Google Scholar]
  108. Fakhari FD, Jeong JH, Kanan Y, Dittmer DP. 108.  2006. The latency-associated nuclear antigen of Kaposi sarcoma-associated herpesvirus induces B cell hyperplasia and lymphoma. J. Clin. Investig. 116:735–42 [Google Scholar]
  109. Sin SH, Fakhari FD, Dittmer DP. 109.  2010. The viral latency-associated nuclear antigen augments the B-cell response to antigen in vivo. J. Virol. 84:10653–60 [Google Scholar]
  110. Sin SH, Kim Y, Eason A, Dittmer DP. 110.  2015. KSHV latency locus cooperates with Myc to drive lymphoma in mice. PLOS Pathog 11:e1005135 [Google Scholar]
  111. Yang TY, Chen SC, Leach MW, Manfra D, Homey B. 111.  et al. 2000. Transgenic expression of the chemokine receptor encoded by human herpesvirus 8 induces an angioproliferative disease resembling Kaposi's sarcoma. J. Exp. Med. 191:445–54 [Google Scholar]
  112. Guo HG, Sadowska M, Reid W, Tschachler E, Hayward G, Reitz M. 112.  2003. Kaposi's sarcoma-like tumors in a human herpesvirus 8 ORF74 transgenic mouse. J. Virol. 77:2631–39 [Google Scholar]
  113. Holst PJ, Rosenkilde MM, Manfra D, Chen SC, Wiekowski MT. 113.  et al. 2001. Tumorigenesis induced by the HHV8-encoded chemokine receptor requires ligand modulation of high constitutive activity. J. Clin. Investig. 108:1789–96 [Google Scholar]
  114. Jensen KK, Manfra DJ, Grisotto MG, Martin AP, Vassileva G. 114.  et al. 2005. The human herpes virus 8-encoded chemokine receptor is required for angioproliferation in a murine model of Kaposi's sarcoma. J. Immunol. 174:3686–94 [Google Scholar]
  115. Grisotto MG, Garin A, Martin AP, Jensen KK, Chan P. 115.  et al. 2006. The human herpesvirus 8 chemokine receptor vGPCR triggers autonomous proliferation of endothelial cells. J. Clin. Investig. 116:1264–73 [Google Scholar]
  116. Ballon G, Akar G, Cesarman E. 116.  2015. Systemic expression of Kaposi sarcoma herpesvirus (KSHV) vFLIP in endothelial cells leads to a profound proinflammatory phenotype and myeloid lineage remodeling in vivo. PLOS Pathog 11:e1004581 [Google Scholar]
  117. Ahmad A, Groshong JS, Matta H, Schamus S, Punj V. 117.  et al. 2010. Kaposi sarcoma-associated herpesvirus-encoded viral FLICE inhibitory protein (vFLIP) K13 cooperates with Myc to promote lymphoma in mice. Cancer Biol. Ther. 10:1033–40 [Google Scholar]
  118. Chugh P, Matta H, Schamus S, Zachariah S, Kumar A. 118.  et al. 2005. Constitutive NF-κB activation, normal Fas-induced apoptosis, and increased incidence of lymphoma in human herpes virus 8 K13 transgenic mice. PNAS 102:12885–90 [Google Scholar]
  119. Verschuren EW, Klefstrom J, Evan GI, Jones N. 119.  2002. The oncogenic potential of Kaposi's sarcoma-associated herpesvirus cyclin is exposed by p53 loss in vitro and in vivo. Cancer Cell 2:229–41 [Google Scholar]
  120. Pekkonen P, Jarviluoma A, Zinovkina N, Cvrljevic A, Prakash S. 120.  et al. 2014. KSHV viral cyclin interferes with T-cell development and induces lymphoma through Cdk6 and Notch activation in vivo. Cell Cycle 13:3670–84 [Google Scholar]
/content/journals/10.1146/annurev-virology-100114-054908
Loading
/content/journals/10.1146/annurev-virology-100114-054908
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error