1932

Abstract

Viruses are notorious for rapidly exchanging genetic information between close relatives and with the host cells they infect. This exchange has profound effects on the nature and rapidity of virus and host evolution. Recombination between dsDNA viruses is common, as is genetic exchange between dsDNA viruses or retroviruses and host genomes. Recombination between RNA virus genomes is also well known. In contrast, genetic exchange across viral kingdoms, for instance between nonretroviral RNA viruses or ssDNA viruses and host genomes or between RNA and DNA viruses, was previously thought to be practically nonexistent. However, there is now growing evidence for both RNA and ssDNA viruses recombining with host dsDNA genomes and, more surprisingly, RNA virus genes recombining with ssDNA virus genomes. Mechanisms are still unclear, but this deep recombination greatly expands the breadth of virus evolution and confounds virus taxonomy.

Associated Article

There are media items related to this article:
Deep Recombination: RNA and ssDNA Virus Genes in DNA Virus and Host Genomes: Video 1

Associated Article

There are media items related to this article:
Deep Recombination: RNA and ssDNA Virus Genes in DNA Virus and Host Genomes: Video 2
Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-100114-055127
2015-11-09
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/virology/2/1/annurev-virology-100114-055127.html?itemId=/content/journals/10.1146/annurev-virology-100114-055127&mimeType=html&fmt=ahah

Literature Cited

  1. Woo J. 1.  2000. Mission: Impossible II Hollywood, CA: Paramount
  2. Jennings C. 2.  2004–2008. ReGenesis Toronto: Movie Cent. Netw.
  3. Preston R. 3.  1998. The Cobra Event New York: Ballantine
  4. Cussler C, Cussler D. 4.  2004. Black Wind(A Dirk Pitt Novel). New York: Putnam [Google Scholar]
  5. Guy B, Guirakhoo F, Barban V, Higgs S, Monath TP, Lang J. 5.  2010. Preclinical and clinical development of YFV 17D-based chimeric vaccines against dengue, West Nile and Japanese encephalitis viruses. Vaccine 28:632–49 [Google Scholar]
  6. Lai CJ, Monath TP. 6.  2003. Chimeric flaviviruses: novel vaccines against dengue fever, tick-borne encephalitis, and Japanese encephalitis. Adv. Virus Res. 61:469–509 [Google Scholar]
  7. Villar L, Dayan GH, Arredondo-Garcia JL, Rivera DM, Cunha R. 7.  et al. 2015. Efficacy of a tetravalent dengue vaccine in children in Latin America. N. Engl. J. Med. 372:113–23 [Google Scholar]
  8. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. 8.  1992. Evolution and ecology of influenza A viruses. Microbiol. Rev. 56:152–79 [Google Scholar]
  9. Diemer GS, Stedman KM. 9.  2012. A novel virus genome discovered in an extreme environment suggests recombination between unrelated groups of RNA and DNA viruses. Biol. Dir. 7:13The first report of RNA virus genes in ssDNA virus genomes. [Google Scholar]
  10. Baltimore D. 10.  1971. Expression of animal virus genomes. Bacteriol. Rev. 35:235–41 [Google Scholar]
  11. King AMQ, Adams MJ, Carstens EB, Lefkowitz E. 11.  2011. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses Amsterdam: Elsevier
  12. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC. 12.  et al. 2001. Initial sequencing and analysis of the human genome. Nature 409:860–921 [Google Scholar]
  13. Casjens S. 13.  2003. Prophages and bacterial genomics: What have we learned so far?. Mol. Microbiol. 49:277–300 [Google Scholar]
  14. Hendrix RW, Smith MCM, Burns RN, Ford ME, Hatfull GF. 14.  1999. Evolutionary relationships among diverse bacteriophages and prophages: All the world's a phage. PNAS 96:2192–97 [Google Scholar]
  15. Pedulla ML, Ford ME, Houtz JM, Karthikeyan T, Wadsworth C. 15.  et al. 2003. Origins of highly mosaic mycobacteriophage genomes. Cell 113:171–82 [Google Scholar]
  16. Hatfull GF, Hendrix RW. 16.  2011. Bacteriophages and their genomes. Curr. Opin. Virol. 1:298–303 [Google Scholar]
  17. Krupovic M, Prangishvili D, Hendrix RW, Bamford DH. 17.  2011. Genomics of bacterial and archaeal viruses: dynamics within the prokaryotic virosphere. Microbiol. Mol. Biol. Rev. 75:610–35 [Google Scholar]
  18. McDaniel LD, Rosario K, Breitbart M, Paul JH. 18.  2014. Comparative metagenomics: natural populations of induced prophages demonstrate highly unique, lower diversity viral sequences. Environ. Microbiol. 16:570–85 [Google Scholar]
  19. Hewson I, Ng G, Li W, LaBarre BA, Aguirre I. 19.  et al. 2013. Metagenomic identification, seasonal dynamics, and potential transmission mechanisms of a Daphnia-associated single-stranded DNA virus in two temperate lakes. Limnol. Oceanogr. 58:1605–20 [Google Scholar]
  20. Roux S, Enault F, Bronner G, Vaulot D, Forterre P, Krupovic M. 20.  2013. Chimeric viruses blur the borders between the major groups of eukaryotic single-stranded DNA viruses. Nat. Commun. 4:2700A comprehensive bioinformatics study of metagenomes and identification of multiple chimeric RNA-ssDNA viruses. [Google Scholar]
  21. Zhdanov VM. 21.  1975. Integration of viral genomes. Nature 256:471–73First report of RNA virus genes in cellular genomes; widely ignored. [Google Scholar]
  22. Zhdanov VM, Bogomolova NN, Gavrilov VI, Andzhaparidze OG, Deryabin PG, Astakhov AN. 22.  1974. Infectious DNA of tick-borne encephalitis virus. Arch. Gesamte Virusforsch. 45:215–24 [Google Scholar]
  23. Zhdanov VM, Parfanovich MI. 23.  1974. Integration of measles virus nucleic acid into the cell genome. Arch. Gesamte Virusforsch. 45:225–34 [Google Scholar]
  24. Weiss RA, Kellam P. 24.  1997. Virology: illicit viral DNA. Nature 390:235–36 [Google Scholar]
  25. Crochu S, Cook S, Attoui H, Charrel RN, De Chesse R. 25.  et al. 2004. Sequences of flavivirus-related RNA viruses persist in DNA form integrated in the genome of Aedes spp. mosquitoes. J. Gen. Virol. 85:1971–80 [Google Scholar]
  26. Klenerman P, Hengartner H, Zinkernagel RM. 26.  1997. A non-retroviral RNA virus persists in DNA form. Nature 390:298–301First widely accepted report of RNA virus genes in cellular genomes. [Google Scholar]
  27. Geuking MB, Weber J, Dewannieux M, Gorelik E, Heidmann T. 27.  et al. 2009. Recombination of retrotransposon and exogenous RNA virus results in nonretroviral cDNA integration. Science 323:393–96 [Google Scholar]
  28. Taylor DJ, Bruenn J. 28.  2009. The evolution of novel fungal genes from non-retroviral RNA viruses. BMC Biol 7:88 [Google Scholar]
  29. Chiba S, Kondo H, Tani A, Saisho D, Sakamoto W. 29.  et al. 2011. Widespread endogenization of genome sequences of non-retroviral RNA viruses into plant genomes. PLOS Pathog. 7:e1002146 [Google Scholar]
  30. Horie M, Honda T, Suzuki Y, Kobayashi Y, Daito T. 30.  et al. 2010. Endogenous non-retroviral RNA virus elements in mammalian genomes. Nature 463:84–8730–32. Concurrent bioinformatics studies that showed multiple RNA virus genes in animal genomes. [Google Scholar]
  31. Belyi VA, Levine AJ, Skalka AM. 31.  2010. Unexpected inheritance: multiple integrations of ancient Bornavirus and Ebolavirus/Marburgvirus sequences in vertebrate genomes. PLOS Pathog 6e100103030–32. Concurrent bioinformatics studies that showed multiple RNA virus genes in animal genomes.
  32. Katzourakis A, Gifford RJ. 32.  2010. Endogenous viral elements in animal genomes. PLOS Genet 6:e100119130–32. Concurrent bioinformatics studies that showed multiple RNA virus genes in animal genomes. [Google Scholar]
  33. Horie M, Kobayashi Y, Suzuki Y, Tomonaga K. 33.  2013. Comprehensive analysis of endogenous bornavirus-like elements in eukaryote genomes. Philos. Trans. R. Soc. B. 368:1–11 [Google Scholar]
  34. Taylor DJ, Leach RW, Bruenn J. 34.  2010. Filoviruses are ancient and integrated into mammalian genomes. BMC Evol. Biol. 10:193 [Google Scholar]
  35. Kazazian HH Jr. 35.  2014. Processed pseudogene insertions in somatic cells. Mob. DNA 5:20 [Google Scholar]
  36. Esnault C, Maestre J, Heidmann T. 36.  2000. Human LINE retrotransposons generate processed pseudogenes. Nat. Genet. 24:363–67 [Google Scholar]
  37. Han JS. 37.  2010. Non-long terminal repeat (non-LTR) retrotransposons: mechanisms, recent developments, and unanswered questions. Mob. DNA 1:15 [Google Scholar]
  38. Prak ETL, Kazazian HH. 38.  2000. Mobile elements and the human genome. Nat. Rev. Genet. 1:134–44 [Google Scholar]
  39. Cost GJ, Feng Q, Jacquier A, Boeke JD. 39.  2002. Human L1 element target-primed reverse transcription in vitro. EMBO J. 21:5899–910 [Google Scholar]
  40. Cost GJ, Boeke JD. 40.  1998. Targeting of human retrotransposon integration is directed by the specificity of the L1 endonuclease for regions of unusual DNA structure. Biochemistry 37:18081–93 [Google Scholar]
  41. Mandal PK, Ewing AD, Hancks DC, Kazazian HH Jr. 41.  2013. Enrichment of processed pseudogene transcripts in L1-ribonucleoprotein particles. Hum. Mol. Genet. 22:3730–48 [Google Scholar]
  42. Tsai WC, Lloyd RE. 42.  2014. Cytoplasmic RNA granules and viral infection. Annu. Rev. Virol. 1:147–70 [Google Scholar]
  43. Gorbunova V, Boeke JD, Helfand SL, Sedivy JM. 43.  2014. Sleeping dogs of the genome. Science 346:1187–88 [Google Scholar]
  44. Tanne E, Sela I. 44.  2005. Occurrence of a DNA sequence of a non-retro RNA virus in a host plant genome and its expression: evidence for recombination between viral and host RNAs. Virology 332:614–22 [Google Scholar]
  45. Maori E, Tanne E, Sela I. 45.  2007. Reciprocal sequence exchange between non-retro viruses and hosts leading to the appearance of new host phenotypes. Virology 362:342–49 [Google Scholar]
  46. Fujino K, Horie M, Honda T, Merriman DK, Tomonaga K. 46.  2014. Inhibition of Borna disease virus replication by an endogenous bornavirus-like element in the ground squirrel genome. PNAS 111:13175–80 [Google Scholar]
  47. Goic B, Vodovar N, Mondotte JA, Monot C, Frangeul L. 47.  et al. 2013. RNA-mediated interference and reverse transcription control the persistence of RNA viruses in the insect model Drosophila. Nat. Immunol. 14:396–403Indication that reverse transcription of infecting RNA viruses is widespread. [Google Scholar]
  48. Mokili JL, Rohwer F, Dutilh BE. 48.  2012. Metagenomics and future perspectives in virus discovery. Curr. Opin. Virol. 2:63–77 [Google Scholar]
  49. Angly FE, Felts B, Breitbart M, Salamon P, Edwards RA. 49.  et al. 2006. The marine viromes of four oceanic regions. PLOS Biol. 4:e368 [Google Scholar]
  50. Anthony SJ, Epstein JH, Murray KA, Navarrete-Macias I, Zambrana-Torrelio CM. 50.  et al. 2013. A strategy to estimate unknown viral diversity in mammals. mBio 4:e00598–13 [Google Scholar]
  51. Cotmore SF, Tattersall P. 51.  2013. Parvovirus diversity and DNA damage responses. Cold Spring Harb. Perspect. Biol. 5:a012989 [Google Scholar]
  52. Asokan A, Schaffer DV, Samulski RJ. 52.  2012. The AAV vector toolkit: poised at the clinical crossroads. Mol. Ther. 20:699–708 [Google Scholar]
  53. Ward P, Walsh CE. 53.  2012. Targeted integration of a rAAV vector into the AAVS1 region. Virology 433:356–66 [Google Scholar]
  54. Faruque SM, Mekalanos JJ. 54.  2012. Phage-bacterial interactions in the evolution of toxigenic Vibrio cholerae. Virulence 3:556–65 [Google Scholar]
  55. Das B. 55.  2014. Mechanistic insights into filamentous phage integration in Vibrio cholerae. Front. Microbiol. 5:650 [Google Scholar]
  56. Kapoor A, Simmonds P, Lipkin WI. 56.  2010. Discovery and characterization of mammalian endogenous parvoviruses. J. Virol. 84:12628–35 [Google Scholar]
  57. Liu H, Fu Y, Xie J, Cheng J, Ghabrial SA. 57.  et al. 2011. Widespread endogenization of densoviruses and parvoviruses in animal and human genomes. J. Virol. 85:9863–76 [Google Scholar]
  58. Rosario K, Duffy S, Breitbart M. 58.  2012. A field guide to eukaryotic circular single-stranded DNA viruses: insights gained from metagenomics. Arch. Virol. 157:1851–71Excellent review article on environmental ssDNA viruses. [Google Scholar]
  59. Li L, Kapoor A, Slikas B, Bamidele OS, Wang C. 59.  et al. 2010. Multiple diverse circoviruses infect farm animals and are commonly found in human and chimpanzee feces. J. Virol. 84:1674–82 [Google Scholar]
  60. Liu H, Fu Y, Li B, Yu X, Xie J. 60.  et al. 2011. Widespread horizontal gene transfer from circular single-stranded DNA viruses to eukaryotic genomes. BMC Evol. Biol. 11:276 [Google Scholar]
  61. Meng G, Zhang X, Plevka P, Yu Q, Tijssen P, Rossmann MG. 61.  2013. The structure and host entry of an invertebrate parvovirus. J. Virol. 87:12523–30 [Google Scholar]
  62. Belyi VA, Levine AJ, Skalka AM. 62.  2010. Sequences from ancestral single-stranded DNA viruses in vertebrate genomes: the Parvoviridae and Circoviridae are more than 40 to 50 million years old. J. Virol. 84:12458–62 [Google Scholar]
  63. Krupovic M, Forterre P. 63.  2011. Microviridae goes temperate: Microvirus-related proviruses reside in the genomes of Bacteroidetes. PLOS ONE 6:e19883 [Google Scholar]
  64. Thomson BJ, Efstathiou S, Honess RW. 64.  1991. Acquisition of the human adeno-associated virus type-2 rep gene by human herpesvirus type-6. Nature 351:78–80First report of ssDNA virus genes in host genomes. [Google Scholar]
  65. Thomson BJ, Weindler FW, Gray D, Schwaab V, Heilbronn R. 65.  1994. Human herpesvirus-6 (HHV-6) is a helper virus for adeno-associated virus type-2 (AAV-2) and the AAV-2 rep gene homolog in HHV-6 can mediate AAV-2 DNA-replication and regulate gene-expression. Virology 204:304–11 [Google Scholar]
  66. Caselli E, Bracci A, Galvan M, Boni M, Rotola A. 66.  et al. 2006. Human herpesvirus 6 (HHV-6) U94/REP protein inhibits betaherpesvirus replication. Virology 346:402–14 [Google Scholar]
  67. Kaufer BB, Flamand L. 67.  2014. Chromosomally integrated HHV-6: impact on virus, cell and organismal biology. Curr. Opin. Virol. 9:111–18 [Google Scholar]
  68. Vink C, Beuken E, Bruggeman CA. 68.  2000. Complete DNA sequence of the rat cytomegalovirus genome. J. Virol. 74:7656–65 [Google Scholar]
  69. Tulman ER, Afonso CL, Lu Z, Zsak L, Kutish GF, Rock DL. 69.  2004. The genome of canarypox virus. J. Virol. 78:353–66 [Google Scholar]
  70. Roux S, Tournayre J, Mahul A, Debroas D, Enault F. 70.  2014. Metavir 2: new tools for viral metagenome comparison and assembled virome analysis. BMC Bioinform. 15:76 [Google Scholar]
  71. Roux S, Faubladier M, Mahul A, Paulhe N, Bernard A. 71.  et al. 2011. Metavir: a web server dedicated to virome analysis. Bioinformatics 27:3074–75 [Google Scholar]
  72. López-Bueno A, Tamames J, Velázquez D, Moya A, Quesada A, Alcami A. 72.  2009. High diversity of the viral community from an Antarctic lake. Science 326:858–61 [Google Scholar]
  73. Whon TW, Kim MS, Roh SW, Shin NR, Lee HW, Bae JW. 73.  2012. Metagenomic characterization of airborne viral DNA diversity in the near-surface atmosphere. J. Virol. 86:8221–31 [Google Scholar]
  74. Rosario K, Dayaram A, Marinov M, Ware J, Kraberger S. 74.  et al. 2012. Diverse circular ssDNA viruses discovered in dragonflies (Odonata: Epiprocta). J. Gen. Virol. 93:2668–81 [Google Scholar]
  75. Stedman K. 75.  2013. Mechanisms for RNA capture by ssDNA viruses: grand theft RNA. J. Mol. Evol. 76:359–64Hypothetical mechanisms for RNA virus gene acquisition by ssDNA viruses. [Google Scholar]
  76. Hu Z, Li G, Li G, Yao Q, Chen K. 76.  2013. Bombyx mori bidensovirus: the type species of the new genus Bidensovirus in the new family Bidnaviridae. Chin. Sci. Bull. 58:4528–32 [Google Scholar]
  77. Krupovic M, Koonin EV. 77.  2014. Evolution of eukaryotic single-stranded DNA viruses of the Bidnaviridae family from genes of four other groups of widely different viruses. Sci. Rep. 4:5347 [Google Scholar]
  78. Krupovic M, Bamford DH, Koonin EV. 78.  2014. Conservation of major and minor jelly-roll capsid proteins in Polinton (Maverick) transposons suggests that they are bona fide viruses. Biol. Dir 9:6 [Google Scholar]
  79. Krupovic M. 79.  2012. Recombination between RNA viruses and plasmids might have played a central role in the origin and evolution of small DNA viruses. BioEssays 34:867–70 [Google Scholar]
  80. Krupovic M, Ravantti JJ, Bamford DH. 80.  2009. Geminiviruses: a tale of a plasmid becoming a virus. BMC Evol. Biol. 9:112 [Google Scholar]
  81. Martin DP, Biagini P, Lefeuvre P, Golden M, Roumagnac P, Varsani A. 81.  2011. Recombination in eukaryotic single stranded DNA viruses. Viruses 3:1699–738 [Google Scholar]
  82. Steward GF, Culley AI, Mueller JA, Wood-Charlson EM, Belcaid M, Poisson G. 82.  2013. Are we missing half of the viruses in the ocean?. ISME J. 7:672–79 [Google Scholar]
  83. Monjane AL, Martin DP, Lakay F, Muhire BM, Pande D. 83.  et al. 2014. Extensive recombination-induced disruption of genetic interactions is highly deleterious but can be partially reversed by small numbers of secondary recombination events. J. Virol. 88:7843–51 [Google Scholar]
  84. Jachiet PA, Colson P, Lopez P, Bapteste E. 84.  2014. Extensive gene remodeling in the viral world: new evidence for nongradual evolution in the mobilome network. Genome Biol. Evol. 6:2195–205 [Google Scholar]
  85. Abrescia NGA, Bamford DH, Grimes JM, Stuart DI. 85.  2012. Structure unifies the viral universe. Annu. Rev. Biochem. 81:795–822 [Google Scholar]
  86. Hendrix RW. 86.  2009. Jumbo bacteriophages. Curr. Top. Microbiol. Immunol. 328:229–240 [Google Scholar]
  87. Botstein D. 87.  1980. A theory of modular evolution for bacteriophages. Ann. N.Y. Acad. Sci. 354:484–90 [Google Scholar]
  88. Duffy S, Shackelton LA, Holmes EC. 88.  2008. Rates of evolutionary change in viruses: patterns and determinants. Nat. Rev. Genet. 9:267–76 [Google Scholar]
  89. Thurber RV, Haynes M, Breitbart M, Wegley L, Rohwer F. 89.  2009. Laboratory procedures to generate viral metagenomes. Nat. Protoc. 4:470–83 [Google Scholar]
  90. Kim KH, Bae JW. 90.  2011. Amplification methods bias metagenomic libraries of uncultured single-stranded and double-stranded DNA viruses. Appl. Env. Microbiol. 77:7663–68 [Google Scholar]
/content/journals/10.1146/annurev-virology-100114-055127
Loading
/content/journals/10.1146/annurev-virology-100114-055127
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error