1932

Abstract

Influenza A viruses are constantly changing. This change accounts for seasonal epidemics, infrequent pandemics, and zoonotic outbreaks. A major mechanism underlying the genetic diversification of influenza A virus is reassortment of intact gene segments between coinfecting viruses. This exchange is possible because of the segmented nature of the viral genome. Here, I first consider the constraints and drivers acting on influenza A virus reassortment, including the likelihood of coinfection at the host and cellular levels, mixing and assembly of heterologous gene segments within coinfected cells, and the fitness associated with reassortant genotypes. I then discuss the implications of reassortment for influenza A virus evolution, including its classically recognized role in the emergence of genetically “shifted” pandemic strains as well as its potential role as a catalyst of genetic drift.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-101416-041726
2017-09-29
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/virology/4/1/annurev-virology-101416-041726.html?itemId=/content/journals/10.1146/annurev-virology-101416-041726&mimeType=html&fmt=ahah

Literature Cited

  1. Shaw ML, Palese P. 1.  2013. Orthomyxoviridae. Fields Virology DM Knipe, PM Howley 1151–85 Philadelphia: Lippincott Williams & Wilkins [Google Scholar]
  2. Gao Q, Park MS, Palese P. 2.  2008. Expression of transgenes from Newcastle disease virus with a segmented genome. J. Virol. 82:2692–98 [Google Scholar]
  3. Takeda M, Nakatsu Y, Ohno S, Seki F, Tahara M. 3.  et al. 2006. Generation of measles virus with a segmented RNA genome. J. Virol. 80:4242–48 [Google Scholar]
  4. Whelan S. 4.  2013. Viral replication strategies. Fields Virology DM Knipe, PM Howley 105–26 Philadelphia: Lippincott Williams &Wilkins [Google Scholar]
  5. Marshall N, Priyamvada L, Ende Z, Steel J, Lowen AC. 5.  2013. Influenza virus reassortment occurs with high frequency in the absence of segment mismatch. PLOS Pathog 9:e1003421 [Google Scholar]
  6. Tao H, Li L, White MC, Steel J, Lowen AC. 6.  2015. Influenza A virus coinfection through transmission can support high levels of reassortment. J. Virol. 89:8453–61 [Google Scholar]
  7. Kitikoon P, Nelson MI, Killian ML, Anderson TK, Koster L. 7.  et al. 2013. Genotype patterns of contemporary reassorted H3N2 virus in US swine. J. Gen. Virol. 94:1236–41 [Google Scholar]
  8. Nelson MI, Detmer SE, Wentworth DE, Tan Y, Schwartzbard A. 8.  et al. 2012. Genomic reassortment of influenza A virus in North American swine, 1998–2011. J. Gen. Virol. 93:2584–89 [Google Scholar]
  9. Lam TT, Zhu H, Wang J, Smith DK, Holmes EC. 9.  et al. 2011. Reassortment events among swine influenza A viruses in China: implications for the origin of the 2009 influenza pandemic. J. Virol. 85:10279–85 [Google Scholar]
  10. Vijaykrishna D, Smith GJ, Pybus OG, Zhu H, Bhatt S. 10.  et al. 2011. Long-term evolution and transmission dynamics of swine influenza A virus. Nature 473:519–22 [Google Scholar]
  11. Holmes EC. 11.  2013. Virus evolution. Fields Virology DM Knipe, PM Howley 286–313 Philadelphia: Lippincott Williams &Wilkins [Google Scholar]
  12. Leonard AS, McClain MT, Smith GJ, Wentworth DE, Halpin RA. 12.  et al. 2016. Deep sequencing of influenza A virus from a human challenge study reveals a selective bottleneck and only limited intrahost genetic diversification. J. Virol. 90:11247–58 [Google Scholar]
  13. Wilker PR, Dinis JM, Starrett G, Imai M, Hatta M. 13.  et al. 2013. Selection on haemagglutinin imposes a bottleneck during mammalian transmission of reassortant H5N1 influenza viruses. Nat. Commun. 4:2636 [Google Scholar]
  14. Carlson JM, Schaefer M, Monaco DC, Batorsky R, Claiborne DT. 14.  et al. 2014. Selection bias at the heterosexual HIV-1 transmission bottleneck. Science 345:1254031 [Google Scholar]
  15. Tao H, Steel J, Lowen AC. 15.  2014. Intrahost dynamics of influenza virus reassortment. J. Virol. 88:7485–92 [Google Scholar]
  16. Frise R, Bradley K, van Doremalen N, Galiano M, Elderfield RA. 16.  et al. 2016. Contact transmission of influenza virus between ferrets imposes a looser bottleneck than respiratory droplet transmission allowing propagation of antiviral resistance. Sci. Rep. 6:29793 [Google Scholar]
  17. Varble A, Albrecht RA, Backes S, Crumiller M, Bouvier NM. 17.  et al. 2014. Influenza A virus transmission bottlenecks are defined by infection route and recipient host. Cell Host Microbe 16:691–700 [Google Scholar]
  18. Hughes J, Allen RC, Baguelin M, Hampson K, Baillie GJ. 18.  et al. 2012. Transmission of equine influenza virus during an outbreak is characterized by frequent mixed infections and loose transmission bottlenecks. PLOS Pathog 8:e1003081 [Google Scholar]
  19. Murcia PR, Hughes J, Battista P, Lloyd L, Baillie GJ. 19.  et al. 2012. Evolution of an Eurasian avian-like influenza virus in naive and vaccinated pigs. PLOS Pathog 8:e1002730 [Google Scholar]
  20. Poon LL, Song T, Rosenfeld R, Lin X, Rogers MB. 20.  et al. 2016. Quantifying influenza virus diversity and transmission in humans. Nat. Genet. 48:195–200 [Google Scholar]
  21. Drake JW. 21.  1993. Rates of spontaneous mutation among RNA viruses. PNAS 90:4171–75 [Google Scholar]
  22. Sanjuan R, Nebot MR, Chirico N, Mansky LM, Belshaw R. 22.  2010. Viral mutation rates. J. Virol. 84:9733–48 [Google Scholar]
  23. Parvin JD, Moscona A, Pan WT, Leider JM, Palese P. 23.  1986. Measurement of the mutation rates of animal viruses: influenza A virus and poliovirus type 1. J. Virol. 59:377–83 [Google Scholar]
  24. Nobusawa E, Sato K. 24.  2006. Comparison of the mutation rates of human influenza A and B viruses. J. Virol. 80:3675–78 [Google Scholar]
  25. Ghedin E, Laplante J, DePasse J, Wentworth DE, Santos RP. 25.  et al. 2011. Deep sequencing reveals mixed infection with 2009 pandemic influenza A (H1N1) virus strains and the emergence of oseltamivir resistance. J. Infect. Dis. 203:168–74 [Google Scholar]
  26. Saira K, Lin X, DePasse JV, Halpin R, Twaddle A. 26.  et al. 2013. Sequence analysis of in vivo defective interfering-like RNA of influenza A H1N1 pandemic virus. J. Virol. 87:8064–74 [Google Scholar]
  27. Rogers MB, Song T, Sebra R, Greenbaum BD, Hamelin ME. 27.  et al. 2015. Intrahost dynamics of antiviral resistance in influenza A virus reflect complex patterns of segment linkage, reassortment, and natural selection. mBio 6:e02464–14 [Google Scholar]
  28. Visher E, Whitefield SE, McCrone JT, Fitzsimmons W, Lauring AS. 28.  2016. The mutational robustness of influenza A virus. PLOS Pathog 12:e1005856 [Google Scholar]
  29. Zaraket H, Baranovich T, Kaplan BS, Carter R, Song MS. 29.  et al. 2015. Mammalian adaptation of influenza A(H7N9) virus is limited by a narrow genetic bottleneck. Nat. Commun. 6:6553 [Google Scholar]
  30. Fonville JM, Marshall N, Tao H, Steel J, Lowen AC. 30.  2015. Influenza virus reassortment is enhanced by semi-infectious particles but can be suppressed by defective interfering particles. PLOS Pathog 11:e1005204 [Google Scholar]
  31. Wei Z, McEvoy M, Razinkov V, Polozova A, Li E. 31.  et al. 2007. Biophysical characterization of influenza virus subpopulations using field flow fractionation and multiangle light scattering: correlation of particle counts, size distribution and infectivity. J. Virol. Methods 144:122–32 [Google Scholar]
  32. Enami M, Sharma G, Benham C, Palese P. 32.  1991. An influenza virus containing nine different RNA segments. Virology 185:291–98 [Google Scholar]
  33. Donald HB, Isaacs A. 33.  1954. Counts of influenza virus particles. J. Gen. Microbiol. 10:457–64 [Google Scholar]
  34. Noton SL, Simpson-Holley M, Medcalf E, Wise HM, Hutchinson EC. 34.  et al. 2009. Studies of an influenza A virus temperature-sensitive mutant identify a late role for NP in the formation of infectious virions. J. Virol. 83:562–71 [Google Scholar]
  35. McLain L, Armstrong SJ, Dimmock NJ. 35.  1988. One defective interfering particle per cell prevents influenza virus–mediated cytopathology: an efficient assay system. J. Gen. Virol. 69:Pt. 61415–19 [Google Scholar]
  36. Brooke CB, Ince WL, Wei J, Bennink JR, Yewdell JW. 36.  2014. Influenza A virus nucleoprotein selectively decreases neuraminidase gene-segment packaging while enhancing viral fitness and transmissibility. PNAS 111:16854–59 [Google Scholar]
  37. Brooke CB, Ince WL, Wrammert J, Ahmed R, Wilson PC. 37.  et al. 2013. Most influenza A virions fail to express at least one essential viral protein. J. Virol. 87:3155–62 [Google Scholar]
  38. Chou YY, Vafabakhsh R, Doganay S, Gao Q, Ha T, Palese P. 38.  2012. One influenza virus particle packages eight unique viral RNAs as shown by FISH analysis. PNAS 109:9101–6 [Google Scholar]
  39. Nakatsu S, Sagara H, Sakai-Tagawa Y, Sugaya N, Noda T, Kawaoka Y. 39.  2016. Complete and incomplete genome packaging of influenza A and B viruses. mBio 7:e01248–16 [Google Scholar]
  40. Noda T, Sugita Y, Aoyama K, Hirase A, Kawakami E. 40.  et al. 2012. Three-dimensional analysis of ribonucleoprotein complexes in influenza A virus. Nat. Commun. 3:639 [Google Scholar]
  41. Heldt FS, Kupke SY, Dorl S, Reichl U, Frensing T. 41.  2015. Single-cell analysis and stochastic modelling unveil large cell-to-cell variability in influenza A virus infection. Nat. Commun. 6:8938 [Google Scholar]
  42. Schelker M, Mair CM, Jolmes F, Welke RW, Klipp E. 42.  et al. 2016. Viral RNA degradation and diffusion act as a bottleneck for the influenza A virus infection efficiency. PLOS Comput. Biol. 12:e1005075 [Google Scholar]
  43. Fujii Y, Goto H, Watanabe T, Yoshida T, Kawaoka Y. 43.  2003. Selective incorporation of influenza virus RNA segments into virions. PNAS 100:2002–7 [Google Scholar]
  44. Inagaki A, Goto H, Kakugawa S, Ozawa M, Kawaoka Y. 44.  2012. Competitive incorporation of homologous gene segments of influenza A virus into virions. J. Virol. 86:10200–2 [Google Scholar]
  45. Noda T, Sagara H, Yen A, Takada A, Kida H. 45.  et al. 2006. Architecture of ribonucleoprotein complexes in influenza A virus particles. Nature 439:490–92 [Google Scholar]
  46. Fujii K, Fujii Y, Noda T, Muramoto Y, Watanabe T. 46.  et al. 2005. Importance of both the coding and the segment-specific noncoding regions of the influenza A virus NS segment for its efficient incorporation into virions. J. Virol. 79:3766–74 [Google Scholar]
  47. de Wit E, Spronken MI, Rimmelzwaan GF, Osterhaus AD, Fouchier RA. 47.  2006. Evidence for specific packaging of the influenza A virus genome from conditionally defective virus particles lacking a polymerase gene. Vaccine 24:6647–50 [Google Scholar]
  48. Liang Y, Hong Y, Parslow TG. 48.  2005. cis-acting packaging signals in the influenza virus PB1, PB2, and PA genomic RNA segments. J. Virol. 79:10348–55 [Google Scholar]
  49. Gog JR, Afonso Edos S, Dalton RM, Leclercq I, Tiley L. 49.  et al. 2007. Codon conservation in the influenza A virus genome defines RNA packaging signals. Nucleic Acids Res 35:1897–907 [Google Scholar]
  50. Lakdawala SS, Fodor E, Subbarao K. 50.  2016. Moving on out: transport and packaging of influenza viral RNA into virions. Annu. Rev. Virol. 3:411–27 [Google Scholar]
  51. Giese S, Bolte H, Schwemmle M. 51.  2016. The feat of packaging eight unique genome segments. Viruses 8:165 [Google Scholar]
  52. Lakdawala SS, Wu Y, Wawrzusin P, Kabat J, Broadbent AJ. 52.  et al. 2014. Influenza A virus assembly intermediates fuse in the cytoplasm. PLOS Pathog 10:e1003971 [Google Scholar]
  53. Goto H, Muramoto Y, Noda T, Kawaoka Y. 53.  2013. The genome-packaging signal of the influenza A virus genome comprises a genome incorporation signal and a genome-bundling signal. J. Virol. 87:11316–22 [Google Scholar]
  54. Eisfeld AJ, Kawakami E, Watanabe T, Neumann G, Kawaoka Y. 54.  2011. RAB11A is essential for transport of the influenza virus genome to the plasma membrane. J. Virol. 85:6117–26 [Google Scholar]
  55. Bruce EA, Digard P, Stuart AD. 55.  2010. The Rab11 pathway is required for influenza A virus budding and filament formation. J. Virol. 84:5848–59 [Google Scholar]
  56. Essere B, Yver M, Gavazzi C, Terrier O, Isel C. 56.  et al. 2013. Critical role of segment-specific packaging signals in genetic reassortment of influenza A viruses. PNAS 110:3840–48 [Google Scholar]
  57. Gilbertson B, Zheng T, Gerber M, Printz-Schweigert A, Ong C. 57.  et al. 2016. Influenza NA and PB1 gene segments interact during the formation of viral progeny: localization of the binding region within the PB1 gene. Viruses 8:238 [Google Scholar]
  58. Cobbin JC, Ong C, Verity E, Gilbertson BP, Rockman SP, Brown LE. 58.  2014. Influenza virus PB1 and neuraminidase gene segments can cosegregate during vaccine reassortment driven by interactions in the PB1 coding region. J. Virol. 88:8971–80 [Google Scholar]
  59. Baker SF, Nogales A, Finch C, Tuffy KM, Domm W. 59.  et al. 2014. Influenza A and B virus intertypic reassortment through compatible viral packaging signals. J. Virol. 88:10778–91 [Google Scholar]
  60. White MC, Steel J, Lowen AC. 60.  2017. Heterologous packaging signals on segment 4, but not segment 6 or segment 8, limit influenza A virus reassortment. J. Virol. 91:e00195–17 [Google Scholar]
  61. Li C, Hatta M, Watanabe S, Neumann G, Kawaoka Y. 61.  2008. Compatibility among polymerase subunit proteins is a restricting factor in reassortment between equine H7N7 and human H3N2 influenza viruses. J. Virol. 82:11880–88 [Google Scholar]
  62. Octaviani CP, Goto H, Kawaoka Y. 62.  2011. Reassortment between seasonal H1N1 and pandemic (H1N1) 2009 influenza viruses is restricted by limited compatibility among polymerase subunits. J. Virol. 85:8449–52 [Google Scholar]
  63. Snyder MH, Buckler-White AJ, London WT, Tierney EL, Murphy BR. 63.  1987. The avian influenza virus nucleoprotein gene and a specific constellation of avian and human virus polymerase genes each specify attenuation of avian-human influenza A/Pintail/79 reassortant viruses for monkeys. J. Virol. 61:2857–63 [Google Scholar]
  64. Hara K, Nakazono Y, Kashiwagi T, Hamada N, Watanabe H. 64.  2013. Co-incorporation of the PB2 and PA polymerase subunits from human H3N2 influenza virus is a critical determinant of the replication of reassortant ribonucleoprotein complexes. J. Gen. Virol. 94:2406–16 [Google Scholar]
  65. Kong W, Liu Q, Sun Y, Wang Y, Gao H. 65.  et al. 2016. Transmission and pathogenicity of novel reassortants derived from Eurasian avian-like and 2009 pandemic H1N1 influenza viruses in mice and guinea pigs. Sci. Rep. 6:27067 [Google Scholar]
  66. Chin AW, Mok CK, Zhu H, Guan Y, Peiris JS, Poon LL. 66.  2014. Use of fractional factorial design to study the compatibility of viral ribonucleoprotein gene segments of human H7N9 virus and circulating human influenza subtypes. Influenza Other Respir. Viruses 8:580–84 [Google Scholar]
  67. Chen LM, Davis CT, Zhou H, Cox NJ, Donis RO. 67.  2008. Genetic compatibility and virulence of reassortants derived from contemporary avian H5N1 and human H3N2 influenza A viruses. PLOS Pathog 4:e1000072 [Google Scholar]
  68. Naffakh N, Massin P, Escriou N, Crescenzo-Chaigne B, van der Werf S. 68.  2000. Genetic analysis of the compatibility between polymerase proteins from human and avian strains of influenza A viruses. J. Gen. Virol. 81:1283–91 [Google Scholar]
  69. Wagner R, Matrosovich M, Klenk HD. 69.  2002. Functional balance between haemagglutinin and neur-aminidase in influenza virus infections. Rev. Med. Virol 12159–66 [Google Scholar]
  70. Kaverin NV, Matrosovich MN, Gambaryan AS, Rudneva IA, Shilov AA. 70.  et al. 2000. Intergenic HA-NA interactions in influenza A virus: postreassortment substitutions of charged amino acid in the hemagglutinin of different subtypes. Virus Res 66:123–29 [Google Scholar]
  71. Mitnaul LJ, Matrosovich MN, Castrucci MR, Tuzikov AB, Bovin NV. 71.  et al. 2000. Balanced hemagglutinin and neuraminidase activities are critical for efficient replication of influenza A virus. J. Virol. 74:6015–20 [Google Scholar]
  72. Handel A, Akin V, Pilyugin SS, Zarnitsyna V, Antia R. 72.  2014. How sticky should a virus be? The impact of virus binding and release on transmission fitness using influenza as an example. J. R. Soc. Interface 11:20131083 [Google Scholar]
  73. Kaverin NV, Gambaryan AS, Bovin NV, Rudneva IA, Shilov AA. 73.  et al. 1998. Postreassortment changes in influenza A virus hemagglutinin restoring HA-NA functional match. Virology 244:315–21 [Google Scholar]
  74. Shtyrya Y, Mochalova L, Voznova G, Rudneva I, Shilov A. 74.  et al. 2009. Adjustment of receptor-binding and neuraminidase substrate specificities in avian-human reassortant influenza viruses. Glycoconj. J. 26:99–109 [Google Scholar]
  75. Li C, Hatta M, Nidom CA, Muramoto Y, Watanabe S. 75.  et al. 2010. Reassortment between avian H5N1 and human H3N2 influenza viruses creates hybrid viruses with substantial virulence. PNAS 107:4687–92 [Google Scholar]
  76. Jackson S, Van Hoeven N, Chen LM, Maines TR, Cox NJ. 76.  et al. 2009. Reassortment between avian H5N1 and human H3N2 influenza viruses in ferrets: a public health risk assessment. J. Virol. 83:8131–40 [Google Scholar]
  77. Octaviani CP, Ozawa M, Yamada S, Goto H, Kawaoka Y. 77.  2010. High level of genetic compatibility between swine-origin H1N1 and highly pathogenic avian H5N1 influenza viruses. J. Virol. 84:10918–22 [Google Scholar]
  78. Cline TD, Karlsson EA, Freiden P, Seufzer BJ, Rehg JE. 78.  et al. 2011. Increased pathogenicity of a reassortant 2009 pandemic H1N1 influenza virus containing an H5N1 hemagglutinin. J. Virol. 85:12262–70 [Google Scholar]
  79. Zhang Y, Zhang Q, Kong H, Jiang Y, Gao Y. 79.  et al. 2013. H5N1 hybrid viruses bearing 2009/H1N1 virus genes transmit in guinea pigs by respiratory droplet. Science 340:1459–63 [Google Scholar]
  80. Maines TR, Chen LM, Matsuoka Y, Chen H, Rowe T. 80.  et al. 2006. Lack of transmission of H5N1 avian-human reassortant influenza viruses in a ferret model. PNAS 103:12121–26 [Google Scholar]
  81. Schrauwen EJ, Bestebroer TM, Rimmelzwaan GF, Osterhaus AD, Fouchier RA, Herfst S. 81.  2013. Reassortment between avian H5N1 and human influenza viruses is mainly restricted to the matrix and neuraminidase gene segments. PLOS ONE 8:e59889 [Google Scholar]
  82. Steel J, Lowen AC. 82.  2014. Influenza A virus reassortment. Curr. Top. Microbiol. Immunol. 385:377–401 [Google Scholar]
  83. Kilbourne ED. 83.  2006. Influenza pandemics of the 20th century. Emerg Infect. Dis. 12:9–14 [Google Scholar]
  84. Kawaoka Y, Krauss S, Webster RG. 84.  1989. Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. J. Virol. 63:4603–8 [Google Scholar]
  85. Schafer JR, Kawaoka Y, Bean WJ, Suss J, Senne D, Webster RG. 85.  1993. Origin of the pandemic 1957 H2 influenza A virus and the persistence of its possible progenitors in the avian reservoir. Virology 194:781–88 [Google Scholar]
  86. Smith GJ, Bahl J, Vijaykrishna D, Zhang J, Poon LL. 86.  et al. 2009. Dating the emergence of pandemic influenza viruses. PNAS 106:11709–12 [Google Scholar]
  87. Mena I, Nelson MI, Quezada-Monroy F, Dutta J, Cortes-Fernandez R. 87.  et al. 2016. Origins of the 2009 H1N1 influenza pandemic in swine in Mexico. eLife 5:e16777 [Google Scholar]
  88. Smith GJ, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M. 88.  et al. 2009. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459:1122–25 [Google Scholar]
  89. Garten RJ, Davis CT, Russell CA, Shu B, Lindstrom S. 89.  et al. 2009. Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 325:197–201 [Google Scholar]
  90. Brockwell-Staats C, Webster RG, Webby RJ. 90.  2009. Diversity of influenza viruses in swine and the emergence of a novel human pandemic influenza A (H1N1). Influenza Other Respir. Viruses 3:207–13 [Google Scholar]
  91. Lam TT, Wang J, Shen Y, Zhou B, Duan L. 91.  et al. 2013. The genesis and source of the H7N9 influenza viruses causing human infections in China. Nature 502:241–44 [Google Scholar]
  92. Wu A, Su C, Wang D, Peng Y, Liu M. 92.  et al. 2013. Sequential reassortments underlie diverse influenza H7N9 genotypes in China. Cell Host Microbe 4:446–52 [Google Scholar]
  93. Ma EJ, Hill NJ, Zabilansky J, Yuan K, Runstadler JA. 93.  2016. Reticulate evolution is favored in influenza niche switching. PNAS 113:5335–39 [Google Scholar]
  94. 94. World Health Organ. 2016. Cumulative number of confirmed human cases for avian influenza A(H5N1) reported to WHO, 2003–2016 World Health Organ Geneva: http://www.who.int/influenza/human_animal_interface/2016_12_19_tableH5N1.pdf?ua=1
  95. 95. World Health Organ. 2017. Human infection with avian influenza A(H7N9) virus—China World Health Organ Geneva: http://www.who.int/csr/don/18-january-2017-ah7n9-china/en/
  96. 96. White House Off. Sci. Technol. Policy. 2014. US government gain-of-function deliberative process and research funding pause on selected gain-of-function research involving influenza, MERS, and SARS viruses White House Off. Sci. Technol. Policy Washington, DC: https://www.phe.gov/s3/dualuse/documents/gain-of-function.pdf
  97. Koel BF, Burke DF, Bestebroer TM, van der Vliet S, Zondag GC. 97.  et al. 2013. Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution. Science 342:976–79 [Google Scholar]
  98. Hensley SE, Das SR, Bailey AL, Schmidt LM, Hickman HD. 98.  et al. 2009. Hemagglutinin receptor binding avidity drives influenza A virus antigenic drift. Science 326:734–36 [Google Scholar]
  99. Bedford T, Suchard MA, Lemey P, Dudas G, Gregory V. 99.  et al. 2014. Integrating influenza antigenic dynamics with molecular evolution. eLife 3:e01914 [Google Scholar]
  100. Chen R, Holmes EC. 100.  2010. Hitchhiking and the population genetic structure of avian influenza virus. J. Mol. Evol. 70:98–105 [Google Scholar]
  101. Ghedin E, Sengamalay NA, Shumway M, Zaborsky J, Feldblyum T. 101.  et al. 2005. Large-scale sequencing of human influenza reveals the dynamic nature of viral genome evolution. Nature 437:1162–66 [Google Scholar]
  102. Nelson MI, Simonsen L, Viboud C, Miller MA, Taylor J. 102.  et al. 2006. Stochastic processes are key determinants of short-term evolution in influenza A virus. PLOS Pathog 2:e125 [Google Scholar]
  103. Holmes EC, Ghedin E, Miller N, Taylor J, Bao Y. 103.  et al. 2005. Whole-genome analysis of human influenza A virus reveals multiple persistent lineages and reassortment among recent H3N2 viruses. PLOS Biol 3:e300 [Google Scholar]
  104. Rambaut A, Pybus OG, Nelson MI, Viboud C, Taubenberger JK, Holmes EC. 104.  2008. The genomic and epidemiological dynamics of human influenza A virus. Nature 453:615–19 [Google Scholar]
  105. Nelson MI, Edelman L, Spiro DJ, Boyne AR, Bera J. 105.  et al. 2008. Molecular epidemiology of A/H3N2 and A/H1N1 influenza virus during a single epidemic season in the United States. PLOS Pathog 4:e1000133 [Google Scholar]
  106. Westgeest KB, Russell CA, Lin X, Spronken MIJ, Bestebroer TM. 106.  et al. 2014. Genomewide analysis of reassortment and evolution of human influenza A(H3N2) viruses circulating between 1968 and 2011. J. Virol. 88:2844–57 [Google Scholar]
  107. Nelson MI, Viboud C, Simonsen L, Bennett RT, Griesemer SB. 107.  et al. 2008. Multiple reassortment events in the evolutionary history of H1N1 influenza A virus since 1918. PLOS Pathog 4:e1000012 [Google Scholar]
  108. Simonsen L, Viboud C, Grenfell BT, Dushoff J, Jennings L. 108.  et al. 2007. The genesis and spread of reassortment human influenza A/H3N2 viruses conferring adamantane resistance. Mol. Biol. Evol. 24:1811–20 [Google Scholar]
  109. Ince WL, Gueye-Mbaye A, Bennink JR, Yewdell JW. 109.  2013. Reassortment complements spontaneous mutation in influenza A virus NP and M1 genes to accelerate adaptation to a new host. J. Virol. 87:4330–38 [Google Scholar]
  110. Andino R, Domingo E. 110.  2015. Viral quasispecies. Virology 479–80:46–51 [Google Scholar]
/content/journals/10.1146/annurev-virology-101416-041726
Loading
/content/journals/10.1146/annurev-virology-101416-041726
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error