1932

Abstract

α, β, and θ defensins are effectors of the innate immune system with potent antibacterial, antiviral, and antifungal activity. Defensins have direct antiviral activity in cell culture, with varied mechanisms for individual viruses, although some common themes have emerged. In addition, defensins have potent immunomodulatory activity that can alter innate and adaptive immune responses to viral infection. In some cases, there is evidence for paradoxical escape from defensin neutralization or enhancement of viral infection. The direct and indirect activities of defensins have led to their development as therapeutics and vaccine components. The major area of investigation that continues to lag is the connection between the effects of defensins in cell culture models and viral pathogenesis in vivo. Model systems to study defensin biology, including more physiologic models designed to bridge this gap, are also discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-101416-041734
2017-09-29
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/virology/4/1/annurev-virology-101416-041734.html?itemId=/content/journals/10.1146/annurev-virology-101416-041734&mimeType=html&fmt=ahah

Literature Cited

  1. Nguyen TX, Cole AM, Lehrer RI. 1.  2003. Evolution of primate θ-defensins: a serpentine path to a sweet tooth. Peptides 24:1647–54 [Google Scholar]
  2. Patil AA, Cai Y, Sang Y, Blecha F, Zhang G. 2.  2005. Cross-species analysis of the mammalian β-defensin gene family: presence of syntenic gene clusters and preferential expression in the male reproductive tract. Physiol. Genom. 23:5–17 [Google Scholar]
  3. Lynn DJ, Bradley DG. 3.  2007. Discovery of α-defensins in basal mammals. Dev. Comp. Immunol. 31:963–67 [Google Scholar]
  4. Patil A, Hughes AL, Zhang G. 4.  2004. Rapid evolution and diversification of mammalian α-defensins as revealed by comparative analysis of rodent and primate genes. Physiol. Genom. 20:1–11 [Google Scholar]
  5. Selsted ME, Ouellette AJ. 5.  2005. Mammalian defensins in the antimicrobial immune response. Nat. Immunol. 6:551–57 [Google Scholar]
  6. Lehrer RI, Lu W. 6.  2012. α-Defensins in human innate immunity. Immunol. Rev. 245:84–112 [Google Scholar]
  7. Gabay JE, Scott RW, Campanelli D, Griffith J, Wilde C. 7.  et al. 1989. Antibiotic proteins of human polymorphonuclear leukocytes. PNAS 86:5610–14 [Google Scholar]
  8. Borregaard N. 8.  2010. Neutrophils, from marrow to microbes. Immunity 33:657–70 [Google Scholar]
  9. Tongaonkar P, Golji AE, Tran P, Ouellette AJ, Selsted ME. 9.  2012. High fidelity processing and activation of the human α-defensin HNP1 precursor by neutrophil elastase and proteinase 3. PLOS ONE 7:e32469 [Google Scholar]
  10. Nordenfelt P, Tapper H. 10.  2011. Phagosome dynamics during phagocytosis by neutrophils. J. Leukoc. Biol. 90:271–84 [Google Scholar]
  11. Faurschou M, Sorensen OE, Johnsen AH, Askaa J, Borregaard N. 11.  2002. Defensin-rich granules of human neutrophils: characterization of secretory properties. Biochim. Biophys. Acta 1591:29–35 [Google Scholar]
  12. Quayle AJ, Porter EM, Nussbaum AA, Wang YM, Brabec C. 12.  et al. 1998. Gene expression, immunolocalization, and secretion of human defensin-5 in human female reproductive tract. Am. J. Pathol. 152:1247–58 [Google Scholar]
  13. Cunliffe RN, Mahida YR. 13.  2004. Expression and regulation of antimicrobial peptides in the gastrointestinal tract. J. Leukoc. Biol. 75:49–58 [Google Scholar]
  14. Ouellette AJ, Greco RM, James M, Frederick D, Naftilan J, Fallon JT. 14.  1989. Developmental regulation of cryptdin, a corticostatin/defensin precursor mRNA in mouse small intestinal crypt epithelium. J. Cell Biol. 108:1687–95 [Google Scholar]
  15. Shanahan MT, Tanabe H, Ouellette AJ. 15.  2011. Strain-specific polymorphisms in Paneth cell α-defensins of C57BL/6 mice and evidence of vestigial myeloid α-defensin pseudogenes. Infect. Immun. 79:459–73 [Google Scholar]
  16. Porter EM, Poles MA, Lee JS, Naitoh J, Bevins CL, Ganz T. 16.  1998. Isolation of human intestinal defensins from ileal neobladder urine. FEBS Lett 434:272–76 [Google Scholar]
  17. Ghosh D, Porter E, Shen B, Lee SK, Wilk D. 17.  et al. 2002. Paneth cell trypsin is the processing enzyme for human defensin-5. Nat. Immunol. 3:583–90 [Google Scholar]
  18. Wilson CL, Ouellette AJ, Satchell DP, Ayabe T, Lopez-Boado YS. 18.  et al. 1999. Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286:113–17 [Google Scholar]
  19. Salzman NH, Ghosh D, Huttner KM, Paterson Y, Bevins CL. 19.  2003. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422:522–26 [Google Scholar]
  20. Martinez Rodriguez NR, Eloi MD, Huynh A, Dominguez T, Lam AH. 20.  et al. 2012. Expansion of Paneth cell population in response to enteric Salmonella enterica serovar Typhimurium infection. Infect. Immun. 80:266–75 [Google Scholar]
  21. Zaragoza MM, Sankaran-Walters S, Canfield DR, Hung JK, Martinez E. 21.  et al. 2011. Persistence of gut mucosal innate immune defenses by enteric α-defensin expression in the simian immunodeficiency virus model of AIDS. J. Immunol. 186:1589–97 [Google Scholar]
  22. Putsep K, Axelsson LG, Boman A, Midtvedt T, Normark S. 22.  et al. 2000. Germ-free and colonized mice generate the same products from enteric prodefensins. J. Biol. Chem. 275:40478–82 [Google Scholar]
  23. van Es JH, Jay P, Gregorieff A, van Gijn ME, Jonkheer S. 23.  et al. 2005. Wnt signalling induces maturation of Paneth cells in intestinal crypts. Nat. Cell Biol. 7:381–86 [Google Scholar]
  24. Andreu P, Colnot S, Godard C, Gad S, Chafey P. 24.  et al. 2005. Crypt-restricted proliferation and commitment to the Paneth cell lineage following Apc loss in the mouse intestine. Development 132:1443–51 [Google Scholar]
  25. Spencer JD, Hains DS, Porter E, Bevins CL, DiRosario J. 25.  et al. 2012. Human alpha defensin 5 expression in the human kidney and urinary tract. PLOS ONE 7:e31712 [Google Scholar]
  26. Klotman ME, Rapista A, Teleshova N, Micsenyi A, Jarvis GA. 26.  et al. 2008. Neisseria gonorrhoeae-induced human defensins 5 and 6 increase HIV infectivity: role in enhanced transmission. J. Immunol. 180:6176–85 [Google Scholar]
  27. Porter E, Yang H, Yavagal S, Preza GC, Murillo O. 27.  et al. 2005. Distinct defensin profiles in Neisseria gonorrhoeae and. Chlamydia trachomatis urethritis reveal novel epithelial cell-neutrophil interactions. Infect. Immun 73:4823–33 [Google Scholar]
  28. Grandjean V, Vincent S, Martin L, Rassoulzadegan M, Cuzin F. 28.  1997. Antimicrobial protection of the mouse testis: synthesis of defensins of the cryptdin family. Biol. Reprod. 57:1115–22 [Google Scholar]
  29. Com E, Bourgeon F, Evrard B, Ganz T, Colleu D. 29.  et al. 2003. Expression of antimicrobial defensins in the male reproductive tract of rats, mice, and humans. Biol. Reprod. 68:95–104 [Google Scholar]
  30. Ayabe T, Satchell DP, Wilson CL, Parks WC, Selsted ME, Ouellette AJ. 30.  2000. Secretion of microbicidal α-defensins by intestinal Paneth cells in response to bacteria. Nat. Immunol. 1:113–18 [Google Scholar]
  31. Farin HF, Karthaus WR, Kujala P, Rakhshandehroo M, Schwank G. 31.  et al. 2014. Paneth cell extrusion and release of antimicrobial products is directly controlled by immune cell–derived IFN-γ. J. Exp. Med. 211:1393–405 [Google Scholar]
  32. Raetz M, Hwang SH, Wilhelm CL, Kirkland D, Benson A. 32.  et al. 2013. Parasite-induced TH1 cells and intestinal dysbiosis cooperate in IFN-γ-dependent elimination of Paneth cells. Nat. Immunol. 14:136–42 [Google Scholar]
  33. Clevers HC, Bevins CL. 33.  2013. Paneth cells: maestros of the small intestinal crypts. Annu. Rev. Physiol. 75:289–311 [Google Scholar]
  34. Aldred PM, Hollox EJ, Armour JA. 34.  2005. Copy number polymorphism and expression level variation of the human α-defensin genes DEFA1 and DEFA3. Hum. Mol. Genet. 14:2045–52 [Google Scholar]
  35. Linzmeier RM, Ganz T. 35.  2005. Human defensin gene copy number polymorphisms: comprehensive analysis of independent variation in α- and β-defensin regions at 8p22–p23. Genomics 86:423–30 [Google Scholar]
  36. Amid C, Rehaume LM, Brown KL, Gilbert JG, Dougan G. 36.  et al. 2009. Manual annotation and analysis of the defensin gene cluster in the C57BL/6J mouse reference genome. BMC Genom 10:606 [Google Scholar]
  37. Hollox EJ. 37.  2008. Copy number variation of β-defensins and relevance to disease. Cytogenet. Genome Res. 123:148–55 [Google Scholar]
  38. Kluver E, Schulz-Maronde S, Scheid S, Meyer B, Forssmann WG, Adermann K. 38.  2005. Structure-activity relation of human β-defensin 3: influence of disulfide bonds and cysteine substitution on antimicrobial activity and cytotoxicity. Biochemistry 44:9804–16 [Google Scholar]
  39. Pazgier M, Hoover DM, Yang D, Lu W, Lubkowski J. 39.  2006. Human β-defensins. Cell. Mol. Life Sci. 63:1294–313 [Google Scholar]
  40. O'Neil DA. 40.  2003. Regulation of expression of β-defensins: endogenous enteric peptide antibiotics. Mol. Immunol. 40:445–50 [Google Scholar]
  41. Zhou YS, Webb S, Lettice L, Tardif S, Kilanowski F. 41.  et al. 2013. Partial deletion of chromosome 8 β-defensin cluster confers sperm dysfunction and infertility in male mice. PLOS Genet 9:e1003826 [Google Scholar]
  42. Semple CA, Rolfe M, Dorin JR. 42.  2003. Duplication and selection in the evolution of primate β-defensin genes. Genome Biol 4:R31 [Google Scholar]
  43. Beckloff N, Diamond G. 43.  2008. Computational analysis suggests β-defensins are processed to mature peptides by signal peptidase. Protein Pept. Lett. 15:536–40 [Google Scholar]
  44. Schroeder BO, Wu Z, Nuding S, Groscurth S, Marcinowski M. 44.  et al. 2011. Reduction of disulphide bonds unmasks potent antimicrobial activity of human β-defensin 1. Nature 469:419–23 [Google Scholar]
  45. Lehrer RI, Ganz T. 45.  2002. Defensins of vertebrate animals. Curr. Opin. Immunol. 14:96–102 [Google Scholar]
  46. Lehrer RI, Cole AM, Selsted ME. 46.  2012. θ-Defensins: cyclic peptides with endless potential. J. Biol. Chem. 287:27014–19 [Google Scholar]
  47. Kota S, Sabbah A, Chang TH, Harnack R, Xiang Y. 47.  et al. 2008. Role of human β-defensin-2 during tumor necrosis factor-α/NF-κB-mediated innate antiviral response against human respiratory syncytial virus. J. Biol. Chem. 283:22417–29 [Google Scholar]
  48. Wiens ME, Smith JG. 48.  2017. α-Defensin HD5 inhibits human papillomavirus 16 infection via capsid stabilization and redirection to the lysosome. mBio 8:e02304–16 [Google Scholar]
  49. Ganz T, Selsted ME, Szklarek D, Harwig SS, Daher K. 49.  et al. 1985. Defensins. Natural peptide antibiotics of human neutrophils. J. Clin. Investig. 76:1427–35 [Google Scholar]
  50. Zhang L, Yu W, He T, Yu J, Caffrey RE. 50.  et al. 2002. Contribution of human α-defensin 1, 2, and 3 to the anti-HIV-1 activity of CD8 antiviral factor. Science 298:995–1000 [Google Scholar]
  51. Chang TL, Francois F, Mosoian A, Klotman ME. 51.  2003. CAF-mediated human immunodeficiency virus (HIV) type 1 transcriptional inhibition is distinct from α-defensin-1 HIV inhibition. J. Virol. 77:6777–84 [Google Scholar]
  52. Mackewicz CE, Yuan J, Tran P, Diaz L, Mack E. 52.  et al. 2003. α-Defensins can have anti-HIV activity but are not CD8 cell anti-HIV factors. AIDS 17:F23–32 [Google Scholar]
  53. Demirkhanyan LH, Marin M, Padilla-Parra S, Zhan C, Miyauchi K. 53.  et al. 2012. Multifaceted mechanisms of HIV-1 entry inhibition by human α-defensin. J. Biol. Chem. 287:28821–38 [Google Scholar]
  54. Chang TL, Vargas J Jr., DelPortillo A, Klotman ME. 54.  2005. Dual role of α-defensin-1 in anti-HIV-1 innate immunity. J. Clin. Investig. 115:765–73 [Google Scholar]
  55. Wang W, Owen SM, Rudolph DL, Cole AM, Hong T. 55.  et al. 2004. Activity of α- and θ-defensins against primary isolates of HIV-1. J. Immunol. 173:515–20 [Google Scholar]
  56. Wu Z, Cocchi F, Gentles D, Ericksen B, Lubkowski J. 56.  et al. 2005. Human neutrophil α-defensin 4 inhibits HIV-1 infection in vitro. FEBS Lett 579:162–66 [Google Scholar]
  57. Furci L, Sironi F, Tolazzi M, Vassena L, Lusso P. 57.  2007. α-Defensins block the early steps of HIV-1 infection: interference with the binding of gp120 to CD4. Blood 109:2928–35 [Google Scholar]
  58. Seidel A, Ye Y, de Armas LR, Soto M, Yarosh W. 58.  et al. 2010. Cyclic and acyclic defensins inhibit human immunodeficiency virus type-1 replication by different mechanisms. PLOS ONE 5:e9737 [Google Scholar]
  59. Demirkhanyan L, Marin M, Lu W, Melikyan GB. 59.  2013. Sub-inhibitory concentrations of human α-defensin potentiate neutralizing antibodies against HIV-1 gp41 pre-hairpin intermediates in the presence of serum. PLOS Pathog. 9:e1003431 [Google Scholar]
  60. Ding J, Tasker C, Valere K, Sihvonen T, Descalzi-Montoya DB. 60.  et al. 2013. Anti-HIV activity of human defensin 5 in primary CD4+ T cells under serum-deprived conditions is a consequence of defensin-mediated cytotoxicity. PLOS ONE 8:e76038 [Google Scholar]
  61. Rapista A, Ding J, Benito B, Lo YT, Neiditch MB. 61.  et al. 2011. Human defensins 5 and 6 enhance HIV-1 infectivity through promoting HIV attachment. Retrovirology 8:45 [Google Scholar]
  62. Ding J, Rapista A, Teleshova N, Lu W, Klotman ME, Chang TL. 62.  2011. Mucosal human defensins 5 and 6 antagonize the anti-HIV activity of candidate polyanion microbicides. J. Innate Immun. 3:208–12 [Google Scholar]
  63. Lehrer RI, Jung G, Ruchala P, Andre S, Gabius HJ, Lu W. 63.  2009. Multivalent binding of carbohydrates by the human α-defensin, HD5. J. Immunol. 183:480–90 [Google Scholar]
  64. Chu H, Pazgier M, Jung G, Nuccio SP, Castillo PA. 64.  et al. 2012. Human α-defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets. Science 337:477–81 [Google Scholar]
  65. Shah R, Chang TL. 65.  2012. Defensins in viral infection. Small Wonders: Peptides for Disease Control K Rajasekaran, JW Cary, JM Jaynes, E Montesinos 137–71 Washington, DC: Am. Chem. Soc. [Google Scholar]
  66. Kuhn L, Trabattoni D, Kankasa C, Semrau K, Kasonde P. 66.  et al. 2005. α-Defensins in the prevention of HIV transmission among breastfed infants. JAIDS 39:138–42 [Google Scholar]
  67. Bosire R, John-Stewart GC, Mabuka JM, Wariua G, Gichuhi C. 67.  et al. 2007. Breast milk α-defensins are associated with HIV type 1 RNA and CC chemokines in breast milk but not vertical HIV type 1 transmission. AIDS Res. Hum. Retrovir. 23:198–203 [Google Scholar]
  68. Levinson P, Kaul R, Kimani J, Ngugi E, Moses S. 68.  et al. 2009. Levels of innate immune factors in genital fluids: association of alpha defensins and LL-37 with genital infections and increased HIV acquisition. AIDS 23:309–17 [Google Scholar]
  69. Venkataraman N, Cole AL, Svoboda P, Pohl J, Cole AM. 69.  2005. Cationic polypeptides are required for anti-HIV-1 activity of human vaginal fluid. J. Immunol. 175:7560–67 [Google Scholar]
  70. Hirbod T, Kong X, Kigozi G, Ndyanabo A, Serwadda D. 70.  et al. 2014. HIV acquisition is associated with increased antimicrobial peptides and reduced HIV neutralizing IgA in the foreskin prepuce of uncircumcised men. PLOS Pathog 10:e1004416 [Google Scholar]
  71. Yarbrough VL, Winkle S, Herbst-Kralovetz MM. 71.  2014. Antimicrobial peptides in the female reproductive tract: a critical component of the mucosal immune barrier with physiological and clinical implications. Hum. Reprod. Update 21:353–77 [Google Scholar]
  72. Diamond G, Ryan L. 72.  2011. β-Defensins: What are they really doing in the oral cavity?. Oral. Dis. 17:628–35 [Google Scholar]
  73. Quinones-Mateu ME, Lederman MM, Feng Z, Chakraborty B, Weber J. 73.  et al. 2003. Human epithelial β-defensins 2 and 3 inhibit HIV-1 replication. AIDS 17:F39–48 [Google Scholar]
  74. Feng Z, Dubyak GR, Lederman MM, Weinberg A. 74.  2006. Cutting edge: human β defensin 3—a novel antagonist of the HIV-1 coreceptor CXCR4. J. Immunol. 177:782–86 [Google Scholar]
  75. Feng Z, Dubyak GR, Jia X, Lubkowski JT, Weinberg A. 75.  2013. Human β-defensin-3 structure motifs that are important in CXCR4 antagonism. FEBS J 280:3365–75 [Google Scholar]
  76. Sun L, Finnegan CM, Kish-Catalone T, Blumenthal R, Garzino-Demo P. 76.  et al. 2005. Human β-defensins suppress human immunodeficiency virus infection: potential role in mucosal protection. J. Virol. 79:14318–29 [Google Scholar]
  77. Herrera R, Morris M, Rosbe K, Feng Z, Weinberg A, Tugizov S. 77.  2016. Human β-defensins 2 and -3 cointernalize with human immunodeficiency virus via heparan sulfate proteoglycans and reduce infectivity of intracellular virions in tonsil epithelial cells. Virology 487:172–87 [Google Scholar]
  78. Tugizov SM, Herrera R, Veluppillai P, Greenspan D, Soros V. 78.  et al. 2011. HIV is inactivated after transepithelial migration via adult oral epithelial cells but not fetal epithelial cells. Virology 409:211–22 [Google Scholar]
  79. Munk C, Wei G, Yang OO, Waring AJ, Wang W. 79.  et al. 2003. The θ-defensin, retrocyclin, inhibits HIV-1 entry. AIDS Res. Hum. Retrovir. 19:875–81 [Google Scholar]
  80. Gallo SA, Wang W, Rawat SS, Jung G, Waring AJ. 80.  et al. 2006. θ-Defensins prevent HIV-1 Env-mediated fusion by binding gp41 and blocking 6-helix bundle formation. J. Biol. Chem. 281:18787–92 [Google Scholar]
  81. Cole AM, Hong T, Boo LM, Nguyen T, Zhao C. 81.  et al. 2002. Retrocyclin: a primate peptide that protects cells from infection by T- and M-tropic strains of HIV-1. PNAS 99:1813–18 [Google Scholar]
  82. Wang W, Cole AM, Hong T, Waring AJ, Lehrer RI. 82.  2003. Retrocyclin, an antiretroviral θ-defensin, is a lectin. J. Immunol. 170:4708–16 [Google Scholar]
  83. Wood MP, Cole AL, Ruchala P, Waring AJ, Rohan LC. 83.  et al. 2013. A compensatory mutation provides resistance to disparate HIV fusion inhibitor peptides and enhances membrane fusion. PLOS ONE 8:e55478 [Google Scholar]
  84. Fuhrman CA, Warren AD, Waring AJ, Dutz SM, Sharma S. 84.  et al. 2007. Retrocyclin RC-101 overcomes cationic mutations on the heptad repeat 2 region of HIV-1 gp41. FEBS J 274:6477–87 [Google Scholar]
  85. Cole AL, Yang OO, Warren AD, Waring AJ, Lehrer RI, Cole AM. 85.  2006. HIV-1 adapts to a retrocyclin with cationic amino acid substitutions that reduce fusion efficiency of gp41. J. Immunol. 176:6900–5 [Google Scholar]
  86. Daher KA, Selsted ME, Lehrer RI. 86.  1986. Direct inactivation of viruses by human granulocyte defensins. J. Virol. 60:1068–74 [Google Scholar]
  87. Hazrati E, Galen B, Lu W, Wang W, Ouyang Y. 87.  et al. 2006. Human α- and β-defensins block multiple steps in herpes simplex virus infection. J. Immunol. 177:8658–66 [Google Scholar]
  88. Crack LR, Jones L, Malavige GN, Patel V, Ogg GS. 88.  2012. Human antimicrobial peptides LL-37 and human β-defensin-2 reduce viral replication in keratinocytes infected with varicella zoster virus. Clin. Exp. Dermatol. 37:534–43 [Google Scholar]
  89. Yasin B, Wang W, Pang M, Cheshenko N, Hong T. 89.  et al. 2004. θ defensins protect cells from infection by herpes simplex virus by inhibiting viral adhesion and entry. J. Virol. 78:5147–56 [Google Scholar]
  90. Brandt CR, Akkarawongsa R, Altmann S, Jose G, Kolb AW. 90.  et al. 2007. Evaluation of a θ-defensin in a murine model of herpes simplex virus type 1 keratitis. Investig. Ophthalmol. Vis. Sci. 48:5118–24 [Google Scholar]
  91. Wang A, Chen F, Wang Y, Shen M, Xu Y. 91.  et al. 2013. Enhancement of antiviral activity of human α-defensin 5 against herpes simplex virus 2 by arginine mutagenesis at adaptive evolution sites. J. Virol. 87:2835–45 [Google Scholar]
  92. Rothan HA, Han HC, Ramasamy TS, Othman S, Rahman NA, Yusof R. 92.  2012. Inhibition of dengue NS2B-NS3 protease and viral replication in Vero cells by recombinant retrocyclin-1. BMC Infect. Dis. 12:314 [Google Scholar]
  93. Salvatore M, Garcia-Sastre A, Ruchala P, Lehrer RI, Chang T, Klotman ME. 93.  2007. α-Defensin inhibits influenza virus replication by cell-mediated mechanism(s). J. Infect. Dis. 196:835–43 [Google Scholar]
  94. White MR, Helmerhorst EJ, Ligtenberg A, Karpel M, Tecle T. 94.  et al. 2009. Multiple components contribute to ability of saliva to inhibit influenza viruses. Oral. Microbiol. Immunol. 24:18–24 [Google Scholar]
  95. Hartshorn KL, White MR, Tecle T, Holmskov U, Crouch EC. 95.  2006. Innate defense against influenza A virus: activity of human neutrophil defensins and interactions of defensins with surfactant protein D. J. Immunol. 176:6962–72 [Google Scholar]
  96. Doss M, White MR, Tecle T, Gantz D, Crouch EC. 96.  et al. 2009. Interactions of α-, β-, and θ-defensins with influenza A virus and surfactant protein D. J. Immunol. 182:7878–87 [Google Scholar]
  97. Leikina E, Delanoe-Ayari H, Melikov K, Cho MS, Chen A. 97.  et al. 2005. Carbohydrate-binding molecules inhibit viral fusion and entry by crosslinking membrane glycoproteins. Nat. Immunol. 6:995–1001 [Google Scholar]
  98. Tecle T, White MR, Gantz D, Crouch EC, Hartshorn KL. 98.  2007. Human neutrophil defensins increase neutrophil uptake of influenza A virus and bacteria and modify virus-induced respiratory burst responses. J. Immunol. 178:8046–52 [Google Scholar]
  99. Buck CB, Day PM, Thompson CD, Lubkowski J, Lu W. 99.  et al. 2006. Human α-defensins block papillomavirus infection. PNAS 103:1516–21 [Google Scholar]
  100. Wiens ME, Smith JG. 100.  2015. α-Defensin HD5 inhibits furin cleavage of human papillomavirus 16 L2 to block infection. J. Virol. 89:2866–74 [Google Scholar]
  101. Tenge VR, Gounder AP, Wiens ME, Lu W, Smith JG. 101.  2014. Delineation of interfaces on human α-defensins critical for human adenovirus and human papillomavirus inhibition. PLOS Pathog 10:e1004360 [Google Scholar]
  102. Gounder AP, Wiens ME, Wilson SS, Lu W, Smith JG. 102.  2012. Critical determinants of human α-defensin 5 activity against non-enveloped viruses. J. Biol. Chem. 287:24554–62 [Google Scholar]
  103. Smith JG, Silvestry M, Lindert S, Lu W, Nemerow GR, Stewart PL. 103.  2010. Insight into the mechanisms of adenovirus capsid disassembly from studies of defensin neutralization. PLOS Pathog 6:e1000959 [Google Scholar]
  104. Nguyen EK, Nemerow GR, Smith JG. 104.  2010. Direct evidence from single-cell analysis that human α-defensins block adenovirus uncoating to neutralize infection. J. Virol. 84:4041–49 [Google Scholar]
  105. Smith JG, Nemerow GR. 105.  2008. Mechanism of adenovirus neutralization by human α-defensins. Cell Host Microbe 3:11–19 [Google Scholar]
  106. Zins SR, Nelson CD, Maginnis MS, Banerjee R, O'Hara BA, Atwood WJ. 106.  2014. The human alpha defensin HD5 neutralizes JC polyomavirus infection by reducing endoplasmic reticulum traffic and stabilizing the viral capsid. J. Virol. 88:948–60 [Google Scholar]
  107. Dugan AS, Maginnis MS, Jordan JA, Gasparovic ML, Manley K. 107.  et al. 2008. Human α-defensins inhibit BK virus infection by aggregating virions and blocking binding to host cells. J. Biol. Chem. 283:31125–32 [Google Scholar]
  108. Snijder J, Reddy VS, May ER, Roos WH, Nemerow GR, Wuite GJ. 108.  2013. Integrin and defensin modulate the mechanical properties of adenovirus. J. Virol. 87:2756–66 [Google Scholar]
  109. Virella-Lowell I, Poirier A, Chesnut KA, Brantly M, Flotte TR. 109.  2000. Inhibition of recombinant adeno-associated virus (rAAV) transduction by bronchial secretions from cystic fibrosis patients. Gene Ther 7:1783–89 [Google Scholar]
  110. Wilson SS, Wiens ME, Smith JG. 110.  2013. Antiviral mechanisms of human defensins. J. Mol. Biol. 425:4965–80 [Google Scholar]
  111. Flatt JW, Kim R, Smith JG, Nemerow GR, Stewart PL. 111.  2013. An intrinsically disordered region of the adenovirus capsid is implicated in neutralization by human alpha defensin 5. PLOS ONE 8:e61571 [Google Scholar]
  112. Soruri A, Grigat J, Forssmann U, Riggert J, Zwirner J. 112.  2007. β-Defensins chemoattract macrophages and mast cells but not lymphocytes and dendritic cells: CCR6 is not involved. Eur. J. Immunol. 37:2474–86 [Google Scholar]
  113. Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ. 113.  et al. 1999. β-Defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286:525–28 [Google Scholar]
  114. Chertov O, Michiel DF, Xu L, Wang JM, Tani K. 114.  et al. 1996. Identification of defensin-1, defensin-2, and CAP37/azurocidin as T-cell chemoattractant proteins released from interleukin-8-stimulated neutrophils. J. Biol. Chem. 271:2935–40 [Google Scholar]
  115. Rohrl J, Yang D, Oppenheim JJ, Hehlgans T. 115.  2010. Human β-defensin 2 and 3 and their mouse orthologs induce chemotaxis through interaction with CCR2. J. Immunol. 184:6688–94 [Google Scholar]
  116. Grigat J, Soruri A, Forssmann U, Riggert J, Zwirner J. 116.  2007. Chemoattraction of macrophages, T lymphocytes, and mast cells is evolutionarily conserved within the human α-defensin family. J. Immunol. 179:3958–65 [Google Scholar]
  117. Guo CJ, Tan N, Song L, Douglas SD, Ho WZ. 117.  2004. α-Defensins inhibit HIV infection of macrophages through upregulation of CC-chemokines. AIDS 18:1217–18 [Google Scholar]
  118. Presicce P, Giannelli S, Taddeo A, Villa ML, Della Bella S. 118.  2009. Human defensins activate monocyte-derived dendritic cells, promote the production of proinflammatory cytokines, and up-regulate the surface expression of CD91. J. Leukoc. Biol. 86:941–48 [Google Scholar]
  119. Meisch JP, Vogel RM, Schlatzer DM, Li X, Chance MR, Levine AD. 119.  2013. Human β-defensin 3 induces STAT1 phosphorylation, tyrosine phosphatase activity, and cytokine synthesis in T cells. J. Leukoc. Biol. 94:459–71 [Google Scholar]
  120. Petrov V, Funderburg N, Weinberg A, Sieg S. 120.  2013. Human β defensin-3 induces chemokines from monocytes and macrophages: diminished activity in cells from HIV-infected persons. Immunology 140:413–20 [Google Scholar]
  121. Biragyn A, Ruffini PA, Leifer CA, Klyushnenkova E, Shakhov A. 121.  et al. 2002. Toll-like receptor 4-dependent activation of dendritic cells by β-defensin 2. Science 298:1025–29 [Google Scholar]
  122. Tongaonkar P, Trinh KK, Schaal JB, Tran D, Gulko PS. 122.  et al. 2015. Rhesus macaque θ-defensin RTD-1 inhibits proinflammatory cytokine secretion and gene expression by inhibiting the activation of NF-κB and MAPK pathways. J. Leukoc. Biol. 98:1061–70 [Google Scholar]
  123. Proud D, Sanders SP, Wiehler S. 123.  2004. Human rhinovirus infection induces airway epithelial cell production of human β-defensin 2 both in vitro and in vivo. J. Immunol. 172:4637–45 [Google Scholar]
  124. Ryan LK, Dai J, Yin Z, Megjugorac N, Uhlhorn V. 124.  et al. 2011. Modulation of human β-defensin-1 (hBD-1) in plasmacytoid dendritic cells (PDC), monocytes, and epithelial cells by influenza virus, herpes simplex virus, and Sendai virus and its possible role in innate immunity. J. Leukoc. Biol. 90:343–56 [Google Scholar]
  125. Chong KT, Thangavel RR, Tang X. 125.  2008. Enhanced expression of murine β-defensins (MBD-1, -2, -3, and -4) in upper and lower airway mucosa of influenza virus infected mice. Virology 380:136–43 [Google Scholar]
  126. Funderburg N, Lederman MM, Feng Z, Drage MG, Jadlowsky J. 126.  et al. 2007. Human β-defensin-3 activates professional antigen-presenting cells via Toll-like receptors 1 and 2. PNAS 104:18631–35 [Google Scholar]
  127. Semple F, Dorin JR. 127.  2012. β-Defensins: multifunctional modulators of infection, inflammation and more?. J. Innate Immun. 4:337–48 [Google Scholar]
  128. Lioi AB, Ferrari BM, Dubyak GR, Weinberg A, Sieg SF. 128.  2015. Human β defensin-3 increases CD86 expression on monocytes by activating the ATP-gated channel P2X7. J. Immunol. 195:4438–45 [Google Scholar]
  129. Lafferty MK, Sun L, DeMasi L, Lu W, Garzino-Demo A. 129.  2010. CCR6 ligands inhibit HIV by inducing APOBEC3G. Blood 115:1564–71 [Google Scholar]
  130. Nagaoka I, Suzuki K, Murakami T, Niyonsaba F, Tamura H, Hirata M. 130.  2010. Evaluation of the effect of α-defensin human neutrophil peptides on neutrophil apoptosis. Int. J. Mol. Med. 26:925–34 [Google Scholar]
  131. Nagaoka I, Suzuki K, Niyonsaba F, Tamura H, Hirata M. 131.  2012. Modulation of neutrophil apoptosis by antimicrobial peptides. ISRN Microbiol. 2012:345791 [Google Scholar]
  132. Chen X, Niyonsaba F, Ushio H, Hara M, Yokoi H. 132.  et al. 2007. Antimicrobial peptides human β-defensin (hBD)-3 and hBD-4 activate mast cells and increase skin vascular permeability. Eur. J. Immunol. 37:434–44 [Google Scholar]
  133. Befus AD, Mowat C, Gilchrist M, Hu J, Solomon S, Bateman A. 133.  1999. Neutrophil defensins induce histamine secretion from mast cells: mechanisms of action. J. Immunol. 163:947–53 [Google Scholar]
  134. Graham AC, Temple RM, Obar JJ. 134.  2015. Mast cells and influenza A virus: association with allergic responses and beyond. Front. Immunol. 6:238 [Google Scholar]
  135. Gupta K, Kotian A, Subramanian H, Daniell H, Ali H. 135.  2015. Activation of human mast cells by retrocyclin and protegrin highlight their immunomodulatory and antimicrobial properties. Oncotarget 6:28573–87 [Google Scholar]
  136. Subramanian H, Gupta K, Lee D, Bayir AK, Ahn H, Ali H. 136.  2013. β-Defensins activate human mast cells via Mas-related gene X2. J. Immunol. 191:345–52 [Google Scholar]
  137. Ishikawa T, Kanda N, Hau CS, Tada Y, Watanabe S. 137.  2009. Histamine induces human β-defensin-3 production in human keratinocytes. J. Dermatol. Sci. 56:121–27 [Google Scholar]
  138. Kanda N, Ishikawa T, Watanabe S. 138.  2010. Prostaglandin D2 induces the production of human β-defensin-3 in human keratinocytes. Biochem. Pharmacol. 79:982–89 [Google Scholar]
  139. Wohlford-Lenane CL, Meyerholz DK, Perlman S, Zhou H, Tran D. 139.  et al. 2009. Rhesus θ-defensin prevents death in a mouse model of severe acute respiratory syndrome coronavirus pulmonary disease. J. Virol. 83:11385–90 [Google Scholar]
  140. Nie Y, Yang D, Oppenheim JJ. 140.  2016. Alarmins and antitumor immunity. Clin. Ther. 38:1042–53 [Google Scholar]
  141. Miles K, Clarke DJ, Lu W, Sibinska Z, Beaumont PE. 141.  et al. 2009. Dying and necrotic neutrophils are anti-inflammatory secondary to the release of α-defensins. J. Immunol. 183:2122–32 [Google Scholar]
  142. Brook M, Tomlinson GH, Miles K, Smith RW, Rossi AG. 142.  et al. 2016. Neutrophil-derived alpha defensins control inflammation by inhibiting macrophage mRNA translation. PNAS 113:4350–55 [Google Scholar]
  143. Semple F, Webb S, Li HN, Patel HB, Perretti M. 143.  et al. 2010. Human β-defensin 3 has immunosuppressive activity in vitro and in vivo. Eur. J. Immunol. 40:1073–78 [Google Scholar]
  144. Geng LN, Yao Z, Snider L, Fong AP, Cech JN. 144.  et al. 2012. DUX4 activates germline genes, retroelements, and immune mediators: implications for facioscapulohumeral dystrophy. Dev. Cell 22:38–51 [Google Scholar]
  145. Tani K, Murphy WJ, Chertov O, Salcedo R, Koh CY. 145.  et al. 2000. Defensins act as potent adjuvants that promote cellular and humoral immune responses in mice to a lymphoma idiotype and carrier antigens. Int. Immunol. 12:691–700 [Google Scholar]
  146. Mohan T, Sharma C, Bhat AA, Rao DN. 146.  2013. Modulation of HIV peptide antigen specific cellular immune response by synthetic α- and β-defensin peptides. Vaccine 31:1707–16 [Google Scholar]
  147. Tewary P, de la Rosa G, Sharma N, Rodriguez LG, Tarasov SG. 147.  et al. 2013. β-Defensin 2 and 3 promote the uptake of self or CpG DNA, enhance IFN-α production by human plasmacytoid dendritic cells, and promote inflammation. J. Immunol. 191:865–74 [Google Scholar]
  148. Biragyn A, Surenhu M, Yang D, Ruffini PA, Haines BA. 148.  et al. 2001. Mediators of innate immunity that target immature, but not mature, dendritic cells induce antitumor immunity when genetically fused with nonimmunogenic tumor antigens. J. Immunol. 167:6644–53 [Google Scholar]
  149. Gounder AP, Myers ND, Treuting PM, Bromme BA, Wilson SS. 149.  et al. 2016. Defensins potentiate a neutralizing antibody response to enteric viral infection. PLOS Pathog 12:e1005474 [Google Scholar]
  150. Bevins CL, Salzman NH. 150.  2011. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat. Rev. Microbiol. 9:356–68 [Google Scholar]
  151. Robinson CM, Pfeiffer JK. 151.  2014. Viruses and the microbiota. Annu. Rev. Virol. 1:55–69 [Google Scholar]
  152. Date S, Sato T. 152.  2015. Mini-gut organoids: reconstitution of the stem cell niche. Annu. Rev. Cell Dev. Biol. 31:269–89 [Google Scholar]
  153. Fujii M, Matano M, Nanki K, Sato T. 153.  2015. Efficient genetic engineering of human intestinal organoids using electroporation. Nat. Protoc. 10:1474–85 [Google Scholar]
  154. Wilson SS, Tocchi A, Holly MK, Parks WC, Smith JG. 154.  2015. A small intestinal organoid model of non-invasive enteric pathogen-epithelial cell interactions. Mucosal Immunol 8:352–61 [Google Scholar]
  155. Kolar SS, Baidouri H, Hanlon S, McDermott AM. 155.  2013. Protective role of murine β-defensins 3 and 4 and cathelin-related antimicrobial peptide in Fusarium solani keratitis. Infect. Immun. 81:2669–77 [Google Scholar]
  156. Yamaguchi Y, Nagase T, Tomita T, Nakamura K, Fukuhara S. 156.  et al. 2007. β-Defensin overexpression induces progressive muscle degeneration in mice. Am. J. Physiol. Cell Physiol. 292:C2141–49 [Google Scholar]
  157. Fei Z, Hu S, Xiao L, Zhou J, Diao H. 157.  et al. 2012. mBin1b transgenic mice show enhanced resistance to epididymal infection by bacteria challenge. Genes Immun 13:445–51 [Google Scholar]
  158. Verma C, Seebah S, Low SM, Zhou L, Liu SP. 158.  et al. 2007. Defensins: antimicrobial peptides for therapeutic development. Biotechnol. J. 2:1353–59 [Google Scholar]
  159. Hsieh IN, Hartshorn KL. 159.  2016. The role of antimicrobial peptides in influenza virus infection and their potential as antiviral and immunomodulatory therapy. Pharmaceuticals 9:53 [Google Scholar]
  160. Sassi AB, Cost MR, Cole AL, Cole AM, Patton DL. 160.  et al. 2011. Formulation development of retrocyclin 1 analog RC-101 as an anti-HIV vaginal microbicide product. Antimicrob. Agents Chemother. 55:2282–89 [Google Scholar]
  161. Cole AM, Patton DL, Rohan LC, Cole AL, Cosgrove-Sweeney Y. 161.  et al. 2010. The formulated microbicide RC-101 was safe and antivirally active following intravaginal application in pigtailed macaques. PLOS ONE 5:e15111 [Google Scholar]
  162. Zhao H, Zhou J, Zhang K, Chu H, Liu D. 162.  et al. 2016. A novel peptide with potent and broad-spectrum antiviral activities against multiple respiratory viruses. Sci. Rep. 6:22008 [Google Scholar]
  163. Doss M, Ruchala P, Tecle T, Gantz D, Verma A. 163.  et al. 2012. Hapivirins and diprovirins: novel θ-defensin analogs with potent activity against influenza A virus. J. Immunol. 188:2759–68 [Google Scholar]
  164. Nigro E, Colavita I, Sarnataro D, Scudiero O, Zambrano G. 164.  et al. 2015. An ancestral host defence peptide within human β-defensin 3 recapitulates the antibacterial and antiviral activity of the full-length molecule. Sci. Rep. 5:18450 [Google Scholar]
  165. Nigro E, Colavita I, Sarnataro D, Scudiero O, Daniele A. 165.  et al. 2017. Host defense peptide-derived privileged scaffolds for anti-infective drug discovery. J. Pept. Sci. 23:303–10 [Google Scholar]
  166. Cole AM, Lehrer RI. 166.  2003. Minidefensins: antimicrobial peptides with activity against HIV-1. Curr. Pharm. Des. 9:1463–73 [Google Scholar]
  167. Owen SM, Rudolph D, Wang W, Cole AM, Sherman MA. 167.  et al. 2004. A θ-defensin composed exclusively of d-amino acids is active against HIV-1. J. Pept. Res. 63:469–76 [Google Scholar]
  168. Owen SM, Rudolph DL, Wang W, Cole AM, Waring AJ. 168.  et al. 2004. RC-101, a retrocyclin-1 analogue with enhanced activity against primary HIV type 1 isolates. AIDS Res. Hum. Retrovir. 20:1157–65 [Google Scholar]
  169. Vragniau C, Hubner JM, Beidler P, Gil S, Saydaminova K. 169.  et al. 2017. Studies on the interaction of tumor-derived HD5 alpha defensins with adenoviruses and implications for oncolytic adenovirus therapy. J. Virol. 91:e02030–16 [Google Scholar]
  170. Zhou L, Liu SP, Chen LY, Li J, Ong LB. 170.  et al. 2011. The structural parameters for antimicrobial activity, human epithelial cell cytotoxicity and killing mechanism of synthetic monomer and dimer analogues derived from hBD3 C-terminal region. Amino Acids 40:123–33 [Google Scholar]
  171. Li D, Wang W, Shi HS, Fu YJ, Chen X. 171.  et al. 2014. Gene therapy with β-defensin 2 induces antitumor immunity and enhances local antitumor effects. Hum. Gene Ther. 25:63–72 [Google Scholar]
  172. Potter BK. 172.  2015. Alpha-defensin—the biggest thing in joint replacement infections since prophylactic antibiotics?. Clin. Orthop. Relat. Res. 473:3105–7 [Google Scholar]
/content/journals/10.1146/annurev-virology-101416-041734
Loading
/content/journals/10.1146/annurev-virology-101416-041734
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error