1932

Abstract

The strong dependence of retroviruses, such as human immunodeficiency virus type 1 (HIV-1), on host cell factors is no more apparent than when the endosomal sorting complex required for transport (ESCRT) machinery is purposely disengaged. The resulting potent inhibition of retrovirus release underscores the importance of understanding fundamental structure-function relationships at the ESCRT–HIV-1 interface. Recent studies utilizing advanced imaging technologies have helped clarify these relationships, overcoming hurdles to provide a range of potential models for ESCRT-mediated virus abscission. Here, we discuss these models in the context of prior work detailing ESCRT machinery and the HIV-1 release process. To provide a template for further refinement, we propose a new working model for ESCRT-mediated HIV-1 release that reconciles disparate and seemingly conflicting studies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-101416-041840
2017-09-29
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/virology/4/1/annurev-virology-101416-041840.html?itemId=/content/journals/10.1146/annurev-virology-101416-041840&mimeType=html&fmt=ahah

Literature Cited

  1. Briggs JA, Riches JD, Glass B, Bartonova V, Zanetti G, Krausslich HG. 1.  2009. Structure and assembly of immature HIV. PNAS 106:11090–95 [Google Scholar]
  2. Ono A, Ablan SD, Lockett SJ, Nagashima K, Freed EO. 2.  2004. Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane. PNAS 101:14889–94 [Google Scholar]
  3. Saad JS, Miller J, Tai J, Kim A, Ghanam RH, Summers MF. 3.  2006. Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. PNAS 103:11364–69 [Google Scholar]
  4. Ono A, Waheed AA, Freed EO. 4.  2007. Depletion of cellular cholesterol inhibits membrane binding and higher-order multimerization of human immunodeficiency virus type 1 Gag. Virology 360:27–35 [Google Scholar]
  5. Huang M, Orenstein JM, Martin MA, Freed EO. 5.  1995. p6Gag is required for particle production from full-length human immunodeficiency virus type 1 molecular clones expressing protease. J. Virol. 69:6810–18 [Google Scholar]
  6. Gottlinger HG, Dorfman T, Sodroski JG, Haseltine WA. 6.  1991. Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. PNAS 88:3195–99 [Google Scholar]
  7. VerPlank L, Bouamr F, LaGrassa TJ, Agresta B, Kikonyogo A. 7.  et al. 2001. Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55Gag. PNAS 98:7724–29 [Google Scholar]
  8. Garrus JE, von Schwedler UK, Pornillos OW, Morham SG, Zavitz KH. 8.  et al. 2001. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107:55–65 [Google Scholar]
  9. Martin-Serrano J, Zang T, Bieniasz PD. 9.  2001. HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nat. Med. 7:1313–19 [Google Scholar]
  10. Demirov DG, Ono A, Orenstein JM, Freed EO. 10.  2002. Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function. PNAS 99:955–60 [Google Scholar]
  11. Puffer BA, Parent LJ, Wills JW, Montelaro RC. 11.  1997. Equine infectious anemia virus utilizes a YXXL motif within the late assembly domain of the Gag p9 protein. J. Virol. 71:6541–46 [Google Scholar]
  12. Martin-Serrano J, Yarovoy A, Perez-Caballero D, Bieniasz PD. 12.  2003. Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins. PNAS 100:12414–19 [Google Scholar]
  13. Strack B, Calistri A, Craig S, Popova E, Gottlinger HG. 13.  2003. AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 114:689–99 [Google Scholar]
  14. von Schwedler UK, Stuchell M, Muller B, Ward DM, Chung HY. 14.  et al. 2003. The protein network of HIV budding. Cell 114:701–13 [Google Scholar]
  15. Wills JW, Cameron CE, Wilson CB, Xiang Y, Bennett RP, Leis J. 15.  1994. An assembly domain of the Rous sarcoma virus Gag protein required late in budding. J. Virol. 68:6605–18 [Google Scholar]
  16. Martin-Serrano J, Eastman SW, Chung W, Bieniasz PD. 16.  2005. HECT ubiquitin ligases link viral and cellular PPXY motifs to the vacuolar protein-sorting pathway. J. Cell Biol. 168:89–101 [Google Scholar]
  17. McCullough J, Colf LA, Sundquist WI. 17.  2013. Membrane fission reactions of the mammalian ESCRT pathway. Annu. Rev. Biochem. 82:663–92 [Google Scholar]
  18. Katzmann DJ, Odorizzi G, Emr SD. 18.  2002. Receptor downregulation and multivesicular-body sorting. Nat. Rev. Mol. Cell Biol. 3:893–905 [Google Scholar]
  19. Odorizzi G. 19.  2015. Membrane manipulations by the ESCRT machinery. F1000Research 4:516 [Google Scholar]
  20. Schmidt O, Teis D. 20.  2012. The ESCRT machinery. Curr. Biol. 22:R116–20 [Google Scholar]
  21. Pornillos O, Alam SL, Rich RL, Myszka DG, Davis DR, Sundquist WI. 21.  2002. Structure and functional interactions of the Tsg101 UEV domain. EMBO J 21:2397–406 [Google Scholar]
  22. Popov S, Popova E, Inoue M, Gottlinger HG. 22.  2008. Human immunodeficiency virus type 1 Gag engages the Bro1 domain of ALIX/AIP1 through the nucleocapsid. J. Virol. 82:1389–98 [Google Scholar]
  23. Dussupt V, Javid MP, Abou-Jaoude G, Jadwin JA, de La Cruz J. 23.  et al. 2009. The nucleocapsid region of HIV-1 Gag cooperates with the PTAP and LYPXnL late domains to recruit the cellular machinery necessary for viral budding. PLOS Pathog 5:e1000339 [Google Scholar]
  24. Fujii K, Hurley JH, Freed EO. 24.  2007. Beyond Tsg101: the role of Alix in ‘ESCRTing’ HIV-1. Nat. Rev. Microbiol. 5:912–16 [Google Scholar]
  25. Lee S, Joshi A, Nagashima K, Freed EO, Hurley JH. 25.  2007. Structural basis for viral late-domain binding to Alix. Nat. Struct. Mol. Biol. 14:194–99 [Google Scholar]
  26. Fisher RD, Chung HY, Zhai Q, Robinson H, Sundquist WI, Hill CP. 26.  2007. Structural and biochemical studies of ALIX/AIP1 and its role in retrovirus budding. Cell 128:841–52 [Google Scholar]
  27. Sandrin V, Sundquist WI. 27.  2013. ESCRT requirements for EIAV budding. Retrovirology 10:104 [Google Scholar]
  28. Fujii K, Munshi UM, Ablan SD, Demirov DG, Soheilian F. 28.  et al. 2009. Functional role of Alix in HIV-1 replication. Virology 391:284–92 [Google Scholar]
  29. Demirov DG, Orenstein JM, Freed EO. 29.  2002. The late domain of human immunodeficiency virus type 1 p6 promotes virus release in a cell type-dependent manner. J. Virol. 76:105–17 [Google Scholar]
  30. Munshi UM, Kim J, Nagashima K, Hurley JH, Freed EO. 30.  2007. An Alix fragment potently inhibits HIV-1 budding: characterization of binding to retroviral YPXL late domains. J. Biol. Chem. 282:3847–55 [Google Scholar]
  31. Usami Y, Popov S, Gottlinger HG. 31.  2007. Potent rescue of human immunodeficiency virus type 1 late domain mutants by ALIX/AIP1 depends on its CHMP4 binding site. J. Virol. 81:6614–22 [Google Scholar]
  32. Babst M, Katzmann DJ, Snyder WB, Wendland B, Emr SD. 32.  2002. Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. Dev. Cell 3:283–89 [Google Scholar]
  33. Teo H, Perisic O, Gonzalez B, Williams RL. 33.  2004. ESCRT-II, an endosome-associated complex required for protein sorting: crystal structure and interactions with ESCRT-III and membranes. Dev. Cell 7:559–69 [Google Scholar]
  34. Tang S, Buchkovich NJ, Henne WM, Banjade S, Kim YJ, Emr SD. 34.  2016. ESCRT-III activation by parallel action of ESCRT-I/II and ESCRT-0/Bro1 during MVB biogenesis. eLife 5:e15507 [Google Scholar]
  35. Hierro A, Sun J, Rusnak AS, Kim J, Prag G. 35.  et al. 2004. Structure of the ESCRT-II endosomal trafficking complex. Nature 431:221–25 [Google Scholar]
  36. Im YJ, Wollert T, Boura E, Hurley JH. 36.  2009. Structure and function of the ESCRT-II-III interface in multivesicular body biogenesis. Dev. Cell 17:234–43 [Google Scholar]
  37. Langelier C, von Schwedler UK, Fisher RD, De Domenico I, White PL. 37.  et al. 2006. Human ESCRT-II complex and its role in human immunodeficiency virus type 1 release. J. Virol. 80:9465–80 [Google Scholar]
  38. Morita E, Sandrin V, Chung HY, Morham SG, Gygi SP. 38.  et al. 2007. Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J 26:4215–27 [Google Scholar]
  39. Morita E, Sandrin V, McCullough J, Katsuyama A, Baci Hamilton I, Sundquist WI. 39.  2011. ESCRT-III protein requirements for HIV-1 budding. Cell Host Microbe 9:235–42 [Google Scholar]
  40. Bowers K, Piper SC, Edeling MA, Gray SR, Owen DJ. 40.  et al. 2006. Degradation of endocytosed epidermal growth factor and virally ubiquitinated major histocompatibility complex class I is independent of mammalian ESCRTII. J. Biol. Chem. 281:5094–105 [Google Scholar]
  41. Goliand I, Nachmias D, Gershony O, Elia N. 41.  2014. Inhibition of ESCRT-II-CHMP6 interactions impedes cytokinetic abscission and leads to cell death. Mol. Biol. Cell 25:3740–48 [Google Scholar]
  42. Christ L, Wenzel EM, Liestol K, Raiborg C, Campsteijn C, Stenmark H. 42.  2016. ALIX and ESCRT-I/II function as parallel ESCRT-III recruiters in cytokinetic abscission. J. Cell Biol. 212:499–513 [Google Scholar]
  43. Carlson LA, Hurley JH. 43.  2012. In vitro reconstitution of the ordered assembly of the endosomal sorting complex required for transport at membrane-bound HIV-1 Gag clusters. PNAS 109:16928–33 [Google Scholar]
  44. Meng B, Ip NC, Prestwood LJ, Abbink TE, Lever AM. 44.  2015. Evidence that the endosomal sorting complex required for transport-II (ESCRT-II) is required for efficient human immunodeficiency virus-1 (HIV-1) production. Retrovirology 12:72 [Google Scholar]
  45. Cashikar AG, Shim S, Roth R, Maldazys MR, Heuser JE, Hanson PI. 45.  2014. Structure of cellular ESCRT-III spirals and their relationship to HIV budding. eLife 3:e02184 [Google Scholar]
  46. Shtengel G, Galbraith JA, Galbraith CG, Lippincott-Schwartz J, Gillette JM. 46.  et al. 2009. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. PNAS 106:3125–30 [Google Scholar]
  47. Bleck M, Itano MS, Johnson DS, Thomas VK, North AJ. 47.  et al. 2014. Temporal and spatial organization of ESCRT protein recruitment during HIV-1 budding. PNAS 111:12211–16 [Google Scholar]
  48. Prescher J, Baumgartel V, Ivanchenko S, Torrano AA, Brauchle C. 48.  et al. 2015. Super-resolution imaging of ESCRT-proteins at HIV-1 assembly sites. PLOS Pathog 11:e1004677 [Google Scholar]
  49. Jouvenet N, Zhadina M, Bieniasz PD, Simon SM. 49.  2011. Dynamics of ESCRT protein recruitment during retroviral assembly. Nat. Cell Biol. 13:394–401 [Google Scholar]
  50. Baumgartel V, Ivanchenko S, Dupont A, Sergeev M, Wiseman PW. 50.  et al. 2011. Live-cell visualization of dynamics of HIV budding site interactions with an ESCRT component. Nat. Cell Biol. 13:469–74 [Google Scholar]
  51. Van Engelenburg SB, Shtengel G, Sengupta P, Waki K, Jarnik M. 51.  et al. 2014. Distribution of ESCRT machinery at HIV assembly sites reveals virus scaffolding of ESCRT subunits. Science 343:653–56 [Google Scholar]
  52. Tang S, Henne WM, Borbat PP, Buchkovich NJ, Freed JH. 52.  et al. 2015. Structural basis for activation, assembly and membrane binding of ESCRT-III Snf7 filaments. eLife 4:e12548 [Google Scholar]
  53. McCullough J, Clippinger AK, Talledge N, Skowyra ML, Saunders MG. 53.  et al. 2015. Structure and membrane remodeling activity of ESCRT-III helical polymers. Science 350:1548–51 [Google Scholar]
  54. Zamborlini A, Usami Y, Radoshitzky SR, Popova E, Palu G, Gottlinger H. 54.  2006. Release of autoinhibition converts ESCRT-III components into potent inhibitors of HIV-1 budding. PNAS 103:19140–45 [Google Scholar]
  55. Howard TL, Stauffer DR, Degnin CR, Hollenberg SM. 55.  2001. CHMP1 functions as a member of a newly defined family of vesicle trafficking proteins. J. Cell Sci. 114:2395–404 [Google Scholar]
  56. Carlton JG, Caballe A, Agromayor M, Kloc M, Martin-Serrano J. 56.  2012. ESCRT-III governs the Aurora B-mediated abscission checkpoint through CHMP4C. Science 336:220–25 [Google Scholar]
  57. Elia N, Sougrat R, Spurlin TA, Hurley JH, Lippincott-Schwartz J. 57.  2011. Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission. PNAS 108:4846–51 [Google Scholar]
  58. Olmos Y, Hodgson L, Mantell J, Verkade P, Carlton JG. 58.  2015. ESCRT-III controls nuclear envelope reformation. Nature 522:236–39 [Google Scholar]
  59. Goila-Gaur R, Demirov DG, Orenstein JM, Ono A, Freed EO. 59.  2003. Defects in human immunodeficiency virus budding and endosomal sorting induced by TSG101 overexpression. J. Virol. 77:6507–19 [Google Scholar]
  60. Jouvenet N, Bieniasz PD, Simon SM. 60.  2008. Imaging the biogenesis of individual HIV-1 virions in live cells. Nature 454:236–40 [Google Scholar]
  61. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S. 61.  et al. 2006. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–45 [Google Scholar]
  62. Rust MJ, Bates M, Zhuang X. 62.  2006. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3:793–95 [Google Scholar]
  63. Huang B, Wang W, Bates M, Zhuang X. 63.  2008. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319:810–13 [Google Scholar]
  64. Juette MF, Gould TJ, Lessard MD, Mlodzianoski MJ, Nagpure BS. 64.  et al. 2008. Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat. Methods 5:527–29 [Google Scholar]
  65. Pavani SR, Thompson MA, Biteen JS, Lord SJ, Liu N. 65.  et al. 2009. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. PNAS 106:2995–99 [Google Scholar]
  66. Obita T, Saksena S, Ghazi-Tabatabai S, Gill DJ, Perisic O. 66.  et al. 2007. Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4. Nature 449:735–39 [Google Scholar]
  67. Merrill SA, Hanson PI. 67.  2010. Activation of human VPS4A by ESCRT-III proteins reveals ability of substrates to relieve enzyme autoinhibition. J. Biol. Chem. 285:35428–38 [Google Scholar]
  68. Stuchell-Brereton MD, Skalicky JJ, Kieffer C, Karren MA, Ghaffarian S, Sundquist WI. 68.  2007. ESCRT-III recognition by VPS4 ATPases. Nature 449:740–44 [Google Scholar]
  69. Babst M, Wendland B, Estepa EJ, Emr SD. 69.  1998. The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J 17:2982–93 [Google Scholar]
  70. Babst M, Sato TK, Banta LM, Emr SD. 70.  1997. Endosomal transport function in yeast requires a novel AAA-type ATPase, Vps4p. EMBO J 16:1820–31 [Google Scholar]
  71. Bajorek M, Schubert HL, McCullough J, Langelier C, Eckert DM. 71.  et al. 2009. Structural basis for ESCRT-III protein autoinhibition. Nat. Struct. Mol. Biol. 16:754–62 [Google Scholar]
  72. Lata S, Schoehn G, Jain A, Pires R, Piehler J. 72.  et al. 2008. Helical structures of ESCRT-III are disassembled by VPS4. Science 321:1354–57 [Google Scholar]
  73. Bodon G, Chassefeyre R, Pernet-Gallay K, Martinelli N, Effantin G. 73.  et al. 2011. Charged multivesicular body protein 2B (CHMP2B) of the endosomal sorting complex required for transport-III (ESCRT-III) polymerizes into helical structures deforming the plasma membrane. J. Biol. Chem. 286:40276–86 [Google Scholar]
  74. Lee IH, Kai H, Carlson LA, Groves JT, Hurley JH. 74.  2015. Negative membrane curvature catalyzes nucleation of endosomal sorting complex required for transport (ESCRT)-III assembly. PNAS 112:15892–97 [Google Scholar]
  75. Chiaruttini N, Redondo-Morata L, Colom A, Humbert F, Lenz M. 75.  et al. 2015. Relaxation of loaded ESCRT-III spiral springs drives membrane deformation. Cell 163:866–79 [Google Scholar]
  76. Fabrikant G, Lata S, Riches JD, Briggs JA, Weissenhorn W, Kozlov MM. 76.  2009. Computational model of membrane fission catalyzed by ESCRT-III. PLOS Comput. Biol. 5:e1000575 [Google Scholar]
  77. Snyder JC, Samson RY, Brumfield SK, Bell SD, Young MJ. 77.  2013. Functional interplay between a virus and the ESCRT machinery in archaea. PNAS 110:10783–87 [Google Scholar]
  78. Yang B, Stjepanovic G, Shen Q, Martin A, Hurley JH. 78.  2015. Vps4 disassembles an ESCRT-III filament by global unfolding and processive translocation. Nat. Struct. Mol. Biol. 22:492–98 [Google Scholar]
  79. Hanson PI, Roth R, Lin Y, Heuser JE. 79.  2008. Plasma membrane deformation by circular arrays of ESCRT-III protein filaments. J. Cell Biol. 180:389–402 [Google Scholar]
  80. Carlton JG, Martin-Serrano J. 80.  2007. Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316:1908–12 [Google Scholar]
  81. Elia N, Fabrikant G, Kozlov MM, Lippincott-Schwartz J. 81.  2012. Computational model of cytokinetic abscission driven by ESCRT-III polymerization and remodeling. Biophys. J. 102:2309–20 [Google Scholar]
  82. Ladinsky MS, Kieffer C, Olson G, Deruaz M, Vrbanac V. 82.  et al. 2014. Electron tomography of HIV-1 infection in gut-associated lymphoid tissue. PLOS Pathog 10:e1003899 [Google Scholar]
/content/journals/10.1146/annurev-virology-101416-041840
Loading
/content/journals/10.1146/annurev-virology-101416-041840
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error