1932

Abstract

Hemorrhagic fevers caused by viruses were identified in the late 1950s in South America. These viruses have existed in their hosts, the New World rodents, for millions of years. Their emergence as infectious agents in humans coincided with changes in the environment and farming practices that caused explosions in their host rodent populations. Zoonosis into humans likely occurs because the pathogenic New World arenaviruses use human transferrin receptor 1 to enter cells. The mortality rate after infection with these viruses is high, but the mechanism by which disease is induced is still not clear. Possibilities include direct effects of cellular infection or the induction of high levels of cytokines by infected sentinel cells of the immune system, leading to endothelia and thrombocyte dysfunction and neurological disease. Here we provide a review of the ecology and molecular and cellular biology of New World arenaviruses, as well as a discussion of the current animal models of infection. The development of animal models, coupled with an improved understanding of the infection pathway and host response, should lead to the discovery of new drugs for treating infections.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-101416-042001
2017-09-29
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/virology/4/1/annurev-virology-101416-042001.html?itemId=/content/journals/10.1146/annurev-virology-101416-042001&mimeType=html&fmt=ahah

Literature Cited

  1. Stenglein MD, Sanders C, Kistler AL, Ruby JG, Franco JY. 1.  et al. 2012. Identification, characterization, and in vitro culture of highly divergent arenaviruses from boa constrictors and annulated tree boas: candidate etiological agents for snake inclusion body disease. mBio 3:e00180–12 [Google Scholar]
  2. Radoshitzky SR, Bao Y, Buchmeier MJ, Charrel RN, Clawson AN. 2.  et al. 2015. Past, present, and future of arenavirus taxonomy. Arch. Virol. 160:1851–74 [Google Scholar]
  3. Peralta LA, Laguens RP, Cossio PM, Sabattini MS, Maiztegui JI, Arana RM. 3.  1979. Presence of viral particles in the salivary gland of Calomys musculinus infected with Junin virus by a natural route. Intervirology 11:111–16 [Google Scholar]
  4. Cajimat MN, Milazzo ML, Bradley RD, Fulhorst CF. 4.  2012. Ocozocoautla de Espinosa virus and hemorrhagic fever, Mexico. Emerg. Infect. Dis. 18:401–5 [Google Scholar]
  5. Abraham J, Kwong JA, Albarino CG, Lu JG, Radoshitzky SR. 5.  et al. 2009. Host-species transferrin receptor 1 orthologs are cellular receptors for nonpathogenic new world clade B arenaviruses. PLOS Pathog 5:e1000358 [Google Scholar]
  6. Cai Y, Yu S, Mazur S, Dong L, Janosko K. 6.  et al. 2013. Nonhuman transferrin receptor 1 is an efficient cell entry receptor for Ocozocoautla de Espinosa virus. J. Virol. 87:13930–35 [Google Scholar]
  7. Gomez RM, Jaquenod de Giusti C, Sanchez Vallduvi MM, Frik J, Ferrer MF, Schattner M. 7.  2011. Junín virus. A XXI century update. Microbes Infect 13:303–11 [Google Scholar]
  8. Charrel RN, de Lamballerie X. 8.  2010. Zoonotic aspects of arenavirus infections. Vet. Microbiol. 140:213–20 [Google Scholar]
  9. Salazar-Bravo J, Ruedas LA, Yates TL. 9.  2002. Mammalian reservoirs of arenaviruses. Curr. Top. Microbiol. Immunol. 262:25–63 [Google Scholar]
  10. Mills JN, Ellis BA, Childs JE, McKee KT Jr., Maiztegui JI. 10.  et al. 1994. Prevalence of infection with Junin virus in rodent populations in the epidemic area of Argentine hemorrhagic fever. Am. J. Trop. Med. Hygiene 51554–62 [Google Scholar]
  11. Enria DA, Briggiler AM, Sanchez Z. 11.  2008. Treatment of Argentine hemorrhagic fever. Antivir. Res. 78:132–39 [Google Scholar]
  12. Aguilar PV, Camargo W, Vargas J, Guevara C, Roca Y. 12.  et al. 2009. Reemergence of Bolivian hemorrhagic fever, 2007–2008. Emerg. Infect. Dis. 15:1526–28 [Google Scholar]
  13. 13. ProMED-mail. 2012. Venezuelan hemorrhagic fever—Venezuela: (PO) Arch. No. 20120313.1069429, Mar. 3, ProMED-mail, Int. Soc. Infect. Dis Brookline, MA: http://www.promedmail.org
  14. Delgado S, Erickson BR, Agudo R, Blair PJ, Vallejo E. 14.  et al. 2008. Chapare virus, a newly discovered arenavirus isolated from a fatal hemorrhagic fever case in Bolivia. PLOS Pathog 4:e1000047 [Google Scholar]
  15. 15. US Dep. Health Hum. Serv. (HHS). 2007. HHS public health emergency medical countermeasure enterprise implementation plan for chemical, biological, radiological, and nuclear threats US Dep. HHS, Off. Public Health Emerg. Med. Countermeas., Off. Assist. Secr. Prep. Response Washington, DC: https://www.medicalcountermeasures.gov/barda/documents/phemce_implplan_041607final.pdf
  16. Maiztegui JI. 16.  1975. Clinical and epidemiological patterns of Argentine haemorrhagic fever. Bull. World Health Organ. 52:567–75 [Google Scholar]
  17. Charrel RN, Coutard B, Baronti C, Canard B, Nougairede A. 17.  et al. 2011. Arenaviruses and hantaviruses: from epidemiology and genomics to antivirals. Antivir. Res. 90:102–14 [Google Scholar]
  18. Fulhorst CF, Cajimat MN, Milazzo ML, Paredes H, de Manzione NM. 18.  et al. 2008. Genetic diversity between and within the arenavirus species indigenous to western Venezuela. Virology 378:205–13 [Google Scholar]
  19. Enserink M. 19.  2000. New arenavirus blamed for recent deaths in California. Science 289:842–43 [Google Scholar]
  20. Irwin NR, Bayerlova M, Missa O, Martinkova N. 20.  2012. Complex patterns of host switching in New World arenaviruses. Mol. Ecol. 21:4137–50 [Google Scholar]
  21. Charrel RN, de Lamballerie X, Emonet S. 21.  2008. Phylogeny of the genus Arenavirus. Curr. Opin. Microbiol. 11:362–68 [Google Scholar]
  22. Chiappero MB, Gardenal CN. 22.  2003. Restricted gene flow in Calomys musculinus (Rodentia, Muridae), the natural reservoir of Junin virus. J. Hered. 94:490–95 [Google Scholar]
  23. Strauch TY. 23.  1998. The history of Machupo virus in Bolivia: arenavirus hemorrhagic fever. Sloping Halls Rev 1998:97–109 [Google Scholar]
  24. Charrel RN, de Lamballerie X. 24.  2003. Arenaviruses other than Lassa virus. Antivir. Res. 57:89–100 [Google Scholar]
  25. Salas R, de Manzione N, Tesh RB, Rico-Hesse R, Shope RE. 25.  et al. 1991. Venezuelan haemorrhagic fever. Lancet 338:1033–36 [Google Scholar]
  26. Fulhorst CF, Ksiazek TG, Peters CJ, Tesh RB. 26.  1999. Experimental infection of the cane mouse Zygodontomys brevicauda (family Muridae) with Guanarito virus (Arenaviridae), the etiologic agent of Venezuelan hemorrhagic fever. J. Infect. Dis. 180:966–69 [Google Scholar]
  27. McLay L, Liang Y, Ly H. 27.  2014. Comparative analysis of disease pathogenesis and molecular mechanisms of New World and Old World arenavirus infections. J. Gen. Virol. 95:1–15 [Google Scholar]
  28. Bowen MD, Peters CJ, Nichol ST. 28.  1996. The phylogeny of New World (Tacaribe complex) arenaviruses. Virology 219:285–90 [Google Scholar]
  29. Buchmeier M, Adam E, Rawls WE. 29.  1974. Serological evidence of infection by Pichinde virus among laboratory workers. Infect. Immun. 9:821–23 [Google Scholar]
  30. Choe H, Jemielity S, Abraham J, Radoshitzky SR, Farzan M. 30.  2011. Transferrin receptor 1 in the zoonosis and pathogenesis of New World hemorrhagic fever arenaviruses. Curr. Opin. Microbiol. 14:1–7 [Google Scholar]
  31. Childs JE, Mills JN, Glass GE. 31.  1995. Rodent-borne hemorrhagic fever viruses: a special risk for mammalogists?. J. Mammal. 76:664–80 [Google Scholar]
  32. Kilgore PE, Peters CJ, Mills JN, Rollin PE, Armstrong L. 32.  et al. 1995. Prospects for the control of Bolivian hemorrhagic fever. Emerg. Infect. Dis. 1:97–100 [Google Scholar]
  33. Palacios G, Druce J, Du L, Tran T, Birch C. 33.  et al. 2008. A new arenavirus in a cluster of fatal transplant-associated diseases. N. Engl. J. Med. 358:991–98 [Google Scholar]
  34. Schafer IJ, Miller R, Stroher U, Knust B, Nichol ST. 34.  et al. 2014. Notes from the field: a cluster of lymphocytic choriomeningitis virus infections transmitted through organ transplantation—Iowa, 2013. Morb. Mortal. Wkly. Rep. 63:249 [Google Scholar]
  35. Inizan CC, Cajimat MN, Milazzo ML, Barragan-Gomez A, Bradley RD, Fulhorst CF. 35.  2010. Genetic evidence for a Tacaribe serocomplex virus, Mexico. Emerg. Infect. Dis. 16:1007–10 [Google Scholar]
  36. Zapata JC, Salvato MS. 36.  2013. Arenavirus variations due to host-specific adaptation. Viruses 5:241–78 [Google Scholar]
  37. Sevilla N, de la Torre JC. 37.  2006. Arenavirus diversity and evolution: quasispecies in vivo. Curr. Top. Microbiol. Immunol. 299:315–35 [Google Scholar]
  38. Gaudin R, Kirchhausen T. 38.  2015. Superinfection exclusion is absent during acute Junin virus infection of Vero and A549 cells. Sci. Rep. 5:15990 [Google Scholar]
  39. Stenglein MD, Jacobson ER, Chang LW, Sanders C, Hawkins MG. 39.  et al. 2015. Widespread recombination, reassortment, and transmission of unbalanced compound viral genotypes in natural arenavirus infections. PLOS Pathog 11:e1004900 [Google Scholar]
  40. Nunberg JH, York J. 40.  2012. The curious case of arenavirus entry, and its inhibition. Viruses 4:83–101 [Google Scholar]
  41. Rojek JM, Lee AM, Nguyen N, Spiropoulou CF, Kunz S. 41.  2008. Site 1 protease is required for proteolytic processing of the glycoproteins of the South American hemorrhagic fever viruses Junin, Machupo, and Guanarito. J. Virol. 82:6045–51 [Google Scholar]
  42. Radoshitzky SR, Abraham J, Spiropoulou CF, Kuhn JH, Nguyen D. 42.  et al. 2007. Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses. Nature 446:92–96 [Google Scholar]
  43. Ponka P, Lok CN. 43.  1999. The transferrin receptor: role in health and disease. Int. J. Biochem. Cell Biol. 31:1111–37 [Google Scholar]
  44. Shao J, Liang Y, Ly H. 44.  2015. Human hemorrhagic fever causing arenaviruses: molecular mechanisms contributing to virus virulence and disease pathogenesis. Pathogens 4:283–306 [Google Scholar]
  45. Abraham J, Corbett KD, Farzan M, Choe H, Harrison SC. 45.  2010. Structural basis for receptor recognition by New World hemorrhagic fever arenaviruses. Nat. Struct. Mol. Biol. 17:438–44 [Google Scholar]
  46. Radoshitzky SR, Kuhn JH, Spiropoulou CF, Albarino CG, Nguyen DP. 46.  et al. 2008. Receptor determinants of zoonotic transmission of New World hemorrhagic fever arenaviruses. PNAS 105:2664–69 [Google Scholar]
  47. Demogines A, Abraham J, Choe H, Farzan M, Sawyer SL. 47.  2013. Dual host-virus arms races shape an essential housekeeping protein. PLOS Biol 11:e1001571 [Google Scholar]
  48. Flanagan ML, Oldenburg J, Reignier T, Holt N, Hamilton GA. 48.  et al. 2008. New World clade B arenaviruses can use transferrin receptor 1 (TfR1)-dependent and -independent entry pathways, and glycoproteins from human pathogenic strains are associated with the use of TfR1. J. Virol. 82:938–48 [Google Scholar]
  49. Zong M, Fofana I, Choe H. 49.  2014. Human and host species transferrin receptor 1 use by North American arenaviruses. J. Virol. 88:9418–28 [Google Scholar]
  50. Casey JL, Koeller DM, Ramin VC, Klausner RD, Harford JB. 50.  1989. Iron regulation of transferrin receptor mRNA levels requires iron-responsive elements and a rapid turnover determinant in the 3′ untranslated region of the mRNA. EMBO J 8:3693–99 [Google Scholar]
  51. Cuevas CD, Lavanya M, Wang E, Ross SR. 51.  2011. Junín virus infects mouse cells and induces innate immune responses. J. Virol. 85:11058–68 [Google Scholar]
  52. Goni SE, Iserte JA, Ambrosio AM, Romanowski V, Ghiringhelli PD, Lozano ME. 52.  2006. Genomic features of attenuated Junín virus vaccine strain candidate. Virus Genes 32:37–41 [Google Scholar]
  53. Goni SE, Iserte JA, Stephan BI, Borio CS, Ghiringhelli PD, Lozano ME. 53.  2010. Molecular analysis of the virulence attenuation process in Junín virus vaccine genealogy. Virus Genes 40:320–28 [Google Scholar]
  54. Jemielity S, Wang JJ, Chan YK, Ahmed AA, Li W. 54.  et al. 2013. TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine. PLOS Pathog 9:e1003232 [Google Scholar]
  55. Martinez MG, Bialecki MA, Belouzard S, Cordo SM, Candurra NA, Whittaker GR. 55.  2013. Utilization of human DC-SIGN and L-SIGN for entry and infection of host cells by the New World arenavirus, Junín virus. Biochem. Biophys. Res. Commun. 441:612–17 [Google Scholar]
  56. Martin VK, Droniou-Bonzom ME, Reignier T, Oldenburg JE, Cox AU, Cannon PM. 56.  2010. Investigation of clade B New World arenavirus tropism by using chimeric GP1 proteins. J. Virol. 84:1176–82 [Google Scholar]
  57. Grant A, Seregin A, Huang C, Kolokoltsova O, Brasier A. 57.  et al. 2012. Junín virus pathogenesis and virus replication. Viruses 4:2317–39 [Google Scholar]
  58. Lavanya M, Cuevas CD, Thomas M, Cherry S, Ross SR. 58.  2013. siRNA screen for genes that affect Junín virus entry uncovers voltage-gated calcium channels as a therapeutic target. Sci. Transl. Med. 5:204ra131 [Google Scholar]
  59. Oldenburg J, Reignier T, Flanagan ML, Hamilton GA, Cannon PM. 59.  2007. Differences in tropism and pH dependence for glycoproteins from the clade B1 arenaviruses: implications for receptor usage and pathogenicity. Virology 364:132–39 [Google Scholar]
  60. Castilla V, Palermo LM, Coto CE. 60.  2001. Involvement of vacuolar proton ATPase in Junin virus multiplication. Arch. Virol. 146:251–63 [Google Scholar]
  61. York J, Nunberg JH. 61.  2006. Role of the stable signal peptide of Junín arenavirus envelope glycoprotein in pH-dependent membrane fusion. J. Virol. 80:7775–80 [Google Scholar]
  62. Rojek JM, Sanchez AB, Nguyen NT, de la Torre JC, Kunz S. 62.  2008. Different mechanisms of cell entry by human-pathogenic Old World and New World arenaviruses. J. Virol. 82:7677–87 [Google Scholar]
  63. Martinez MG, Cordo SM, Candurra NA. 63.  2007. Characterization of Junín arenavirus cell entry. J. Gen. Virol. 88:1776–84 [Google Scholar]
  64. Roldan JS, Martinez MG, Forlenza MB, Whittaker GR, Candurra NA. 64.  2016. Human transferrin receptor triggers an alternative Tacaribe virus internalization pathway. Arch. Virol. 161:353–63 [Google Scholar]
  65. Jae LT, Raaben M, Herbert AS, Kuehne AI, Wirchnianski AS. 65.  et al. 2014. Lassa virus entry requires a trigger-induced receptor switch. Science 344:1506–10 [Google Scholar]
  66. Buchmeier MJ, de la Torre JC, Peters CJ. 66.  2007. Arenaviridae: the viruses and their replication. Fields Virology DL Knipe, PM Howley 1791–828 Philadelphia: Lippincott Williams & Wilkins [Google Scholar]
  67. Grande-Perez A, Martin V, Moreno H, de la Torre JC. 67.  2016. Arenavirus quasispecies and their biological implications. Curr. Top. Microbiol. Immunol. 392:231–76 [Google Scholar]
  68. Raju R, Raju L, Hacker D, Garcin D, Compans R, Kolakofsky D. 68.  1990. Nontemplated bases at the 5′ ends of Tacaribe virus mRNAs. Virology 174:53–59 [Google Scholar]
  69. Kranzusch PJ, Schenk AD, Rahmeh AA, Radoshitzky SR, Bavari S. 69.  et al. 2010. Assembly of a functional Machupo virus polymerase complex. PNAS 107:20069–74 [Google Scholar]
  70. Morin B, Coutard B, Lelke M, Ferron F, Kerber R. 70.  et al. 2010. The N-terminal domain of the arenavirus L protein is an RNA endonuclease essential in mRNA transcription. PLOS Pathog 6:e1001038 [Google Scholar]
  71. Cornu TI, de la Torre JC. 71.  2001. RING finger Z protein of lymphocytic choriomeningitis virus (LCMV) inhibits transcription and RNA replication of an LCMV S-segment minigenome. J. Virol. 75:9415–26 [Google Scholar]
  72. D'Antuono A, Loureiro ME, Foscaldi S, Marino-Buslje C, Lopez N. 72.  2014. Differential contributions of Tacaribe arenavirus nucleoprotein N-terminal and C-terminal residues to nucleocapsid functional activity. J. Virol. 88:6492–505 [Google Scholar]
  73. Linero F, Welnowska E, Carrasco L, Scolaro L. 73.  2013. Participation of eIF4F complex in Junin virus infection: Blockage of eIF4E does not impair virus replication. Cell. Microbiol. 15:1766–82 [Google Scholar]
  74. Groseth A, Wolff S, Strecker T, Hoenen T, Becker S. 74.  2010. Efficient budding of the Tacaribe virus matrix protein Z requires the nucleoprotein. J. Virol. 84:3603–11 [Google Scholar]
  75. Wolff S, Ebihara H, Groseth A. 75.  2013. Arenavirus budding: a common pathway with mechanistic differences. Viruses 5:528–49 [Google Scholar]
  76. Kerber R, Reindl S, Romanowski V, Gomez RM, Ogbaini-Emovon E. 76.  et al. 2015. Research efforts to control highly pathogenic arenaviruses: a summary of the progress and gaps. J. Clin. Virol. 64:120–27 [Google Scholar]
  77. Lander HM, Grant AM, Albrecht T, Hill T, Peters CJ. 77.  2014. Endothelial cell permeability and adherens junction disruption induced by Junín virus infection. Am. J. Trop. Med. Hygiene 90993–1002 [Google Scholar]
  78. Pozner RG, Ure AE, Jaquenod de Giusti C, D'Atri LP, Italiano JE. 78.  et al. 2010. Junín virus infection of human hematopoietic progenitors impairs in vitro proplatelet formation and platelet release via a bystander effect involving type I IFN signaling. PLOS Pathog 6:e1000847 [Google Scholar]
  79. Gomez RM, Pozner RG, Lazzari MA, D'Atri LP, Negrotto S. 79.  et al. 2003. Endothelial cell function alteration after Junin virus infection. Thromb. Haemost. 90:326–33 [Google Scholar]
  80. Moraz ML, Kunz S. 80.  2011. Pathogenesis of arenavirus hemorrhagic fevers. Exp. Rev. Anti-Infect. Ther. 9:49–59 [Google Scholar]
  81. Gonzalez PH, Cossio PM, Arana R, Maiztegui JI, Laguens RP. 81.  1980. Lymphatic tissue in Argentine hemorrhagic fever. Pathologic features. Arch. Pathol. Lab. Med. 104:250–54 [Google Scholar]
  82. Gonzalez PH, Lampuri JS, Coto CE, Laguens RP. 82.  1982. In vitro infection of murine macrophages with Junin virus. Infect. Immun. 35:356–58 [Google Scholar]
  83. Laguens M, Chambo JG, Laguens RP. 83.  1983. In vivo replication of pathogenic and attenuated strains of Junin virus in different cell populations of lymphatic tissue. Infect. Haemost. 41:1279–83 [Google Scholar]
  84. Ambrosio AM, Enria DA, Maiztegui JI. 84.  1986. Junin virus isolation from lympho-mononuclear cells of patients with Argentine hemorrhagic fever. Intervirology 25:97–102 [Google Scholar]
  85. Ambrosio M, Vallejos A, Saavedra C, Maiztegui JI. 85.  1990. Junin virus replication in peripheral blood mononuclear cells of patients with Argentine haemorrhagic fever. Acta Virol 34:58–63 [Google Scholar]
  86. Maiztegui JI, Laguens RP, Cossio PM, Casanova MB, de la Vega MT. 86.  et al. 1975. Ultrastructural and immunohistochemical studies in five cases of Argentine hemorrhagic fever. J. Infect. Dis. 132:35–53 [Google Scholar]
  87. Burzyn D, Rassa JC, Kim D, Nepomnaschy I, Ross SR, Piazzon I. 87.  2004. Toll-like receptor 4-dependent activation of dendritic cells by a retrovirus. J. Virol. 78:576–84 [Google Scholar]
  88. Courreges MC, Burzyn D, Nepomnaschy I, Piazzon I, Ross SR. 88.  2007. Critical role of dendritic cells in mouse mammary tumor virus in vivo infection. J. Virol. 81:3769–77 [Google Scholar]
  89. Levis SC, Saavedra MC, Ceccoli C, Falcoff E, Feuillade MR. 89.  et al. 1984. Endogenous interferon in Argentine hemorrhagic fever. J. Infect. Dis. 149:428–33 [Google Scholar]
  90. Levis SC, Saavedra MC, Ceccoli C, Feuillade MR, Enria DA. 90.  et al. 1985. Correlation between endogenous interferon and the clinical evolution of patients with Argentine hemorrhagic fever. J. Interferon Res. 5:383–89 [Google Scholar]
  91. Huang C, Kolokoltsova OA, Yun NE, Seregin AV, Ronca S. 91.  et al. 2015. Highly pathogenic New World and Old World human arenaviruses induce distinct interferon responses in human cells. J. Virol. 89:7079–88 [Google Scholar]
  92. Enria DA, Barrera Oro JG. 92.  2002. Junin virus vaccines. Curr. Top. Microbiol. Immunol. 263:239–61 [Google Scholar]
  93. Droniou-Bonzom ME, Reignier T, Oldenburg JE, Cox AU, Exline CM. 93.  et al. 2011. Substitutions in the glycoprotein (GP) of the Candid#1 vaccine strain of Junin virus increase dependence on human transferrin receptor 1 for entry and destabilize the metastable conformation of GP. J. Virol. 85:13457–62 [Google Scholar]
  94. Seregin AV, Yun NE, Miller M, Aronson J, Smith JK. 94.  et al. 2015. The glycoprotein precursor gene of Junin virus determines the virulence of the Romero strain and the attenuation of the Candid #1 strain in a representative animal model of Argentine hemorrhagic fever. J. Virol. 89:5949–56 [Google Scholar]
  95. Koma T, Huang C, Aronson JF, Walker AG, Miller M. 95.  et al. 2016. The ectodomain of glycoprotein from the Candid#1 vaccine strain of Junin virus rendered Machupo virus partially attenuated in mice lacking IFN-αβ/γ receptor. PLOS Negl. Trop. Dis. 10:e0004969 [Google Scholar]
  96. Emonet SF, Seregin AV, Yun NE, Poussard AL, Walker AG. 96.  et al. 2011. Rescue from cloned cDNAs and in vivo characterization of recombinant pathogenic Romero and live-attenuated Candid #1 strains of Junin virus, the causative agent of Argentine hemorrhagic fever disease. J. Virol. 85:1473–83 [Google Scholar]
  97. Cuevas CD, Ross SR. 97.  2014. Toll-like receptor 2-mediated innate immune responses against Junín virus in mice lead to antiviral adaptive immune responses during systemic infection and do not affect viral replication in the brain. J. Virol. 88:7703–14 [Google Scholar]
  98. Kolokoltsova OA, Yun NE, Poussard AL, Smith JK, Smith JN. 98.  et al. 2010. Mice lacking alpha/beta and gamma interferon receptors are susceptible to Junin virus infection. J. Virol. 84:13063–67 [Google Scholar]
  99. Yun NE, Linde NS, Dziuba N, Zacks MA, Smith JN. 99.  et al. 2008. Pathogenesis of XJ and Romero strains of Junin virus in two strains of guinea pigs. Am. J. Trop. Med. Hygiene 79275–82 [Google Scholar]
  100. Laguens RM, Avila MM, Samoilovich SR, Weissenbacher MC, Laguens RP. 100.  1983. Pathogenicity of an attenuated strain (XJCl3) of Junin virus. Morphological and virological studies in experimentally infected guinea pigs. Intervirology 20:195–201 [Google Scholar]
  101. Kenyon RH, Green DE, Eddy GA, Peters CJ. 101.  1986. Treatment of Junin virus–infected guinea pigs with immune serum: development of late neurological disease. J. Med. Virol 20207–18 [Google Scholar]
  102. Xiao SY, Zhang H, Yang Y, Tesh RB. 102.  2001. Pirital virus (Arenaviridae) infection in the Syrian golden hamster, Mesocricetus auratus: a new animal model for arenaviral hemorrhagic fever. Am. J. Trop. Med. Hygiene 64111–18 [Google Scholar]
  103. McKee KT Jr., Oro JG, Kuehne AI, Spisso JA, Mahlandt BG. 103.  1992. Candid No. 1 Argentine hemorrhagic fever vaccine protects against lethal Junin virus challenge in rhesus macaques. Intervirology 34:154–63 [Google Scholar]
  104. Weissenbacher MC, Calello MA, Merani MS, McCormick JB, Rodriguez M. 104.  1986. Therapeutic effect of the antiviral agent ribavirin in Junín virus infection of primates. J. Med. Virol 20261–67 [Google Scholar]
  105. Weissenbacher MC, Avila MM, Calello MA, Merani MS, McCormick JB, Rodriguez M. 105.  1986. Effect of ribavirin and immune serum on Junin virus–infected primates. Med. Microbiol. Immunol 175183–86 [Google Scholar]
  106. Huang C, Kolokoltsova OA, Yun NE, Seregin AV, Poussard AL. 106.  et al. 2012. Junín virus infection activates the type I interferon pathway in a RIG-I-dependent manner. PLOS Negl. Trop. Dis. 6:e1659 [Google Scholar]
  107. Huang C, Walker AG, Grant AM, Kolokoltsova OA, Yun NE. 107.  et al. 2014. Potent inhibition of Junín virus infection by interferon in murine cells. PLOS Negl. Trop. Dis. 8:e2933 [Google Scholar]
  108. Xing J, Ly H, Liang Y. 108.  2015. The Z proteins of pathogenic but not nonpathogenic arenaviruses inhibit RIG-I-like receptor-dependent interferon production. J. Virol. 89:2944–55 [Google Scholar]
  109. Fan L, Briese T, Lipkin WI. 109.  2010. Z proteins of New World arenaviruses bind RIG-I and interfere with type I interferon induction. J. Virol. 84:1785–91 [Google Scholar]
  110. Rodrigo WW, Ortiz-Riano E, Pythoud C, Kunz S, de la Torre JC, Martinez-Sobrido L. 110.  2012. Arenavirus nucleoproteins prevent activation of nuclear factor kappa B. J. Virol. 86:8185–97 [Google Scholar]
  111. Hastie KM, Kimberlin CR, Zandonatti MA, MacRae IJ, Saphire EO. 111.  2011. Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3′ to 5′ exonuclease activity essential for immune suppression. PNAS 108:2396–401 [Google Scholar]
  112. Reynard S, Russier M, Fizet A, Carnec X, Baize S. 112.  2014. Exonuclease domain of the Lassa virus nucleoprotein is critical to avoid RIG-I signaling and to inhibit the innate immune response. J. Virol. 88:13923–27 [Google Scholar]
  113. Huang Q, Shao J, Lan S, Zhou Y, Xing J. 113.  et al. 2015. In vitro and in vivo characterizations of Pichinde viral nucleoprotein exoribonuclease functions. J. Virol. 89:6595–607 [Google Scholar]
  114. Goubau D, Deddouche S, Reis e Sousa C. 114.  2013. Cytosolic sensing of viruses. Immunity 38:855–69 [Google Scholar]
  115. Loo Y, Gale M. 115.  2011. Immune signaling by RIG-I-like receptors. Immunity 34:680–92 [Google Scholar]
  116. Marq JB, Hausmann S, Veillard N, Kolakofsky D, Garcin D. 116.  2011. Short double-stranded RNAs with an overhanging 5′ ppp-nucleotide, as found in arenavirus genomes, act as RIG-I decoys. J. Biol. Chem. 286:6108–16 [Google Scholar]
  117. Marq JB, Kolakofsky D, Garcin D. 117.  2010. Unpaired 5′ ppp-nucleotides, as found in arenavirus double-stranded RNA panhandles, are not recognized by RIG-I. J. Biol. Chem. 285:18208–16 [Google Scholar]
  118. Zeitlin L, Geisbert JB, Deer DJ, Fenton KA, Bohorov O. 118.  et al. 2016. Monoclonal antibody therapy for Junin virus infection. PNAS 113:4458–63 [Google Scholar]
  119. Lee AM, Rojek JM, Spiropoulou CF, Gundersen AT, Jin W. 119.  et al. 2008. Unique small molecule entry inhibitors of hemorrhagic fever arenaviruses. J. Biol. Chem. 283:18734–42 [Google Scholar]
  120. Larson RA, Dai D, Hosack VT, Tan Y, Bolken TC. 120.  et al. 2008. Identification of a broad-spectrum arenavirus entry inhibitor. J. Virol. 82:10768–75 [Google Scholar]
  121. Iwasaki M, Ngo N, de la Torre JC. 121.  2013. Sodium hydrogen exchangers contribute to arenavirus cell entry. J. Virol. 88:643–54 [Google Scholar]
  122. Chou YY, Cuevas C, Carocci M, Stubbs SH, Ma M. 122.  et al. 2016. Identification and characterization of a novel broad-spectrum virus entry inhibitor. J. Virol. 90:4494–510 [Google Scholar]
  123. McCormick JB, King IJ, Webb PA, Scribner CL, Craven RB. 123.  et al. 1986. Lassa fever. Effective therapy with ribavirin. N. Engl. J. Med. 314:20–26 [Google Scholar]
  124. Furuta Y, Gowen BB, Takahashi K, Shiraki K, Smee DF, Barnard DL. 124.  2013. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antivir. Res. 100:446–54 [Google Scholar]
  125. Gowen BB, Juelich TL, Sefing EJ, Brasel T, Smith JK. 125.  et al. 2013. Favipiravir (T-705) inhibits Junín virus infection and reduces mortality in a guinea pig model of Argentine hemorrhagic fever. PLOS Negl. Trop. Dis. 7:e2614 [Google Scholar]
  126. Lu J, Han Z, Liu Y, Liu W, Lee MS. 126.  et al. 2014. A host-oriented inhibitor of Junin Argentine hemorrhagic fever virus egress. J. Virol. 88:4736–43 [Google Scholar]
/content/journals/10.1146/annurev-virology-101416-042001
Loading
/content/journals/10.1146/annurev-virology-101416-042001
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error