1932

Abstract

Current antivirals effectively target diverse viruses at various stages of their life cycles. Nevertheless, curative therapy has remained elusive for important pathogens, such as human immunodeficiency virus type 1 (HIV-1) and herpesviruses, in large part due to viral latency and the evolution of resistance to existing therapies. Here, we review the discovery of viral master circuits: virus-encoded autoregulatory gene networks that autonomously control viral expression programs (i.e., between active, latent, and abortive fates). These circuits offer the opportunity for a new class of antivirals that could lead to intrinsic combination-antiviral therapies within a single molecule—evolutionary escape from such circuit-disrupting antivirals would require simultaneous evolution of both the viral regulatory element (e.g., the DNA-binding site) and the element (e.g., the transcription factor) in order for the virus to recapitulate a circuit that would not be disrupted. We review the architectures of these fate-regulating master circuits in HIV-1 and the human herpesvirus cytomegalovirus along with potential circuit-disruption strategies that may ultimately enable escape-resistant antiviral therapies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-110615-035606
2017-09-29
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/virology/4/1/annurev-virology-110615-035606.html?itemId=/content/journals/10.1146/annurev-virology-110615-035606&mimeType=html&fmt=ahah

Literature Cited

  1. 1. UNAIDS. 2016. Global AIDS Response Progress Reporting 2016 Geneva, Switz.: World Health Organ. Press
  2. De Clercq E, Li G. 2.  2016. Approved antiviral drugs over the past 50 years. Clin. Microbiol. Rev. 29:695–747 [Google Scholar]
  3. Boppana SB, Ross SA, Fowler KB. 3.  2013. Congenital cytomegalovirus infection: clinical outcome. Clin. Infect. Dis. 57:Suppl. 4S178–81 [Google Scholar]
  4. Lurain NS, Chou S. 4.  2010. Antiviral drug resistance of human cytomegalovirus. Clin. Microbiol. Rev. 23:689–712 [Google Scholar]
  5. Richman DD, Margolis DM, Delaney M, Greene WC, Hazuda D, Pomerantz RJ. 5.  2009. The challenge of finding a cure for HIV infection. Science 323:1304–7 [Google Scholar]
  6. Han Y, Wind-Rotolo M, Yang HC, Siliciano JD, Siliciano RF. 6.  2007. Experimental approaches to the study of HIV-1 latency. Nat. Rev. Microbiol. 5:95–106 [Google Scholar]
  7. Pierson T, McArthur J, Siliciano RF. 7.  2000. Reservoirs for HIV-1: mechanisms for viral persistence in the presence of antiviral immune responses and antiretroviral therapy. Annu. Rev. Immunol. 18:665–708 [Google Scholar]
  8. Weinberger AD, Weinberger LS. 8.  2013. Stochastic fate selection in HIV-infected patients. Cell 155:497–99 [Google Scholar]
  9. Weinberger LS, Dar RD, Simpson ML. 9.  2008. Transient-mediated fate determination in a transcriptional circuit of HIV. Nat. Genet. 40:466–70 [Google Scholar]
  10. Burnett JC, Lim KI, Calafi A, Rossi JJ, Schaffer DV, Arkin AP. 10.  2010. Combinatorial latency reactivation for HIV-1 subtypes and variants. J. Virol. 84:5958–74 [Google Scholar]
  11. Bosque A, Planelles V. 11.  2011. Studies of HIV-1 latency in an ex vivo model that uses primary central memory T cells. Methods 53:54–61 [Google Scholar]
  12. Bosque A, Planelles V. 12.  2009. Induction of HIV-1 latency and reactivation in primary memory CD4+ T cells. Blood 113:58–65 [Google Scholar]
  13. Ho YC, Shan L, Hosmane NN, Wang J, Laskey SB. 13.  et al. 2013. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell 155:540–51 [Google Scholar]
  14. Rouzine IM, Weinberger AD, Weinberger LS. 14.  2015. An evolutionary role for HIV latency in enhancing viral transmission. Cell 160:1002–12 [Google Scholar]
  15. Dar RD, Hosmane NN, Arkin MR, Siliciano RF, Weinberger LS. 15.  2014. Screening for noise in gene expression identifies drug synergies. Science 344:1392–96 [Google Scholar]
  16. Cannon MJ. 16.  2009. Congenital cytomegalovirus (CMV) epidemiology and awareness. J. Clin. Virol. 46:Suppl. 4S6–10 [Google Scholar]
  17. Barry PA, Lockridge KM, Salamat S, Tinling SP, Yue Y. 17.  et al. 2006. Nonhuman primate models of intrauterine cytomegalovirus infection. ILAR J 47:49–64 [Google Scholar]
  18. Hotez PJ. 18.  2008. Neglected infections of poverty in the United States of America. PLOS Negl. Trop. Dis. 2:e256 [Google Scholar]
  19. Prichard MN, Kern ER. 19.  2011. The search for new therapies for human cytomegalovirus infections. Virus Res 157:212–21 [Google Scholar]
  20. Manicklal S, Emery VC, Lazzarotto T, Boppana SB, Gupta RK. 20.  2013. The “silent” global burden of congenital cytomegalovirus. Clin. Microbiol. Rev. 26:86–102 [Google Scholar]
  21. Arts EJ, Hazuda DJ. 21.  2012. HIV-1 antiretroviral drug therapy. Cold Spring Harb. Perspect. Med. 2:a007161 [Google Scholar]
  22. Roush W. 22.  1997. Antisense aims for a renaissance. Science 276:1192–93 [Google Scholar]
  23. Kole R, Krainer AR, Altman S. 23.  2012. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat. Rev. Drug Discov. 11:125–40 [Google Scholar]
  24. Mulamba GB, Hu A, Azad RF, Anderson KP, Coen DM. 24.  1998. Human cytomegalovirus mutant with sequence-dependent resistance to the phosphorothioate oligonucleotide fomivirsen (ISIS 2922). Antimicrob. Agents Chemother. 42:971–73 [Google Scholar]
  25. Burnett JC, Rossi JJ. 25.  2012. RNA-based therapeutics: current progress and future prospects. Chem. Biol. 19:60–71 [Google Scholar]
  26. Maamar H, Raj A, Dubnau D. 26.  2007. Noise in gene expression determines cell fate in Bacillus subtilis. Science 317:526–29 [Google Scholar]
  27. Balaban NQ. 27.  2011. Persistence: mechanisms for triggering and enhancing phenotypic variability. Curr. Opin. Genet. Dev. 21:768–75 [Google Scholar]
  28. Golding I. 28.  2016. Single-cell studies of phage λ: hidden treasures under Occam's rug. Annu. Rev. Virol. 3:453–72 [Google Scholar]
  29. Gardner TS, Cantor CR, Collins JJ. 29.  2000. Construction of a genetic toggle switch in Escherichia coli. Nature 403:339–42 [Google Scholar]
  30. Siliciano RF, Greene WC. 30.  2011. HIV latency. Cold Spring Harb. Perspect. Med. 1:a007096 [Google Scholar]
  31. Weinberger LS. 31.  2015. A minimal fate-selection switch. Curr. Opin. Cell Biol. 37:111–18 [Google Scholar]
  32. Hasty J, McMillen D, Collins JJ. 32.  2002. Engineered gene circuits. Nature 420:224–30 [Google Scholar]
  33. Nandagopal N, Elowitz MB. 33.  2011. Synthetic biology: integrated gene circuits. Science 333:1244–48 [Google Scholar]
  34. Ptashne M, Johnson AD, Pabo CO. 34.  1982. A genetic switch in a bacterial virus. Sci. Am. 247:128–41 [Google Scholar]
  35. Coffin J, Swanstrom R. 35.  2013. HIV pathogenesis: dynamics and genetics of viral populations and infected cells. Cold Spring Harb. Perspect. Med. 3:a012526 [Google Scholar]
  36. Delbruck M. 36.  1940. The growth of bacteriophage and lysis of the host. J. Gen. Physiol. 23:643–60 [Google Scholar]
  37. Ellis EL, Delbruck M. 37.  1939. The growth of bacteriophage. J. Gen. Physiol. 22:365–84 [Google Scholar]
  38. Arkin A, Ross J, McAdams HH. 38.  1998. Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells. Genetics 149:1633–48 [Google Scholar]
  39. Singh A, Weinberger LS. 39.  2009. Stochastic gene expression as a molecular switch for viral latency. Curr. Opin. Microbiol. 12:460–66 [Google Scholar]
  40. St-Pierre F, Endy D. 40.  2008. Determination of cell fate selection during phage lambda infection. PNAS 105:20705–10 [Google Scholar]
  41. Golding I. 41.  2011. Decision making in living cells: lessons from a simple system. Annu. Rev. Biophys. 40:63–80 [Google Scholar]
  42. Weinberger LS, Burnett JC, Toettcher JE, Arkin AP, Schaffer DV. 42.  2005. Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell 122:169–82 [Google Scholar]
  43. Suel GM, Kulkarni RP, Dworkin J, Garcia-Ojalvo J, Elowitz MB. 43.  2007. Tunability and noise dependence in differentiation dynamics. Science 315:1716–19 [Google Scholar]
  44. Jaenisch R, Young R. 44.  2008. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132:567–82 [Google Scholar]
  45. Sokolik C, Liu Y, Bauer D, McPherson J, Broeker M. 45.  et al. 2015. Transcription factor competition allows embryonic stem cells to distinguish authentic signals from noise. Cell Syst 1:117–29 [Google Scholar]
  46. Hanna J, Saha K, Pando B, van Zon J, Lengner CJ. 46.  et al. 2009. Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 462:595–601 [Google Scholar]
  47. Symonds ME. 47.  2011. Adipose Tissue Biology New York: Springer
  48. Ahrends R, Ota A, Kovary KM, Kudo T, Park BO, Teruel MN. 48.  2014. Controlling low rates of cell differentiation through noise and ultrahigh feedback. Science 344:1384–89 [Google Scholar]
  49. Raj A, van Oudenaarden A. 49.  2008. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135:216–26 [Google Scholar]
  50. Chang HH, Hemberg M, Barahona M, Ingber DE, Huang S. 50.  2008. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453:544–47 [Google Scholar]
  51. Murphy KF, Adams RM, Wang X, Balazsi G, Collins JJ. 51.  2010. Tuning and controlling gene expression noise in synthetic gene networks. Nucleic Acids Res 38:2712–26 [Google Scholar]
  52. Tsimring LS. 52.  2014. Noise in biology. Rep. Prog. Phys. 77:026601 [Google Scholar]
  53. Austin DW, Allen MS, McCollum JM, Dar RD, Wilgus JR. 53.  et al. 2006. Gene network shaping of inherent noise spectra. Nature 439:608–11 [Google Scholar]
  54. Shah NA, Sarkar CA. 54.  2011. Robust network topologies for generating switch-like cellular responses. PLOS Comput. Biol. 7:e1002085 [Google Scholar]
  55. Wolf DM, Arkin AP. 55.  2003. Motifs, modules and games in bacteria. Curr. Opin. Microbiol. 6:125–34 [Google Scholar]
  56. Brandman O, Meyer T. 56.  2008. Feedback loops shape cellular signals in space and time. Science 322:390–95 [Google Scholar]
  57. Ferrell JE Jr., Ha SH. 57.  2014. Ultrasensitivity part I: Michaelian responses and zero-order ultrasensitivity. Trends Biochem. Sci. 39:496–503 [Google Scholar]
  58. Teng MW, Bolovan-Fritts C, Dar RD, Womack A, Simpson ML. 58.  et al. 2012. An endogenous accelerator for viral gene expression confers a fitness advantage. Cell 151:1569–80 [Google Scholar]
  59. Weinberger LS, Shenk T. 59.  2007. An HIV feedback resistor: auto-regulatory circuit deactivator and noise buffer. PLOS Biol 5:e9 [Google Scholar]
  60. Craigie R, Bushman FD. 60.  2012. HIV DNA integration. Cold Spring Harb. Perspect. Med. 2:a006890 [Google Scholar]
  61. Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F. 61.  2002. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110:521–29 [Google Scholar]
  62. Mohammadi P, Desfarges S, Bartha I, Joos B, Zangger N. 62.  et al. 2013. 24 hours in the life of HIV-1 in a T cell line. PLOS Pathog 9:e1003161 [Google Scholar]
  63. Perelson AS, Essunger P, Cao Y, Vesanen M, Hurley A. 63.  et al. 1997. Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 387:188–91 [Google Scholar]
  64. Finzi D, Blankson J, Siliciano JD, Margolick JB, Chadwick K. 64.  et al. 1999. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat. Med. 5:512–17 [Google Scholar]
  65. Finzi D, Hermankova M, Pierson T, Carruth LM, Buck C. 65.  et al. 1997. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278:1295–300 [Google Scholar]
  66. Wong JK, Hezareh M, Gunthard HF, Havlir DV, Ignacio CC. 66.  et al. 1997. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 278:1291–95 [Google Scholar]
  67. Hill AL, Rosenbloom DI, Fu F, Nowak MA, Siliciano RF. 67.  2014. Predicting the outcomes of treatment to eradicate the latent reservoir for HIV-1. PNAS 111:13475–80 [Google Scholar]
  68. Sherrill-Mix S, Lewinski MK, Famiglietti M, Bosque A, Malani N. 68.  et al. 2013. HIV latency and integration site placement in five cell-based models. Retrovirology 10:90 [Google Scholar]
  69. Brady T, Agosto LM, Malani N, Berry CC, O'Doherty U, Bushman F. 69.  2009. HIV integration site distributions in resting and activated CD4+ T cells infected in culture. AIDS 23:1461–71 [Google Scholar]
  70. Youngblood B, Hale JS, Ahmed R. 70.  2013. T-cell memory differentiation: insights from transcriptional signatures and epigenetics. Immunology 139:277–84 [Google Scholar]
  71. Bintu L, Yong J, Antebi YE, McCue K, Kazuki Y. 71.  et al. 2016. Dynamics of epigenetic regulation at the single-cell level. Science 351:720–24 [Google Scholar]
  72. Whitney JB, Hill AL, Sanisetty S, Penaloza-MacMaster P, Liu J. 72.  et al. 2014. Rapid seeding of the viral reservoir prior to SIV viraemia in rhesus monkeys. Nature 512:74–77 [Google Scholar]
  73. Dahabieh MS, Ooms M, Simon V, Sadowski I. 73.  2013. A doubly fluorescent HIV-1 reporter shows that the majority of integrated HIV-1 is latent shortly after infection. J. Virol. 87:4716–27 [Google Scholar]
  74. Calvanese V, Chavez L, Laurent T, Ding S, Verdin E. 74.  2013. Dual-color HIV reporters trace a population of latently infected cells and enable their purification. Virology 446:283–92 [Google Scholar]
  75. Razooky BS, Pai A, Aull K, Rouzine IM, Weinberger LS. 75.  2015. A hardwired HIV latency program. Cell 160:990–1001 [Google Scholar]
  76. Chavez L, Calvanese V, Verdin E. 76.  2015. HIV latency is established directly and early in both resting and activated primary CD4 T cells. PLOS Pathog 11:e1004955 [Google Scholar]
  77. Mbonye U, Karn J. 77.  2014. Transcriptional control of HIV latency: cellular signaling pathways, epigenetics, happenstance and the hope for a cure. Virology 454–55:328–39 [Google Scholar]
  78. Karn J, Stoltzfus CM. 78.  2012. Transcriptional and posttranscriptional regulation of HIV-1 gene expression. Cold Spring Harb. Perspect. Med. 2:a006916 [Google Scholar]
  79. Adelman K, Lis JT. 79.  2012. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat. Rev. Genet. 13:720–31 [Google Scholar]
  80. Coulon A, Chow CC, Singer RH, Larson DR. 80.  2013. Eukaryotic transcriptional dynamics: from single molecules to cell populations. Nat. Rev. Genet. 14:572–84 [Google Scholar]
  81. Rafati H, Parra M, Hakre S, Moshkin Y, Verdin E, Mahmoudi T. 81.  2011. Repressive LTR nucleosome positioning by the BAF complex is required for HIV latency. PLOS Biol 9:e1001206 [Google Scholar]
  82. Bai L, Charvin G, Siggia ED, Cross FR. 82.  2010. Nucleosome-depleted regions in cell-cycle-regulated promoters ensure reliable gene expression in every cell cycle. Dev. Cell 18:544–55 [Google Scholar]
  83. Tirosh I, Barkai N. 83.  2008. Two strategies for gene regulation by promoter nucleosomes. Genome Res 18:1084–91 [Google Scholar]
  84. Brown CR, Boeger H. 84.  2014. Nucleosomal promoter variation generates gene expression noise. PNAS 111:17893–98 [Google Scholar]
  85. Dar RD, Razooky BS, Singh A, Trimeloni TV, McCollum JM. 85.  et al. 2012. Transcriptional burst frequency and burst size are equally modulated across the human genome. PNAS 109:17454–59 [Google Scholar]
  86. Hakre S, Chavez L, Shirakawa K, Verdin E. 86.  2011. Epigenetic regulation of HIV latency. Curr. Opin. HIV AIDS 6:19–24 [Google Scholar]
  87. Shirakawa K, Chavez L, Hakre S, Calvanese V, Verdin E. 87.  2013. Reactivation of latent HIV by histone deacetylase inhibitors. Trends Microbiol 21:277–85 [Google Scholar]
  88. Archin NM, Liberty AL, Kashuba AD, Choudhary SK, Kuruc JD. 88.  et al. 2012. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 487:482–85 [Google Scholar]
  89. Singh A, Razooky B, Cox CD, Simpson ML, Weinberger LS. 89.  2010. Transcriptional bursting from the HIV-1 promoter is a significant source of stochastic noise in HIV-1 gene expression. Biophys. J. 98:L32–34 [Google Scholar]
  90. Pagans S, Pedal A, North BJ, Kaehlcke K, Marshall BL. 90.  et al. 2005. SIRT1 regulates HIV transcription via Tat deacetylation. PLOS Biol 3:e41 [Google Scholar]
  91. Hsu MC, Dhingra U, Earley JV, Holly M, Keith D. 91.  et al. 1993. Inhibition of type 1 human immunodeficiency virus replication by a Tat antagonist to which the virus remains sensitive after prolonged exposure in vitro. PNAS 90:6395–99 [Google Scholar]
  92. Hsu MC, Schutt AD, Holly M, Slice LW, Sherman MI. 92.  et al. 1991. Inhibition of HIV replication in acute and chronic infections in vitro by a Tat antagonist. Science 254:1799–802 [Google Scholar]
  93. Hwang S, Tamilarasu N, Kibler K, Cao H, Ali A. 93.  et al. 2003. Discovery of a small molecule Tat-trans-activation-responsive RNA antagonist that potently inhibits human immunodeficiency virus-1 replication. J. Biol. Chem. 278:39092–103 [Google Scholar]
  94. Mousseau G, Clementz MA, Bakeman WN, Nagarsheth N, Cameron M. 94.  et al. 2012. An analog of the natural steroidal alkaloid cortistatin A potently suppresses Tat-dependent HIV transcription. Cell Host Microbe 12:97–108 [Google Scholar]
  95. Mousseau G, Kessing CF, Fromentin R, Trautmann L, Chomont N, Valente ST. 95.  2015. The Tat inhibitor didehydro-cortistatin A prevents HIV-1 reactivation from latency. mBio 6:e00465 [Google Scholar]
  96. Mediouni S, Jablonski J, Paris JJ, Clementz MA, Thenin-Houssier S. 96.  et al. 2015. Didehydro-cortistatin A inhibits HIV-1 Tat mediated neuroinflammation and prevents potentiation of cocaine reward in Tat transgenic mice. Curr. HIV Res. 13:64–79 [Google Scholar]
  97. Alon U. 97.  2007. An Introduction to Systems Biology: Design Principles of Biological Circuits Boca Raton, FL: Chapman & Hall/CRC
  98. Savageau MA. 98.  1976. Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology Reading, MA: Addison-Wesley
  99. Black HS. 99.  1934. Stabilized feedback amplifiers. Electr. Eng. 53:114–20 [Google Scholar]
  100. Rosenfeld N, Elowitz MB, Alon U. 100.  2002. Negative autoregulation speeds the response times of transcription networks. J. Mol. Biol. 323:785–93 [Google Scholar]
  101. Cauwels A, Brouckaert P. 101.  2007. Survival of TNF toxicity: dependence on caspases and NO. Arch. Biochem. Biophys. 462:132–39 [Google Scholar]
  102. Roth J, Rummel C, Barth SW, Gerstberger R, Hubschle T. 102.  2006. Molecular aspects of fever and hyperthermia. Neurol. Clin. 24:421–39 [Google Scholar]
  103. Dwarakanath RS, Clark CL, McElroy AK, Spector DH. 103.  2001. The use of recombinant baculoviruses for sustained expression of human cytomegalovirus immediate early proteins in fibroblasts. Virology 284:297–307 [Google Scholar]
  104. Mocarski ES, Shenk T, Pass RF. 104.  2006. Cytomegaloviruses. Fields Virology DM Knipe, PM Howley 2708–72 Philadelphia: Lippincott Williams & Wilkins, 5th ed.. [Google Scholar]
  105. Stinski MF, Petrik DT. 105.  2008. Functional roles of the human cytomegalovirus essential IE86 protein. Curr. Top. Microbiol. Immunol. 325:133–52 [Google Scholar]
  106. Sanders RL, Clark CL, Morello CS, Spector DH. 106.  2008. Development of cell lines that provide tightly controlled temporal translation of the human cytomegalovirus IE2 proteins for complementation and functional analyses of growth-impaired and nonviable IE2 mutant viruses. J. Virol. 82:7059–77 [Google Scholar]
  107. Stinski MF, Isomura H. 107.  2008. Role of the cytomegalovirus major immediate early enhancer in acute infection and reactivation from latency. Med. Microbiol. Immunol 197223–31 [Google Scholar]
  108. Macias MP, Stinski MF. 108.  1993. An in vitro system for human cytomegalovirus immediate early 2 protein (IE2)-mediated site-dependent repression of transcription and direct binding of IE2 to the major immediate early promoter. PNAS 90:707–11 [Google Scholar]
  109. Gautier I, Tramier M, Durieux C, Coppey J, Pansu RB. 109.  et al. 2001. Homo-FRET microscopy in living cells to measure monomer-dimer transition of GFP-tagged proteins. Biophys. J. 80:3000–8 [Google Scholar]
  110. Runnels LW, Scarlata SF. 110.  1995. Theory and application of fluorescence homotransfer to melittin oligomerization. Biophys. J. 69:1569–83 [Google Scholar]
  111. Weinberger LS. 111.  2014. Methods for treating a cytomegalovirus infection US Patent Publ. No. WO2016086060 A1. https://www.google.com/patents/WO2016086060A1
  112. Gurova KV, Hill JE, Guo C, Prokvolit A, Burdelya LG. 112.  et al. 2005. Small molecules that reactivate p53 in renal cell carcinoma reveal a NF-κB-dependent mechanism of p53 suppression in tumors. PNAS 102:17448–53 [Google Scholar]
  113. Arkin MR, Tang Y, Wells JA. 113.  2014. Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. Chem. Biol. 21:1102–14 [Google Scholar]
  114. Cohen AA, Geva-Zatorsky N, Eden E, Frenkel-Morgenstern M, Issaeva I. 114.  et al. 2008. Dynamic proteomics of individual cancer cells in response to a drug. Science 322:1511–16 [Google Scholar]
  115. Tantale K, Mueller F, Kozulic-Pirher A, Lesne A, Victor JM. 115.  et al. 2016. A single-molecule view of transcription reveals convoys of RNA polymerases and multi-scale bursting. Nat. Commun. 7:12248 [Google Scholar]
/content/journals/10.1146/annurev-virology-110615-035606
Loading
/content/journals/10.1146/annurev-virology-110615-035606
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error