1932

Abstract

Bats are hosts of a range of viruses, including ebolaviruses, and many important human viral infections, such as measles and mumps, may have their ancestry traced back to bats. Here, I review viruses of all viral families detected in global bat populations. The viral diversity in bats is substantial, and viruses with all known types of genomic structures and replication strategies have been discovered in bats. However, the discovery of viruses is not geographically even, with some apparently undersampled regions, such as South America. Furthermore, some bat families, including those with global or wide distributions such as and , are underrepresented on viral databases. Future studies, including those that address these sampling gaps along with those that develop our understanding of viral-host relationships, are highlighted.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-110615-042203
2016-09-29
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/virology/3/1/annurev-virology-110615-042203.html?itemId=/content/journals/10.1146/annurev-virology-110615-042203&mimeType=html&fmt=ahah

Literature Cited

  1. Morens DM, Fauci AS. 1.  2013. Emerging infectious diseases: threats to human health and global stability. PLOS Pathog. 9:e1003467 [Google Scholar]
  2. Kunz TH. 2.  2013. Ecology of Bats New York: Plenum
  3. Teeling EC, Springer MS, Madsen O, Bates P, O'Brien SJ, Murphy WJ. 3.  2005. A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307:580–84 [Google Scholar]
  4. McCracken GF, Gustin MK. 4.  1991. Nursing behavior in Mexican free-tailed bat maternity colonies. Ethology 89:305–21 [Google Scholar]
  5. Luis AD, Hayman DTS, O'Shea TJ, Cryan PM, Gilbert AT. 5.  et al. 2013. A comparison of bats and rodents as reservoirs of zoonotic viruses: Are bats special?. Proc. R. Soc. B 280:20122753 [Google Scholar]
  6. Calisher CH, Childs JE, Field HE, Holmes KV, Schountz T. 6.  2006. Bats: important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 19:531–45 [Google Scholar]
  7. Chen L, Liu B, Yang J, Jin Q. 7.  2014. DBatVir: the database of bat-associated viruses. Database 2014:bau021
  8. Anthony SJ, Epstein JH, Murray KA, Navarrete-Macias I, Zambrana-Torrelio CM. 8.  et al. 2013. A strategy to estimate unknown viral diversity in mammals. mBio 4:e00598–13 [Google Scholar]
  9. Hall RJ, Wang J, Peacey M, Moore NE, McInnes K, Tompkins DM. 9.  2014. New alphacoronavirus in Mystacina tuberculata bats, New Zealand. Emerg. Infect. Dis. 20:697 [Google Scholar]
  10. Leendertz SAJ, Gogarten JF, Düx A, Calvignac-Spencer S, Leendertz FH. 10.  2015. Assessing the evidence supporting fruit bats as the primary reservoirs for Ebola viruses. EcoHealth 13:18–25 [Google Scholar]
  11. Li L, Victoria JG, Wang C, Jones M, Fellers GM. 11.  et al. 2010. Bat guano virome: predominance of dietary viruses from insects and plants plus novel mammalian viruses. J. Virol. 84:6955–65 [Google Scholar]
  12. Donaldson EF, Haskew AN, Gates JE, Huynh J, Moore CJ, Frieman MB. 12.  2010. Metagenomic analysis of the viromes of three North American bat species: viral diversity among different bat species that share a common habitat. J. Virol. 84:13004–18 [Google Scholar]
  13. Smith I, Wang LF. 13.  2013. Bats and their virome: an important source of emerging viruses capable of infecting humans. Curr. Opin. Virol. 3:84–91 [Google Scholar]
  14. Ge X, Li Y, Yang X, Zhang H, Zhou P. 14.  et al. 2012. Metagenomic analysis of viruses from the bat fecal samples reveals many novel viruses in insectivorous bats in China. J. Virol. 86:4620–30 [Google Scholar]
  15. Baker KS, Leggett RM, Bexfield NH, Alston M, Daly G. 15.  et al. 2013. Metagenomic study of the viruses of African straw-coloured fruit bats: detection of a chiropteran poxvirus and isolation of a novel adenovirus. Virology 441:95–106 [Google Scholar]
  16. Wu Z, Yang L, Ren X, He G, Zhang J. 16.  et al. 2015. Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases. ISME J. 10:609–20 [Google Scholar]
  17. Dacheux L, Cervantes-Gonzalez M, Guigon G, Thiberge JM, Vandenbogaert M. 17.  et al. 2014. A preliminary study of viral metagenomics of French bat species in contact with humans: identification of new mammalian viruses. PLOS ONE 9:e87194 [Google Scholar]
  18. Cibulski SP, Teixeira TF, de Sales Lima FE, do Santos HF, Franco AC, Roehe PM. 18.  2014. A novel Anelloviridae species detected in Tadarida brasiliensis bats: first sequence of a chiropteran Anellovirus. Genome Announc. 2:e01028–14 [Google Scholar]
  19. He B, Li Z, Yang F, Zheng J, Feng Y. 19.  et al. 2013. Virome profiling of bats from Myanmar by metagenomic analysis of tissue samples reveals more novel mammalian viruses. PLOS ONE 8:e61950 [Google Scholar]
  20. Kemenesi G, Dallos B, Görföl T, Estók P, Boldogh S. 20.  et al. 2015. Genetic diversity and recombination within bufaviruses: detection of a novel strain in Hungarian bats. Infect. Genet. Evol. 33:288–92 [Google Scholar]
  21. Wu Z, Ren X, Yang L, Hu Y, Yang J. 21.  et al. 2012. Virome analysis for identification of novel mammalian viruses in bat species from Chinese provinces. J. Virol. 86:10999–1012 [Google Scholar]
  22. Badrane H, Tordo N. 22.  2001. Host switching in Lyssavirus history from the Chiroptera to the Carnivora orders. J. Virol. 75:8096–104 [Google Scholar]
  23. Banyard AC, Hayman DTS, Johnson N, McElhinney L, Fooks AR. 23.  2011. Bats and lyssaviruses. Adv. Virus Res. 79:239–89 [Google Scholar]
  24. Baer GM. 24.  2007. The history of rabies. Rabies AC Jackson, WH Wunner 1–22 New York: Academic/Elsevier, 2nd ed.. [Google Scholar]
  25. Streicker DG, Turmelle AS, Vonhof MJ, Kuzmin IV, McCracken GF, Rupprecht CE. 25.  2010. Host phylogeny constrains cross-species emergence and establishment of rabies virus in bats. Science 329:676–79 [Google Scholar]
  26. Leslie MJ, Messenger S, Rohde RE, Smith J, Cheshier R. 26.  et al. 2006. Bat-associated rabies virus in skunks. Emerg. Infect. Dis. 12:1274–77 [Google Scholar]
  27. Weir DL, Annand EJ, Reid PA, Broder CC. 27.  2014. Recent observations on Australian bat lyssavirus tropism and viral entry. Viruses 6:909–26 [Google Scholar]
  28. Halpin K, Young P, Field H, Mackenzie J. 28.  2000. Isolation of Hendra virus from pteropid bats: a natural reservoir of Hendra virus. J. Gen. Virol. 81:1927–32 [Google Scholar]
  29. Chua KB, Koh CL, Hooi PS, Wee KF, Khong JH. 29.  et al. 2002. Isolation of Nipah virus from Malaysian Island flying-foxes. Microbes Infect. 4:145–51 [Google Scholar]
  30. Drexler JF, Corman VM, Müller MA, Maganga GD, Vallo P. 30.  et al. 2012. Bats host major mammalian paramyxoviruses. Nat. Commun. 3:796 [Google Scholar]
  31. Baker KS, Todd S, Marsh G, Fernandez-Loras A, Suu-Ire R. 31.  et al. 2012. Co-circulation of diverse paramyxoviruses in an urban African fruit bat population. J. Gen. Virol. 93:850–56 [Google Scholar]
  32. Baker KS, Todd S, Marsh GA, Crameri G, Barr J. 32.  et al. 2013. Novel, potentially zoonotic paramyxoviruses from the African straw-colored fruit bat Eidolon helvum. J. Virol. 87:1348–58 [Google Scholar]
  33. Muleya W, Sasaki M, Yasuko O, Ishii A, Thomas Y. 33.  et al. 2014. Molecular epidemiology of paramyxoviruses in frugivorous Eidolon helvum bats in Zambia. J. Vet. Med. Sci. 76:611–14 [Google Scholar]
  34. Dietrich M, Wilkinson DA, Benlali A, Lagadec E, Ramasindrazana B. 34.  et al. 2015. Leptospira and paramyxovirus infection dynamics in a bat maternity enlightens pathogen maintenance in wildlife. Environ. Microbiol. 17:4280–89 [Google Scholar]
  35. Wilkinson DA, Mélade J, Dietrich M, Ramasindrazana B, Soarimalala V. 35.  et al. 2014. Highly diverse morbillivirus-related paramyxoviruses in wild fauna of the southwestern Indian Ocean islands: evidence of exchange between introduced and endemic small mammals. J. Virol. 88:8268–77 [Google Scholar]
  36. Chua KB, Wang LF, Lam SK, Crameri G, Yu M. 36.  et al. 2001. Tioman virus, a novel paramyxovirus isolated from fruit bats in Malaysia. Virology 283:215–29 [Google Scholar]
  37. Amman BR, Albariño CG, Bird BH, Nyakarahuka L, Sealy TK. 37.  et al. 2015. A recently discovered pathogenic paramyxovirus, Sosuga virus, is present in Rousettus aegyptiacus fruit bats at multiple locations in Uganda. J. Wildl. Dis. 51:774–79 [Google Scholar]
  38. Wacharapluesadee S, Hemachudha T. 38.  2007. Duplex nested RT-PCR for detection of Nipah virus RNA from urine specimens of bats. J. Virol. Methods 141:97–101 [Google Scholar]
  39. Wilkinson DA, Temmam S, Lebarbenchon C, Lagadec E, Chotte J. 39.  et al. 2012. Identification of novel paramyxoviruses in insectivorous bats of the Southwest Indian Ocean. Virus Res. 170:159–63 [Google Scholar]
  40. Hagmaier K, Stock N, Precious B, Childs K, Wang LF. 40.  et al. 2007. Mapuera virus, a rubulavirus that inhibits interferon signalling in a wide variety of mammalian cells without degrading STATs. J. Gen. Virol. 88:956–66 [Google Scholar]
  41. Yuan L, Li M, Li L, Monagin C, Chmura AA. 41.  et al. 2014. Evidence for retrovirus and paramyxovirus infection of multiple bat species in China. Viruses 6:2138–54 [Google Scholar]
  42. Weiss S, Nowak K, Fahr J, Wibbelt G, Mombouli JV. 42.  et al. 2012. Henipavirus-related sequences in fruit bat bushmeat, Republic of Congo. Emerg. Infect. Dis. 18:1536–37 [Google Scholar]
  43. Marsh GA, De Jong C, Barr JA, Tachedjian M, Smith C. 43.  et al. 2012. Cedar virus: a novel henipavirus isolated from Australian bats. PLOS Pathog. 8:e1002836 [Google Scholar]
  44. Kuhn JH, Becker S, Ebihara H, Geisbert TW, Johnson KM. 44.  et al. 2010. Proposal for a revised taxonomy of the family Filoviridae: classification, names of taxa and viruses, and virus abbreviations. Arch. Virol. 155:2083–103 [Google Scholar]
  45. Leroy EM, Kumulungui B, Pourrut X, Rouquet P, Hassanin A. 45.  et al. 2005. Fruit bats as reservoirs of Ebola virus. Nature 438:575–76 [Google Scholar]
  46. Pourrut X, Souris M, Towner JS, Rollin PE, Nichol ST. 46.  et al. 2009. Large serological survey showing cocirculation of Ebola and Marburg viruses in Gabonese bat populations, and a high seroprevalence of both viruses in Rousettus aegyptiacus. BMC Infect. Dis. 9:159 [Google Scholar]
  47. Biek R, Walsh PD, Leroy EM, Real LA. 47.  2006. Recent common ancestry of Ebola Zaire virus found in a bat reservoir. PLOS Pathog. 2:e90 [Google Scholar]
  48. Olival KJ, Islam A, Yu M, Anthony SJ, Epstein JH. 48.  et al. 2013. Ebola virus antibodies in fruit bats, Bangladesh. Emerg. Infect. Dis. 19:270 [Google Scholar]
  49. Hayman DTS, Yu M, Crameri G, Wang LF, Suu-Ire R. 49.  et al. 2012. Ebola virus antibodies in fruit bats, Ghana, West Africa. Emerg. Infect. Dis. 18:1207 [Google Scholar]
  50. Hayman DTS, Emmerich P, Yu M, Wang LF, Suu-Ire R. 50.  et al. 2010. Long-term survival of an urban fruit bat seropositive for Ebola and Lagos bat viruses. PLOS ONE 5:e11978 [Google Scholar]
  51. Negredo A, Palacios G, Vázquez-Morón S, González F, Dopazo H. 51.  et al. 2011. Discovery of an ebolavirus-like filovirus in Europe. PLOS Pathog. 7:e1002304 [Google Scholar]
  52. Towner JS, Amman BR, Sealy TK, Carroll S, Comer JA. 52.  et al. 2009. Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLOS Pathog. 5:e1000536 [Google Scholar]
  53. Maganga GD, Bourgarel M, Ella GE, Drexler JF, Gonzalez JP. 53.  et al. 2011. Is Marburg virus enzootic in Gabon?. J. Infect. Dis. 204:S800–3 [Google Scholar]
  54. Amman BR, Carroll SA, Reed ZD, Sealy TK, Balinandi S. 54.  et al. 2012. Seasonal pulses of Marburg virus circulation in juvenile Rousettus aegyptiacus bats coincide with periods of increased risk of human infection. PLOS Pathog. 8:e1002877 [Google Scholar]
  55. Swanepoel R, Smit SB, Rollin PE, Formenty P, Leman PA. 55.  et al. 2007. Studies of reservoir hosts for Marburg virus. Emerg. Infect. Dis. 13:1847–51 [Google Scholar]
  56. Jayme SI, Field HE, de Jong C, Olival KJ, Marsh G. 56.  et al. 2015. Molecular evidence of Ebola Reston virus infection in Philippine bats. Virol. J. 12:107 [Google Scholar]
  57. Tong S, Li Y, Rivailler P, Conrardy C, Castillo DAA. 57.  et al. 2012. A distinct lineage of influenza A virus from bats. PNAS 109:4269–74 [Google Scholar]
  58. Tong S, Zhu X, Li Y, Shi M, Zhang J. 58.  et al. 2013. New World bats harbor diverse influenza A viruses. PLOS Pathog. 9:e1003657 [Google Scholar]
  59. Guo WP, Lin XD, Wang W, Tian JH, Cong ML. 59.  et al. 2013. Phylogeny and origins of hantaviruses harbored by bats, insectivores, and rodents. PLOS Pathog. 9:e1003159 [Google Scholar]
  60. Kruger DH, Figueiredo LTM, Song JW, Klempa B. 60.  2015. Hantaviruses—globally emerging pathogens. J. Clin. Virol. 64:128–36 [Google Scholar]
  61. Li W, Shi Z, Yu M, Ren W, Smith C. 61.  et al. 2005. Bats are natural reservoirs of SARS-like coronaviruses. Science 310:676–79 [Google Scholar]
  62. de Groot RJ, Baker SC, Baric R, Enjuanes L, Gorbalenya AE. 62.  et al. 2012. Coronaviridae. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses AMQ King, MJ Adams, EB Carstens, EJ Lefkowitz 806–28 San Diego, CA: Academic [Google Scholar]
  63. Corman VM, Baldwin HJ, Tateno AF, Zerbinati RM, Annan A. 63.  et al. 2015. Evidence for an ancestral association of human coronavirus 229E with bats. J. Virol. 89:11858–70 [Google Scholar]
  64. Hemida MG, Perera RA, Wang P, Alhammadi MA, Siu LY. 64.  et al. 2012. Middle East respiratory syndrome (MERS) coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013. Eurosurveillance 18:20659–59 [Google Scholar]
  65. Reusken CB, Haagmans BL, Müller MA, Gutierrez C, Godeke GJ. 65.  et al. 2013. Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study. Lancet Infect. Dis. 13:859–66 [Google Scholar]
  66. Adney DR, van Doremalen N, Brown VR, Bushmaker T, Scott DP. 66.  et al. 2014. Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels. Emerg. Infect. Dis. 20:1999–2005 [Google Scholar]
  67. de Groot RJ, Baker SC, Baric RS, Brown CS, Drosten C. 67.  et al. 2013. Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. J. Virol. 87:7790–92 [Google Scholar]
  68. Woo PC, Lau SK, Lam CS, Lau CC, Tsang AK. 68.  et al. 2012. Discovery of seven novel mammalian and avian coronaviruses in Deltacoronavirus supports bat coronaviruses as the gene source of Alphacoronavirus and Betacoronavirus and avian coronaviruses as the gene source of Gammacoronavirus and Deltacoronavirus. J. Virol. 86:3995–4008 [Google Scholar]
  69. Wang Q, Qi J, Yuan Y, Xuan Y, Han P. 69.  et al. 2014. Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26. Cell Host Microbe 16:328–37 [Google Scholar]
  70. Kemenesi G, Zhang D, Marton S, Dallos B, Görföl T. 70.  et al. 2015. Genetic characterization of a novel picornavirus detected in Miniopterus schreibersii bats. J. Gen. Virol. 96:815–21 [Google Scholar]
  71. Drexler JF, Corman VM, Lukashev AN, van den Brand JM, Gmyl AP. 71.  et al. 2015. Evolutionary origins of hepatitis A virus in small mammals. PNAS 112:15190–95 [Google Scholar]
  72. Lau SK, Woo PC, Lai KK, Huang Y, Yip CC. 72.  et al. 2011. Complete genome analysis of three novel picornaviruses from diverse bat species. J. Virol. 85:8819–28 [Google Scholar]
  73. Fischer K, Zeus V, Kwasnitschka L, Kerth G, Haase M. 73.  et al. 2016. Insectivorous bats carry host specific astroviruses and coronaviruses across different regions in Germany. Infect. Genet. Evol. 37:108–16 [Google Scholar]
  74. Chu D, Poon L, Guan Y, Peiris J. 74.  2008. Novel astroviruses in insectivorous bats. J. Virol. 82:9107–14 [Google Scholar]
  75. Hu B, Chmura AA, Li J, Zhu G, Desmond JS. 75.  et al. 2014. Detection of diverse novel astroviruses from small mammals in China. J. Gen. Virol. 95:2442–49 [Google Scholar]
  76. Quan PL, Firth C, Conte JM, Williams SH, Zambrana-Torrelio CM. 76.  et al. 2013. Bats are a major natural reservoir for hepaciviruses and pegiviruses. PNAS 110:8194–99 [Google Scholar]
  77. Tse H, Chan WM, Li K, Lau S, Woo P, Yuen KY. 77.  2012. Discovery and genomic characterization of a novel bat sapovirus with unusual genomic features and phylogenetic position. PLOS ONE 7:e34987 [Google Scholar]
  78. Diallo M, Thonnon J, Traore-Lamizana M, Fontenille D. 78.  1999. Vectors of chikungunya virus in Senegal: current data and transmission cycles. Am. J. Trop. Med. Hyg. 60:281–86 [Google Scholar]
  79. Volk SM, Chen R, Tsetsarkin KA, Adams AP, Garcia TI. 79.  et al. 2010. Genome-scale phylogenetic analyses of chikungunya virus reveal independent emergences of recent epidemics and various evolutionary rates. J. Virol. 84:6497–504 [Google Scholar]
  80. Drexler JF, Corman VM, Wegner T, Tateno AF, Zerbinati RM. 80.  et al. 2011. Amplification of emerging viruses in a bat colony. Emerg. Infect. Dis. 17:449–56 [Google Scholar]
  81. Chen L, Wu Z, Hu Y, Yang F, Yang J, Jin Q. 81.  2012. [Genetic diversity of adenoviruses in bats of China]. Bing Du Xue Bao 28:403–8 (In Chinese) [Google Scholar]
  82. Li Y, Ge X, Hon CC, Zhang H, Zhou P. 82.  et al. 2010. Prevalence and genetic diversity of adeno-associated viruses in bats from China. J. Gen. Virol. 91:2601–9 [Google Scholar]
  83. Jánoska M, Vidovszky M, Molnár V, Liptovszky M, Harrach B, Benkő M. 83.  2011. Novel adenoviruses and herpesviruses detected in bats. Vet. J. 189:118–21 [Google Scholar]
  84. de Sales Lima FE, Cibulski SP, Elesbao F, Junior PC, de Carvalho Ruther Batista HB. 84.  et al. 2013. First detection of adenovirus in the vampire bat (Desmodus rotundus) in Brazil. Virus Genes 47:378–81 [Google Scholar]
  85. Kohl C, Vidovszky MZ, Mühldorfer K, Dabrowski PW, Radonić A. 85.  et al. 2011. Genome analysis of bat adenovirus 2: indications of interspecies transmission. J. Virol. 86:1888–92 [Google Scholar]
  86. Sonntag M, Mühldorfer K, Speck S, Wibbelt G, Kurth A. 86.  2009. New adenovirus in bats, Germany. Emerg. Infect. Dis. 15:2052–55 [Google Scholar]
  87. Razafindratsimandresy R, Jeanmaire EM, Counor D, Vasconcelos PF, Reynes JM. 87.  2009. Partial molecular characterization of alphaherpesviruses isolated from tropical bats. J. Gen. Virol. 90:44–47 [Google Scholar]
  88. Zhang H, Todd S, Tachedjian M, Barr JA, Luo M. 88.  et al. 2012. A novel bat herpesvirus encodes homologues of major histocompatibility complex classes I and II, C-type lectin, and a unique family of immune-related genes. J. Virol. 86:8014–30 [Google Scholar]
  89. Watanabe S, Maeda K, Suzuki K, Ueda N, Iha K. 89.  et al. 2010. Novel betaherpesvirus in bats. Emerg. Infect. Dis. 16:986–88 [Google Scholar]
  90. Sasaki M, Setiyono A, Handharyani E, Kobayashi S, Rahmadani I. 90.  et al. 2014. Isolation and characterization of a novel alphaherpesvirus in fruit bats. J. Virol. 88:9819–29 [Google Scholar]
  91. Wibbelt G, Kurth A, Yasmum N, Bannert M, Nagel S. 91.  et al. 2007. Discovery of herpesviruses in bats. J. Gen. Virol. 88:2651–55 [Google Scholar]
  92. García-Pérez R, Ibáñez C, Godínez JM, Aréchiga N, Garin I. 92.  et al. 2014. Novel papillomaviruses in free-ranging Iberian bats: no virus-host co-evolution, no strict host specificity, and hints for recombination. Genome Biol. Evol. 6:94–104 [Google Scholar]
  93. Canuti M, Eis-Huebinger AM, Deijs M, de Vries M, Drexler JF. 93.  et al. 2011. Two novel parvoviruses in frugivorous New and Old World bats. PLOS ONE 6:e29140 [Google Scholar]
  94. Shackelton LA, Parrish CR, Truyen U, Holmes EC. 94.  2005. High rate of viral evolution associated with the emergence of carnivore parvovirus. PNAS 102:379–84 [Google Scholar]
  95. Tate JE, Burton AH, Boschi-Pinto C, Steele AD, Duque J, Parashar UD. 95.  2012. 2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: a systematic review and meta-analysis. Lancet Infect. Dis. 12:136–41 [Google Scholar]
  96. Gard G, Compans RW. 96.  1970. Structure and cytopathic effects of Nelson Bay virus. J. Virol. 6:100–6 [Google Scholar]
  97. Chua KB, Crameri G, Hyatt A, Yu M, Tompang MR. 97.  et al. 2007. A previously unknown reovirus of bat origin is associated with an acute respiratory disease in humans. PNAS 104:11424–29 [Google Scholar]
  98. Wang L, Fu S, Cao L, Lei W, Cao Y. 98.  et al. 2015. Isolation and identification of a natural reassortant mammalian orthoreovirus from least horseshoe bat in China. PLOS ONE 10:e0118598 [Google Scholar]
  99. Cui J, Tachedjian G, Tachedjian M, Holmes EC, Zhang S, Wang LF. 99.  2012. Identification of diverse groups of endogenous gammaretroviruses in mega and microbats. J. Gen. Virol. 93:2037–45 [Google Scholar]
  100. Cui J, Tachedjian M, Wang L, Tachedjian G, Wang LF, Zhang S. 100.  2012. Discovery of retroviral homologs in bats: implications for the origin of mammalian gammaretroviruses. J. Virol. 86:4288–93 [Google Scholar]
  101. Drexler JF, Geipel A, König A, Corman VM, van Riel D. 101.  et al. 2013. Bats carry pathogenic hepadnaviruses antigenically related to hepatitis B virus and capable of infecting human hepatocytes. PNAS 110:16151–56 [Google Scholar]
  102. Moratelli R, Calisher CH. 102.  2015. Bats and zoonotic viruses: Can we confidently link bats with emerging deadly viruses?. Mem. Inst. Oswaldo Cruz 110:1–22 [Google Scholar]
  103. O'Shea TJ, Cryan PM, Hayman DTS, Plowright RK, Streicker DG. 103.  2016. Multiple mortality events in bats: a global review. Mamm. Rev. 46:175–90 [Google Scholar]
  104. Blehert DS, Maluping RP, Green DE, Berlowski-Zier BM, Ballmann AE, Langenberg JA. 104.  2014. Acute pasteurellosis in wild big brown bats (Eptesicus fuscus). J. Wildl. Dis. 50:136–39 [Google Scholar]
  105. Brook CE, Dobson AP. 105.  2015. Bats as ‘special’ reservoirs for emerging zoonotic pathogens. Trends Microbiol. 23:172–80 [Google Scholar]
  106. Stockmaier S, Dechmann DK, Page RA, O'Mara MT. 106.  2015. No fever and leucocytosis in response to a lipopolysaccharide challenge in an insectivorous bat. Biol. Lett. 11:20150576 [Google Scholar]
  107. Zhang G, Cowled C, Shi Z, Huang Z, Bishop-Lilly KA. 107.  et al. 2013. Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science 339:456–60 [Google Scholar]
  108. Lee AK, Kulcsar KA, Elliott O, Khiabanian H, Nagle ER. 108.  et al. 2015. De novo transcriptome reconstruction and annotation of the Egyptian rousette bat. BMC Genom. 16:1033 [Google Scholar]
  109. O'Shea TJ, Cryan PM, Cunningham AA, Fooks AR, Hayman DTS. 109.  et al. 2014. Bat flight and zoonotic viruses. Emerg. Infect. Dis. 20:741–45 [Google Scholar]
  110. Ng M, Ndungo E, Kaczmarek ME, Herbert AS, Binger T. 110.  et al. 2015. Filovirus receptor NPC1 contributes to species-specific patterns of ebolavirus susceptibility in bats. eLife 4:e11785 [Google Scholar]
  111. Olival KJ, Hayman DTS. 111.  2014. Filoviruses in bats: current knowledge and future directions. Viruses 6:1759–88 [Google Scholar]
  112. Zhu X, Yu W, McBride R, Li Y, Chen LM. 112.  et al. 2013. Hemagglutinin homologue from H17N10 bat influenza virus exhibits divergent receptor-binding and pH-dependent fusion activities. PNAS 110:1458–63 [Google Scholar]
  113. Sun X, Shi Y, Lu X, He J, Gao F. 113.  et al. 2013. Bat-derived influenza hemagglutinin H17 does not bind canonical avian or human receptors and most likely uses a unique entry mechanism. Cell Rep. 3:769–78 [Google Scholar]
  114. Chan JFW, To KKW, Tse H, Jin DY, Yuen KY. 114.  2013. Interspecies transmission and emergence of novel viruses: lessons from bats and birds. Trends Microbiol. 21:544–55 [Google Scholar]
  115. Ge XY, Li JL, Yang XL, Chmura AA, Zhu G. 115.  et al. 2013. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503:535–38 [Google Scholar]
  116. Müller MA, Raj VS, Muth D, Meyer B, Kallies S. 116.  et al. 2012. Human coronavirus EMC does not require the SARS-coronavirus receptor and maintains broad replicative capability in mammalian cell lines. mBio 3:e00515–12 [Google Scholar]
  117. Negrete OA, Levroney EL, Aguilar HC, Bertolotti-Ciarlet A, Nazarian R. 117.  et al. 2005. EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus. Nature 436:401–5 [Google Scholar]
  118. Wong KT, Shieh WJ, Kumar S, Norain K, Abdullah W. 118.  et al. 2002. Nipah virus infection: pathology and pathogenesis of an emerging paramyxoviral zoonosis. Am. J. Pathol. 161:2153–67 [Google Scholar]
  119. Hayman DTS, Bowen R, Cryan P, McCracken GF, O'Shea T. 119.  et al. 2013. Ecology of zoonotic infectious diseases in bats: current knowledge and future directions. Zoonoses Public Health 60:2–21 [Google Scholar]
  120. Plowright RK, Eby P, Hudson PJ, Smith IL, Westcott D. 120.  et al. 2015. Ecological dynamics of emerging bat virus spillover. Proc. R. Soc B 282:20142124 [Google Scholar]
  121. Simmons N. 121.  2005. Order Chiroptera. Mammal Species of the World: A Taxonomic and Geographic Reference DE Wilson, DAM Reeder 312–529 Baltimore, MD: Johns Hopkins Univ. Press [Google Scholar]
  122. Luis AD, O'Shea TJ, Hayman DTS, Wood JL, Cunningham AA. 122.  et al. 2015. Network analysis of host–virus communities in bats and rodents reveals determinants of cross-species transmission. Ecol. Lett. 18:1153–62 [Google Scholar]
  123. Hristov NI, Betke M, Theriault DE, Bagchi A, Kunz TH. 123.  2010. Seasonal variation in colony size of Brazilian free-tailed bats at Carlsbad Cavern based on thermal imaging. J. Mammal. 91:183–93 [Google Scholar]
  124. Sørensen UG, Halberg K. 124.  2001. Mammoth roost of nonbreeding straw-coloured fruit bat Eidolon helvum (Kerr, 1792) in Zambia. Afr. J. Ecol. 39:213–15 [Google Scholar]
  125. Hayman DTS, McCrea R, Restif O, Suu-Ire R, Fooks AR. 125.  et al. 2012. Demography of straw-colored fruit bats in Ghana. J. Mammal. 93:1393–404 [Google Scholar]
  126. Keeling M, Rohani P. 126.  2008. Modeling Infectious Diseases in Humans and Animals Princeton, NJ: Princeton Univ. Press
  127. Peel AJ, Pulliam J, Luis A, Plowright R, O'Shea T. 127.  et al. 2014. The effect of seasonal birth pulses on pathogen persistence in wild mammal populations. Proc. R. Soc. B 281:20132962 [Google Scholar]
  128. Fahr J, Abedi-Lartey M, Esch T, Machwitz M, Suu-Ire R. 128.  et al. 2015. Pronounced seasonal changes in the movement ecology of a highly gregarious central-place forager, the African straw-coloured fruit bat (Eidolon helvum). PLOS ONE 10:e0138985 [Google Scholar]
  129. Hayman DTS. 129.  2015. Biannual birth pulses allow filoviruses to persist in bat populations. Proc. R. Soc. B 282:20142756 [Google Scholar]
  130. George DB, Webb CT, Farnsworth ML, O'Shea TJ, Bowen RA. 130.  et al. 2011. Host and viral ecology determine bat rabies seasonality and maintenance. PNAS 108:10208–13 [Google Scholar]
  131. Johnson CK, Hitchens PL, Evans TS, Goldstein T, Thomas K. 131.  et al. 2015. Spillover and pandemic properties of zoonotic viruses with high host plasticity. Sci. Rep. 5:14830 [Google Scholar]
  132. Pulliam JR, Dushoff J. 132.  2009. Ability to replicate in the cytoplasm predicts zoonotic transmission of livestock viruses. J. Infect. Dis. 199:565–68 [Google Scholar]
  133. Luis AD, O'Shea TJ, Hayman DTS, Wood JL, Cunningham AA. 133.  et al. 2015. Network analysis of host–virus communities in bats and rodents reveals determinants of cross-species transmission. Ecol. Lett. 18:1153–62 [Google Scholar]
  134. Hayman DTS. 134.  2016. Conservation as vaccination: Integrated approaches to public health and environmental protection could prevent future disease outbreaks. EMBO Rep. 17:286–91 [Google Scholar]
  135. Price ER, Rott KH, Caviedes-Vidal E, Karasov WH. 135.  2014. Paracellular nutrient absorption is higher in bats than rodents: integrating from intact animals to the molecular level. J. Exp. Biol. 217:3483–92 [Google Scholar]
  136. Zhang G, Cowled C, Shi Z, Huang Z, Bishop-Lilly KA. 136.  et al. 2013. Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science 339:456–60 [Google Scholar]
  137. Li CX, Shi M, Tian JH, Lin XD, Kang YJ. 137.  et al. 2015. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. eLife 4:e05378 [Google Scholar]
  138. Gilbert AT, Fooks AR, Hayman DTS, Horton DL, Müller T. 138.  et al. 2013. Deciphering serology to understand the ecology of infectious diseases in wildlife. EcoHealth 10:298–313 [Google Scholar]
  139. Pigott DM, Golding N, Mylne A, Huang Z, Henry AJ. 139.  et al. 2014. Mapping the zoonotic niche of Ebola virus disease in Africa. eLife 3:e04395 [Google Scholar]
  140. Pigott DM, Golding N, Mylne A, Huang Z, Weiss DJ. 140.  et al. 2015. Mapping the zoonotic niche of Marburg virus disease in Africa. Trans. R. Soc. Trop. Med. Hyg. 109:366–78 [Google Scholar]
  141. Hayman DTS. 141.  2015. Biannual birth pulses allow filoviruses to persist in bat populations. Proc. R. Soc. B 282:20142591 [Google Scholar]
  142. Han BA, Schmidt JP, Bowden SE, Drake JM. 142.  2015. Rodent reservoirs of future zoonotic diseases. PNAS 112:7039–44 [Google Scholar]
  143. Han BA, Schmidt JP, Alexander L, Bowden SE, Hayman DTS, Drake JM. 143.  2016. Undiscovered bat hosts of filoviruses. PLOS Negl. Trop. Dis. 10:e0004815 [Google Scholar]
  144. Bourhy H, Cowley JA, Larrous F, Holmes EC, Walker PJ. 144.  2005. Phylogenetic relationships among rhabdoviruses inferred using the L polymerase gene. J. Gen. Virol. 86:2849–58 [Google Scholar]
  145. Shope RE, Tesh RB. 145.  1987. The ecology of rhabdoviruses that infect vertebrates. The Rhabdoviruses RR Wagner 509–34 New York: Springer [Google Scholar]
  146. Kuzmin I, Novella I, Dietzgen R, Padhi A, Rupprecht C. 146.  2009. The rhabdoviruses: biodiversity, phylogenetics, and evolution. Infect. Genet. Evol. 9:541–53 [Google Scholar]
  147. Calisher CH, Ellison JA. 147.  2012. The other rabies viruses: the emergence and importance of lyssaviruses from bats and other vertebrates. Travel Med. Infect. Dis. 10:69–79 [Google Scholar]
  148. Wertheim JO, Chu DK, Peiris JS, Pond SLK, Poon LL. 148.  2013. A case for the ancient origin of coronaviruses. J. Virol. 87:7039–45 [Google Scholar]
  149. Baker M, Schountz T, Wang LF. 149.  2013. Antiviral immune responses of bats: a review. Zoonoses Public Health 60:104–16 [Google Scholar]
  150. Maas B, Clough Y, Tscharntke T. 150.  2013. Bats and birds increase crop yield in tropical agroforestry landscapes. Ecol. Lett. 16:1480–87 [Google Scholar]
  151. Boyles JG, Cryan PM, McCracken GF, Kunz TH. 151.  2011. Economic importance of bats in agriculture. Science 332:41–42 [Google Scholar]
  152. Amman BR, Nyakarahuka L, McElroy AK, Dodd KA, Sealy TK. 152.  et al. 2014. Marburgvirus resurgence in Kitaka mine bat population after extermination attempts, Uganda. Emerg. Infect. Dis. 20:1761–64 [Google Scholar]
/content/journals/10.1146/annurev-virology-110615-042203
Loading
/content/journals/10.1146/annurev-virology-110615-042203
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error