1932

Abstract

Like every other organism on Earth, insects are infected with viruses, and they rely on RNA interference (RNAi) mechanisms to circumvent viral infections. A remarkable characteristic of RNAi is that it is both broadly acting, because it is triggered by double-stranded RNA molecules derived from virtually any virus, and extremely specific, because it targets only the particular viral sequence that initiated the process. Reviews covering the different facets of the RNAi antiviral immune response in insects have been published elsewhere. In this review, we build a framework to guide future investigation. We focus on the remaining questions and avenues of research that need to be addressed to move the field forward, including issues such as the activity of viral suppressors of RNAi, comparative genomics, the development of detailed maps of the subcellular localization of viral replication complexes with the RNAi machinery, and the regulation of the antiviral RNAi response.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-110615-042447
2016-09-29
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/virology/3/1/annurev-virology-110615-042447.html?itemId=/content/journals/10.1146/annurev-virology-110615-042447&mimeType=html&fmt=ahah

Literature Cited

  1. Misof B, Liu S, Meusemann K, Peters RS, Donath A. 1.  et al. 2014. Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–67 [Google Scholar]
  2. Tong KJ, Duchene S, Ho SY, Lo N. 2.  2015. Comment on “Phylogenomics resolves the timing and pattern of insect evolution. Science 349:487 [Google Scholar]
  3. Roskov Y, Abucay L, Orrell T, Nicolson D, Flann C. 3.  et al. 2016. Species 2000 and Integrated Taxonomic Information System: Catalogue of Life Leiden, Neth.: Naturalis http://www.sp2000.org/
  4. Scudder GGE. 4.  2009. The importance of insects. Insect Biodiversity: Science and Society RG Foottit, PH Adler 7–31 Hoboken, NJ: Wiley [Google Scholar]
  5. Belles X. 5.  1997. Los insectos y el hombre. Bol. Soc. Entomol. Aragon. 20:319–25 [Google Scholar]
  6. Buchon N, Silverman N, Cherry S. 6.  2014. Immunity in Drosophila melanogaster—from microbial recognition to whole-organism physiology. Nat. Rev. Immunol. 14:796–810 [Google Scholar]
  7. Lemaitre B, Hoffmann J. 7.  2007. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25:697–743 [Google Scholar]
  8. Cheng G, Liu Y, Wang P, Xiao X. 8.  2016. Mosquito defense strategies against viral infection. Trends Parasitol 32:177–86 [Google Scholar]
  9. Lamiable O, Imler JL. 9.  2014. Induced antiviral innate immunity in Drosophila. Curr. Opin. Microbiol. 20:62–68 [Google Scholar]
  10. Gammon DB, Mello CC. 10.  2015. RNA interference-mediated antiviral defense in insects. Curr. Opin. Insect Sci. 8:111–20 [Google Scholar]
  11. Keene KM, Foy BD, Sanchez-Vargas I, Beaty BJ, Blair CD, Olson KE. 11.  2004. RNA interference acts as a natural antiviral response to O'nyong-nyong virus (Alphavirus; Togaviridae) infection of Anopheles gambiae. PNAS 101:17240–45 [Google Scholar]
  12. Li H, Li WX, Ding SW. 12.  2002. Induction and suppression of RNA silencing by an animal virus. Science 296:1319–21 [Google Scholar]
  13. Sarkies P, Miska EA. 13.  2013. RNAi pathways in the recognition of foreign RNA: antiviral responses and host–parasite interactions in nematodes. Biochem. Soc. Trans. 41:876–80 [Google Scholar]
  14. Szittya G, Burgyan J. 14.  2013. RNA interference-mediated intrinsic antiviral immunity in plants. Curr. Top. Microbiol. Immunol. 371:153–81 [Google Scholar]
  15. Roberts DB. 15.  2006. Drosophila melanogaster: the model organism. Entomol. Exp. Appl. 121:93–103 [Google Scholar]
  16. 16. WHO (World Health Organ.) 1996. Executive summary: insect-borne diseases. World Health Report 1996: Fighting Disease, Fostering Development Geneva: World Health Organ http://www.who.int/whr/1996/media_centre/executive_summary1/en/index9.html [Google Scholar]
  17. Olson KE, Blair CD. 17.  2015. Arbovirus–mosquito interactions: RNAi pathway. Curr. Opin. Virol. 15:119–26 [Google Scholar]
  18. Carthew RW, Sontheimer EJ. 18.  2009. Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–55 [Google Scholar]
  19. Ha M, Kim VN. 19.  2014. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15:509–24 [Google Scholar]
  20. Theron E, Dennis C, Brasset E, Vaury C. 20.  2014. Distinct features of the piRNA pathway in somatic and germ cells: from piRNA cluster transcription to piRNA processing and amplification. Mob. DNA 5:28 [Google Scholar]
  21. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. 21.  2004. Processing of primary microRNAs by the Microprocessor complex. Nature 432:231–35 [Google Scholar]
  22. Lee YS, Nakahara K, Pham JW, Kim K, He Z. 22.  et al. 2004. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117:69–81 [Google Scholar]
  23. Forstemann K, Tomari Y, Du T, Vagin VV, Denli AM. 23.  et al. 2005. Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLOS Biol 3:e236 [Google Scholar]
  24. Saito K, Ishizuka A, Siomi H, Siomi MC. 24.  2005. Processing of pre-microRNAs by the Dicer-1–Loquacious complex in Drosophila cells. PLOS Biol 3:e235 [Google Scholar]
  25. Miyoshi K, Tsukumo H, Nagami T, Siomi H, Siomi MC. 25.  2005. Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes Dev 19:2837–48 [Google Scholar]
  26. Czech B, Malone CD, Zhou R, Stark A, Schlingeheyde C. 26.  et al. 2008. An endogenous small interfering RNA pathway in Drosophila. Nature 453:798–802 [Google Scholar]
  27. Okamura K, Chung WJ, Ruby JG, Guo H, Bartel DP, Lai EC. 27.  2008. The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs. Nature 453:803–6 [Google Scholar]
  28. Marques JT, Wang JP, Wang X, de Oliveira KP, Gao C. 28.  et al. 2013. Functional specialization of the small interfering RNA pathway in response to virus infection. PLOS Pathog 9:e1003579 [Google Scholar]
  29. Mirkovic-Hosle M, Forstemann K. 29.  2014. Transposon defense by endo-siRNAs, piRNAs and somatic pilRNAs in Drosophila: contributions of Loqs-PD and R2D2. PLOS ONE 9:e84994 [Google Scholar]
  30. Horwich MD, Li C, Matranga C, Vagin V, Farley G. 30.  et al. 2007. The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr. Biol. 17:1265–72 [Google Scholar]
  31. Saito K, Sakaguchi Y, Suzuki T, Suzuki T, Siomi H, Siomi MC. 31.  2007. Pimet, the Drosophila homolog of HEN1, mediates 2′-O-methylation of Piwi-interacting RNAs at their 3′ ends. Genes Dev 21:1603–8 [Google Scholar]
  32. Aravin AA, Hannon GJ, Brennecke J. 32.  2007. The Piwi–piRNA pathway provides an adaptive defense in the transposon arms race. Science 318:761–64 [Google Scholar]
  33. Siomi MC, Sato K, Pezic D, Aravin AA. 33.  2011. PIWI-interacting small RNAs: the vanguard of genome defence. Nat. Rev. Mol. Cell Biol. 12:246–58 [Google Scholar]
  34. Ipsaro JJ, Haase AD, Knott SR, Joshua-Tor L, Hannon GJ. 34.  2012. The structural biochemistry of Zucchini implicates it as a nuclease in piRNA biogenesis. Nature 491:279–83 [Google Scholar]
  35. Mohn F, Handler D, Brennecke J. 35.  2015. piRNA-guided slicing specifies transcripts for Zucchini-dependent, phased piRNA biogenesis. Science 348:812–17 [Google Scholar]
  36. Nishimasu H, Ishizu H, Saito K, Fukuhara S, Kamatani MK. 36.  et al. 2012. Structure and function of Zucchini endoribonuclease in piRNA biogenesis. Nature 491:284–87 [Google Scholar]
  37. Saito K, Nishida KM, Mori T, Kawamura Y, Miyoshi K. 37.  et al. 2006. Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev 20:2214–22 [Google Scholar]
  38. Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y. 38.  et al. 2007. A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science 315:1587–90 [Google Scholar]
  39. Brackney DE, Scott JC, Sagawa F, Woodward JE, Miller NA. 39.  et al. 2010. C6/36 Aedes albopictus cells have a dysfunctional antiviral RNA interference response. PLOS Negl. Trop. Dis. 4:e856 [Google Scholar]
  40. Hess AM, Prasad AN, Ptitsyn A, Ebel GD, Olson KE. 40.  et al. 2011. Small RNA profiling of Dengue virus–mosquito interactions implicates the PIWI RNA pathway in anti-viral defense. BMC Microbiol 11:45 [Google Scholar]
  41. Leger P, Lara E, Jagla B, Sismeiro O, Mansuroglu Z. 41.  et al. 2013. Dicer-2- and Piwi-mediated RNA interference in Rift Valley fever virus-infected mosquito cells. J. Virol. 87:1631–48 [Google Scholar]
  42. Morazzani EM, Wiley MR, Murreddu MG, Adelman ZN, Myles KM. 42.  2012. Production of virus-derived ping-pong-dependent piRNA-like small RNAs in the mosquito soma. PLOS Pathog 8:e1002470 [Google Scholar]
  43. Scott JC, Brackney DE, Campbell CL, Bondu-Hawkins V, Hjelle B. 43.  et al. 2010. Comparison of dengue virus type 2-specific small RNAs from RNA interference-competent and -incompetent mosquito cells. PLOS Negl. Trop. Dis. 4:e848 [Google Scholar]
  44. Vodovar N, Bronkhorst AW, van Cleef KW, Miesen P, Blanc H. 44.  et al. 2012. Arbovirus-derived piRNAs exhibit a ping-pong signature in mosquito cells. PLOS ONE 7:e30861 [Google Scholar]
  45. Schnettler E, Donald CL, Human S, Watson M, Siu RW. 45.  et al. 2013. Knockdown of piRNA pathway proteins results in enhanced Semliki Forest virus production in mosquito cells. J. Gen. Virol. 94:1680–89 [Google Scholar]
  46. Miesen P, Girardi E, van Rij RP. 46.  2015. Distinct sets of PIWI proteins produce arbovirus and transposon-derived piRNAs in Aedes aegypti mosquito cells. Nucleic Acids Res 43:6545–56 [Google Scholar]
  47. Petit M, Mongelli V, Frangeul L, Blanc H, Jiggins F, Saleh MC. 47.  2016. piRNA pathway is not required for antiviral defense in Drosophila melanogaster. PNAS 113E4218–27
  48. Lucas K, Raikhel AS. 48.  2013. Insect microRNAs: biogenesis, expression profiling and biological functions. Insect Biochem. Mol. Biol. 43:24–38 [Google Scholar]
  49. Etebari K, Osei-Amo S, Blomberg SP, Asgari S. 49.  2015. Dengue virus infection alters post-transcriptional modification of microRNAs in the mosquito vector Aedes aegypti. Sci. Rep. 5:15968 [Google Scholar]
  50. Li JM, Zhou YR, Sun ZT, Wang X, Xie L, Chen JP. 50.  2015. Identification and profiling of conserved and novel microRNAs in Laodelphax striatellus in response to rice black-streaked dwarf virus (RBSDV) infection. Genom. Data 3:63–69 [Google Scholar]
  51. Mehrabadi M, Hussain M, Asgari S. 51.  2013. MicroRNAome of Spodoptera frugiperda cells (Sf9) and its alteration following baculovirus infection. J. Gen. Virol. 94:1385–97 [Google Scholar]
  52. Singh CP, Singh J, Nagaraju J. 52.  2012. A baculovirus-encoded MicroRNA (miRNA) suppresses its host miRNA biogenesis by regulating the exportin-5 cofactor Ran. J. Virol. 86:7867–79 [Google Scholar]
  53. Slonchak A, Hussain M, Torres S, Asgari S, Khromykh AA. 53.  2014. Expression of mosquito microRNA aae-miR-2940-5p is downregulated in response to West Nile virus infection to restrict viral replication. J. Virol. 88:8457–67 [Google Scholar]
  54. Wu YL, Wu CP, Liu CY, Hsu PW, Wu EC, Chao YC. 54.  2011. A non-coding RNA of insect HzNV-1 virus establishes latent viral infection through microRNA. Sci. Rep. 1:60 [Google Scholar]
  55. Zhu M, Wang J, Deng R, Xiong P, Liang H, Wang X. 55.  2013. A microRNA encoded by Autographa californica nucleopolyhedrovirus regulates expression of viral gene ODV-E25. J. Virol. 87:13029–34 [Google Scholar]
  56. Hussain M, Asgari S. 56.  2014. MicroRNA-like viral small RNA from Dengue virus 2 autoregulates its replication in mosquito cells. PNAS 111:2746–51 [Google Scholar]
  57. Hussain M, Torres S, Schnettler E, Funk A, Grundhoff A. 57.  et al. 2012. West Nile virus encodes a microRNA-like small RNA in the 3′ untranslated region which up-regulates GATA4 mRNA and facilitates virus replication in mosquito cells. Nucleic Acids Res 40:2210–23 [Google Scholar]
  58. Libri V, Miesen P, van Rij RP, Buck AH. 58.  2013. Regulation of microRNA biogenesis and turnover by animals and their viruses. Cell Mol. Life Sci. 70:3525–44 [Google Scholar]
  59. Xie M, Steitz JA. 59.  2014. Versatile microRNA biogenesis in animals and their viruses. RNA Biol 11:673–81 [Google Scholar]
  60. Zhuo Y, Gao G, Shi JA, Zhou X, Wang X. 60.  2013. miRNAs: biogenesis, origin and evolution, functions on virus–host interaction. Cell. Physiol. Biochem. 32:499–510 [Google Scholar]
  61. Bronkhorst AW, van Rij RP. 61.  2014. The long and short of antiviral defense: small RNA-based immunity in insects. Curr. Opin. Virol. 7:19–28 [Google Scholar]
  62. Nayak A, Berry B, Tassetto M, Kunitomi M, Acevedo A. 62.  et al. 2010. Cricket paralysis virus antagonizes Argonaute 2 to modulate antiviral defense in Drosophila. Nat. Struct. Mol. Biol. 17:547–54 [Google Scholar]
  63. van Cleef KW, van Mierlo JT, van den Beek M, van Rij RP. 63.  2011. Identification of viral suppressors of RNAi by a reporter assay in Drosophila S2 cell culture. Methods Mol. Biol. 721:201–13 [Google Scholar]
  64. Lichner Z, Silhavy D, Burgyan J. 64.  2003. Double-stranded RNA-binding proteins could suppress RNA interference-mediated antiviral defences. J. Gen. Virol. 84:975–80 [Google Scholar]
  65. Dasgupta S, Fernandez L, Kameyama L, Inada T, Nakamura Y. 65.  et al. 1998. Genetic uncoupling of the dsRNA-binding and RNA cleavage activities of the Escherichia coli endoribonuclease RNase III—the effect of dsRNA binding on gene expression. Mol. Microbiol. 28:629–40 [Google Scholar]
  66. Olland AM, Jane-Valbuena J, Schiff LA, Nibert ML, Harrison SC. 66.  2001. Structure of the reovirus outer capsid and dsRNA-binding protein σ3 at 1.8 Å resolution. EMBO J 20:979–89 [Google Scholar]
  67. van Mierlo JT, Overheul GJ, Obadia B, van Cleef KW, Webster CL. 67.  et al. 2014. Novel Drosophila viruses encode host-specific suppressors of RNAi. PLOS Pathog 10:e1004256 [Google Scholar]
  68. Aliyari R, Wu Q, Li HW, Wang XH, Li F. 68.  et al. 2008. Mechanism of induction and suppression of antiviral immunity directed by virus-derived small RNAs in Drosophila. Cell Host Microbe 4:387–97 [Google Scholar]
  69. Chapman EJ, Prokhnevsky AI, Gopinath K, Dolja VV, Carrington JC. 69.  2004. Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes Dev 18:1179–86 [Google Scholar]
  70. Zhang X, Yuan YR, Pei Y, Lin SS, Tuschl T. 70.  et al. 2006. Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Dev 20:3255–68 [Google Scholar]
  71. Berry B, Deddouche S, Kirschner D, Imler JL, Antoniewski C. 71.  2009. Viral suppressors of RNA silencing hinder exogenous and endogenous small RNA pathways in Drosophila. PLOS ONE 4:e5866 [Google Scholar]
  72. Voinnet O. 72.  2009. Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–87 [Google Scholar]
  73. Fagegaltier D, Bouge A-L, Berry B, Poisot E, Odile S. 73.  et al. 2009. The endogenous siRNA pathway is involved in heterochromatin formation in Drosophila. PNAS 106:21258–63 [Google Scholar]
  74. Belles X. 74.  2010. Beyond Drosophila: RNAi in vivo and functional genomics in insects. Annu. Rev. Entomol. 55:111–28 [Google Scholar]
  75. Brutscher LM, Flenniken ML. 75.  2015. RNAi and antiviral defense in the honey bee. J. Immunol. Res. 2015:941897 [Google Scholar]
  76. Terenius O, Papanicolaou A, Garbutt JS, Eleftherianos I, Huvenne H. 76.  et al. 2011. RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J. Insect Physiol. 57:231–45 [Google Scholar]
  77. Christiaens O, Smagghe G. 77.  2014. The challenge of RNAi-mediated control of hemipterans. Curr. Opin. Insect Sci. 6:15–21 [Google Scholar]
  78. Yin C, Shen G, Guo D, Wang S, Ma X. 78.  et al. 2016. InsectBase: a resource for insect genomes and transcriptomes. Nucleic Acids Res 44:D801–7 [Google Scholar]
  79. Lewis SH, Salmela H, Obbard DJ. 79.  2016. Duplication and diversification of Dipteran Argonaute genes, and the evolutionary divergence of Piwi and Aubergine. Genome Biol. Evol. 8:507–18 [Google Scholar]
  80. Lu HL, Tanguy S, Rispe C, Gauthier JP, Walsh T. 80.  et al. 2011. Expansion of genes encoding piRNA-associated Argonaute proteins in the pea aphid: diversification of expression profiles in different plastic morphs. PLOS ONE 6:e28051 [Google Scholar]
  81. Ortiz-Rivas B, Jaubert-Possamai S, Tanguy S, Gauthier JP, Tagu D, Claude R. 81.  2012. Evolutionary study of duplications of the miRNA machinery in aphids associated with striking rate acceleration and changes in expression profiles. BMC Evol. Biol. 12:216 [Google Scholar]
  82. Hain D, Bettencourt BR, Okamura K, Csorba T, Meyer W. 82.  et al. 2010. Natural variation of the amino-terminal glutamine-rich domain in Drosophila argonaute2 is not associated with developmental defects. PLOS ONE 5:e15264 [Google Scholar]
  83. Hahn MW. 83.  2009. Distinguishing among evolutionary models for the maintenance of gene duplicates. J. Hered. 100:605–17 [Google Scholar]
  84. Innan H, Kondrashov F. 84.  2010. The evolution of gene duplications: classifying and distinguishing between models. Nat. Rev. Genet. 11:97–108 [Google Scholar]
  85. Obbard DJ, Gordon KH, Buck AH, Jiggins FM. 85.  2009. The evolution of RNAi as a defence against viruses and transposable elements. Philos. Trans. R. Soc. Lond. B 364:99–115 [Google Scholar]
  86. Campbell CL, Black WC IV, Hess AM, Foy BD. 86.  2008. Comparative genomics of small RNA regulatory pathway components in vector mosquitoes. BMC Genom 9:425 [Google Scholar]
  87. Goic B, Saleh MC. 87.  2012. Living with the enemy: viral persistent infections from a friendly viewpoint. Curr. Opin. Microbiol. 15:531–37 [Google Scholar]
  88. Ahlquist P. 88.  2006. Parallels among positive-strand RNA viruses, reverse-transcribing viruses and double-stranded RNA viruses. Nat. Rev. Microbiol. 4:371–82 [Google Scholar]
  89. Romero-Brey I, Bartenschlager R. 89.  2014. Membranous replication factories induced by plus-strand RNA viruses. Viruses 6:2826–57 [Google Scholar]
  90. Overby AK, Popov VL, Niedrig M, Weber F. 90.  2010. Tick-borne encephalitis virus delays interferon induction and hides its double-stranded RNA in intracellular membrane vesicles. J. Virol. 84:8470–83 [Google Scholar]
  91. Randall RE, Goodbourn S. 91.  2008. Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J. Gen. Virol. 89:1–47 [Google Scholar]
  92. Kim YJ, Maizel A, Chen X. 92.  2014. Traffic into silence: endomembranes and post-transcriptional RNA silencing. EMBO J 33:968–80 [Google Scholar]
  93. Nishida KM, Miyoshi K, Ogino A, Miyoshi T, Siomi H, Siomi MC. 93.  2013. Roles of R2D2, a cytoplasmic D2 body component, in the endogenous siRNA pathway in Drosophila. Mol. Cell 49:680–91 [Google Scholar]
  94. Eulalio A, Huntzinger E, Izaurralde E. 94.  2008. GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay. Nat. Struct. Mol. Biol. 15:346–53 [Google Scholar]
  95. Murota Y, Ishizu H, Nakagawa S, Iwasaki YW, Shibata S. 95.  et al. 2014. Yb integrates piRNA intermediates and processing factors into perinuclear bodies to enhance piRISC assembly. Cell Rep 8:103–13 [Google Scholar]
  96. Hoffmann JA. 96.  2003. The immune response of Drosophila. Nature 426:33–38 [Google Scholar]
  97. Deddouche S, Matt N, Budd A, Mueller S, Kemp C. 97.  et al. 2008. The DExD/H-box helicase Dicer-2 mediates the induction of antiviral activity in Drosophila. Nat. Immunol. 9:1425–32 [Google Scholar]
  98. Flenniken ML, Andino R. 98.  2013. Non-specific dsRNA-mediated antiviral response in the honey bee. PLOS ONE 8:e77263 [Google Scholar]
  99. Paradkar PN, Trinidad L, Voysey R, Duchemin JB, Walker PJ. 99.  2012. Secreted Vago restricts West Nile virus infection in Culex mosquito cells by activating the Jak-STAT pathway. PNAS 109:18915–20 [Google Scholar]
  100. Lozano J, Gomez-Orte E, Lee HJ, Belles X. 100.  2012. Super-induction of Dicer-2 expression by alien double-stranded RNAs: an evolutionary ancient response to viral infection?. Dev. Genes Evol. 222:229–35 [Google Scholar]
  101. Wang GH, Jiang L, Zhu L, Cheng TC, Niu WH. 101.  et al. 2013. Characterization of Argonaute family members in the silkworm, Bombyx mori. Insect Sci 20:78–91 [Google Scholar]
  102. Spellberg MJ, Marr MT 2nd. 102.  2015. FOXO regulates RNA interference in Drosophila and protects from RNA virus infection. PNAS 112:14587–92 [Google Scholar]
  103. Vodovar N, Saleh MC. 103.  2012. Of insects and viruses: the role of small RNAs in insect defence. Adv. Insect Physiol. 42:1–36 [Google Scholar]
/content/journals/10.1146/annurev-virology-110615-042447
Loading
/content/journals/10.1146/annurev-virology-110615-042447
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error