1932

Abstract

Low vision is any type of visual impairment that affects activities of daily living. In the context of low vision, we define plasticity as changes in brain or perceptual behavior that follow the onset of visual impairment and that are not directly due to the underlying pathology. An important goal of low-vision research is to determine how plasticity affects visual performance of everyday activities. In this review, we consider the levels of the visual system at which plasticity occurs, the impact of age and visual experience on plasticity, and whether plastic changes are spontaneous or require explicit training. We also discuss how plasticity may affect low-vision rehabilitation. Developments in retinal imaging, noninvasive brain imaging, and eye tracking have supplemented traditional clinical and psychophysical methods for assessing how the visual system adapts to visual impairment. Findings from contemporary research are providing tools to guide people with low vision in adopting appropriate rehabilitation strategies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-111815-114344
2016-10-14
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/vision/2/1/annurev-vision-111815-114344.html?itemId=/content/journals/10.1146/annurev-vision-111815-114344&mimeType=html&fmt=ahah

Literature Cited

  1. Andersen GJ, Ni R, Bower JD, Watanabe T. 2010. Perceptual learning, aging, and improved visual performance in early stages of visual processing. J. Vis. 10:134 [Google Scholar]
  2. Arditi A. 2005. Improving the design of the letter contrast sensitivity test. Investig. Ophthalmol. Vis. Sci. 46:2225–29 [Google Scholar]
  3. Arnott SR, Thaler L, Milne JL, Kish D, Goodale MA. 2013. Shape-specific activation of occipital cortex in an early blind echolocation expert. Neuropsychologia 51:938–49 [Google Scholar]
  4. Astle AT, Webb BS, McGraw PV, Chung STL. 2015. Optimizing the viewing position of words increases reading speed in patients with central vision loss. Investig. Ophthalmol. Vis. Sci. 56:2218 [Google Scholar]
  5. Bailey IL, Lovie JE. 1976. New design principles for visual acuity letter charts. Am. J. Optom. Physiol. Opt. 53:740–45 [Google Scholar]
  6. Bailey IL, Lovie JE. 1980. The design and use of a new near-vision chart. Am. J. Optom. Physiol. Opt. 57:378–87 [Google Scholar]
  7. Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R. et al. 2008. Effect of gene therapy on visual function in Leber's congenital amaurosis. N. Engl. J. Med. 358:2231–39 [Google Scholar]
  8. Baker CI, Dilks DD, Peli E, Kanwisher N. 2008. Reorganization of visual processing in macular degeneration: replication and clues about the role of foveal loss. Vis. Res. 48:1910–19 [Google Scholar]
  9. Baker CI, Peli E, Knouf N, Kanwisher NG. 2005. Reorganization of visual processing in macular degeneration. J. Neurosci. 25:614–18 [Google Scholar]
  10. Ball K, Owsley C, Sloane ME, Roenker DL, Bruni JR. 1993. Visual attention problems as a predictor of vehicle crashes in older drivers. Investig. Ophthalmol. Vis. Sci. 34:3110–23 [Google Scholar]
  11. Baseler HA, Gouws A, Haak KV, Racey C, Crossland MD. et al. 2011. Large-scale remapping of visual cortex is absent in adult humans with macular degeneration. Nat. Neurosci. 14:649–55 [Google Scholar]
  12. Birch EE, Cheng C, Stager DR Jr., Weakley DR Jr., Stager DR Sr. 2009. The critical period for surgical treatment of dense congenital bilateral cataracts. J. Am. Assoc. Pediatr. Opthalmol. Strabismus 13:67–71 [Google Scholar]
  13. Boroojerdi B, Bushara KO, Corwell B, Immisch I, Battaglia F. et al. 2000. Enhanced excitability of the human visual cortex induced by short-term light deprivation. Cereb. Cortex 10:529–34 [Google Scholar]
  14. Brindley GS, Lewin WS. 1968. The sensations produced by electrical stimulation of the visual cortex. J. Physiol. 196:479–93 [Google Scholar]
  15. Brown AM, Lindsey DT, Cammenga JG, Giannone PJ, Stenger MR. 2015. The contrast sensitivity of the newborn human infant. Investig. Ophthalmol. Vis. Sci. 56:625–32 [Google Scholar]
  16. Brown AM, Yamamoto M. 1986. Visual acuity in newborn and preterm infants measured with grating acuity charts. Am. J. Ophthalmol. 102:245–53 [Google Scholar]
  17. Bullimore MA, Bailey IL, Wacker RT. 1991. Face recognition in age-related maculopathy. Investig. Ophthalmol. Vis. Sci. 32:2020–29 [Google Scholar]
  18. Cacho I, Dickinson CM, Reeves BC, Harper RA. 2007. Visual acuity and fixation characteristics in age-related macular degeneration. Optom. Vis. Sci. 84:487–95 [Google Scholar]
  19. Calabrèse A, Bernard JB, Hoffart L, Faure G, Barouch F. et al. 2010. Small effect of interline spacing on maximal reading speed in low-vision patients with central field loss irrespective of scotoma size. Investig. Ophthalmol. Vis. Sci. 51:1247–54 [Google Scholar]
  20. Cheung SH, Fang F, He S, Legge GE. 2009. Retinotopically specific reorganization of visual cortex for tactile pattern recognition. Curr. Biol. 19:596–601 [Google Scholar]
  21. Cheung SH, Legge GE. 2005. Functional and cortical adaptations to central vision loss. Vis. Neurosci. 22:187–201 [Google Scholar]
  22. Chung STL. 2011. Improving reading speed for people with central vision loss through perceptual learning. Investig. Ophthalmol. Vis. Sci. 52:1164–70 [Google Scholar]
  23. Chung STL. 2013a. The Glenn A. Fry Award Lecture 2012: Plasticity of the visual system following central vision loss. Optom. Vis. Sci. 90:520–29 [Google Scholar]
  24. Chung STL. 2013b. Cortical reorganization after long-term adaptation to retinal lesions in humans. J. Neurosci. 33:18080–86 [Google Scholar]
  25. Chung STL, Bernard J-B. 2013. Does the location of the PRL correspond to the retinal location with the best acuity?. Investig. Ophthalmol. Vis. Sci 54:2183 [Google Scholar]
  26. Chung STL, Jarvis SH, Woo SY, Hanson K, Jose RT. 2008. Reading speed does not benefit from increased line spacing in AMD patients. Optom. Vis. Sci. 85:827–33 [Google Scholar]
  27. Chung STL, Legge GE. 2016. Comparing the shape of contrast sensitivity functions for normal and low vision. Investig. Ophthalmol. Vis. Sci. 57:198–207 [Google Scholar]
  28. Chung STL, Legge GE, Cheung SH. 2004. Letter-recognition and reading speed in peripheral vision benefit from perceptual learning. Vis. Res. 44:695–709 [Google Scholar]
  29. Chung STL, Levi DM, Tjan BS. 2005. Learning letter identification in peripheral vision. Vis. Res. 45:1399–412 [Google Scholar]
  30. Congdon N, O'Colmain B, Klaver CC, Klein R, Muñoz B. et al. 2004. Causes and prevalence of visual impairment among adults in the United States. Arch. Ophthalmol. 22:477–85 [Google Scholar]
  31. Crossland MD, Crabb DP, Rubin GS. 2011. Task-specific fixation behavior in macular disease. Investig. Ophthalmol. Vis. Sci. 52:411–16 [Google Scholar]
  32. Crossland MD, Culham LE, Kabanarou SA, Rubin GS. 2005. Preferred retinal locus development in patients with macular disease. Ophthalmology 112:1579–85 [Google Scholar]
  33. Cunningham SI, Weiland JD, Bao P, Tjan BS. 2011. Visual cortex activation induced by tactile stimulation in late-blind individuals with retinitis pigmentosa. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011:2841–44 [Google Scholar]
  34. Cunningham SI, Weiland JD, Bao P, Lopez-Jaime GR, Tjan BS. 2015. Correlation of vision loss with tactile-evoked V1 responses in retinitis pigmentosa. Vis. Res. 111:197–207 [Google Scholar]
  35. Delahunt PB, Webster MA, Ma L, Werner JS. 2004. Long-term renormalization of chromatic mechanisms following cataract surgery. Vis. Neurosci. 21:301–7 [Google Scholar]
  36. Déruaz A, Matter M, Whatham AR, Goldschmidt M, Duret F. et al. 2004. Can fixation instability improve text perception during eccentric fixation in patients with central scotomas?. Br. J. Ophthalmol. 88:461–63 [Google Scholar]
  37. Dietrich S, Hertrich I, Kumar V, Ackermann H. 2015. Experience-related structural changes of degenerated occipital white matter in late-blind humans—a diffusion tensor imaging study. PLOS ONE 10:4e0122863 [Google Scholar]
  38. Dougherty BE, Bullimore MA. 2010. Comparison of scoring approaches for the NEI VFQ-25 in low vision. Optom. Vis. Sci. 87:543–48 [Google Scholar]
  39. Dormal G, Lepore F, Harissi-Dagher M, Albouy G, Bertone A. et al. 2015. Tracking the evolution of crossmodal plasticity and visual functions before and after sight restoration. J. Neurophysiol. 113:1727–42 [Google Scholar]
  40. Duncan DO, Sample PA, Weinreb RN, Bowd C, Zangwill LM. 2007. Retinotopic organization of primary visual cortex in glaucoma: A method for comparing cortical function with damage to the optic disk. Investig. Ophthalmol. Vis. Sci. 48:733–44 [Google Scholar]
  41. Duncan JL, Talcott KE, Ratnam K, Sundquist SM, Lucero AS. et al. 2011. Cone structure in retinal degeneration associated with mutations in the peripherin/RDS gene. Investig. Ophthalmol. Vis. Sci. 52:1557–66 [Google Scholar]
  42. Ellemberg D, Lewis TL, Liu CH, Maurer D. 1999. Development of spatial and temporal vision during childhood. Vis. Res. 39:2325–33 [Google Scholar]
  43. Elliott DB, Patla A, Bullimore MA. 1997a. Improvements in clinical and functional vision and perceived visual disability after first and second eye cataract surgery. Br. J. Ophthalmol. 81:889–95 [Google Scholar]
  44. Elliott DB, Trukolo-Ilic M, Strong JG, Pace R, Plotkin A. et al. 1997b. Demographic characteristics of the vision-disabled elderly. Investig. Ophthalmol. Vis. Sci. 38:2566–75 [Google Scholar]
  45. Ferris FL III, Kassoff A, Bresnick GH, Bailey I. 1982. New visual acuity charts for clinical research. Am. J. Ophthalmol. 94:91–96 [Google Scholar]
  46. Fine I, Cepko CL, Landy MS. 2015. Vision research special issue: sight restoration: prosthetics, optogenetics and gene therapy. Vis. Res. 111:115–23 [Google Scholar]
  47. Fine I, Wade AR, Brewer AA, May MG, Goodman DF. et al. 2003. Long-term deprivation affects visual perception and cortex. Nat. Neurosci. 6:915–16 [Google Scholar]
  48. Fletcher DC, Schuchard RA. 1997. Preferred retinal loci relationship to macular scotomas in a low vision population. Ophthalmology 104:632–38 [Google Scholar]
  49. Freeman PB, Jose RT. 1997. The Art and Practice of Low Vision. Boston:, MA: Butterworth-Heinemann. 2nd ed.
  50. Glisson CC. 2006. Capturing the benefit of vision restoration therapy. Curr. Opin. Ophthalmol. 17:504–8 [Google Scholar]
  51. Gold J, Bennett PJ, Sekuler AB. 1999. Signal but not noise changes with perceptual learning. Nature 402:176–78 [Google Scholar]
  52. Goldstein JE, Jackson ML, Fox SM, Deremeik JT, Massof RW. Low Vision Res. Netw. Study Group 2015. Clinically meaningful rehabilitation outcomes of low vision patients served by outpatient clinical centers. JAMA Ophthalmol. 133:762–69 [Google Scholar]
  53. Greenstein VC, Santos RA, Tsang SH, Smith RT, Barille GR. et al. 2008. Preferred retinal locus in macular disease: characteristics and clinical implications. Retina 28:1234–40 [Google Scholar]
  54. Gregory RL, Wallace JG. 1963. Recovery from early blindness, a case study. Exp. Psychol. Soc. Monogr. 2:1–46 [Google Scholar]
  55. Guez J-E, Le Gargasson J-F, Rigaudiere F, O'Regan JK. 1993. Is there a systematic location for the pseudo-fovea in patients with central scotoma?. Vis. Res. 33:1271–79 [Google Scholar]
  56. Guillery RW, Okoro AN, Witkop CJ Jr. 1975. Abnormal visual pathways in the brain of a human albino. Brain Res. 96:373–77 [Google Scholar]
  57. Held R, Ostrovsky Y, de Gelder B, Gandhi T, Ganesh S. et al. 2011. The newly sighted fail to match seen with felt. Nat. Neurosci. 14:551–53 [Google Scholar]
  58. Hernowo AT, Prins D, Baseler HA, Plank T, Gouws AD. et al. 2014. Morphometric analyses of the visual pathways in macular degeneration. Cortex 56:99–110 [Google Scholar]
  59. Hess RF, Mansouri B, Thompson B. 2011. Restoration of binocular vision in amblyopia. Strabismus 19:110–18 [Google Scholar]
  60. Hirsch GV, Bauer CM, Merabet LB. 2015. Using structural and functional brain imaging to uncover how the brain adapts to blindness. Ann. Neurosci. Psychol. 2:5 [Google Scholar]
  61. Ho AC, Humayun MS, Dorn JD, da Cruz L, Dagnelie G. et al. 2015. Long-term results from an epiretinal prosthesis to restore sight to the blind. Ophthalmology 122:1547–54 [Google Scholar]
  62. Hoffmann MB, Tolhurst DJ, Moore AT, Morland AB. 2003. Organization of the visual cortex in human albinism. J. Neurosci. 23:8921–30 [Google Scholar]
  63. Horton JC. 2005a. Disappointing results from Nova Vision's visual restoration therapy. Br. J. Ophthalmol. 89:1–2 [Google Scholar]
  64. Horton JC. 2005b. Vision restoration therapy: confounded by eye movements. Br. J. Ophthalmol. 89:792–94 [Google Scholar]
  65. Huber E, Webster JM, Brewer AA, MacLeod DI, Wandell BA. et al. 2015. A lack of experience-dependent plasticity after more than a decade of recovered sight. Psychol. Sci. 26:393–401 [Google Scholar]
  66. Jacobson SG, Cideciyan AV, Roman AJ, Sumaroka A, Schwartz SB. et al. 2015. Improvement and decline in vision with gene therapy in childhood blindness. N. Engl. J. Med. 372:1920–26 [Google Scholar]
  67. Javitt JC, Brenner MH, Curbow B, Legro MW, Street DA. 1993. Outcomes of cataract surgery. Improvement in visual acuity and subjective visual function after surgery in the first, second, and both eyes. Arch. Ophthalmol. 111:686–91 [Google Scholar]
  68. Kalia A, Lesmes LA, Dorr M, Gandhi T, Chatterjee G. et al. 2014. Development of pattern vision following early and extended blindness. PNAS 111:2035–39 [Google Scholar]
  69. Kasten E, Wüst S, Behrens-Baumann W, Sabel BA. 1998. Computer-based training for the treatment of partial blindness. Nat. Med. 4:1083–87 [Google Scholar]
  70. Klemen J, Hoffmann MB, Chambers CD. 2012. Cortical plasticity in the face of congenitally altered input into V1. Cortex 48:1362–65 [Google Scholar]
  71. Kolarik AJ, Cirstea S, Pardhan S, Moore BC. 2014. A summary of research investigating echolocation abilities of blind and sighted humans. Hear. Res. 310:60–68 [Google Scholar]
  72. Kumar G, Chung STL. 2015. Functional consequences of slow drift fixational eye movements in patients with central vision loss. J. Vis. 15:1272 [Google Scholar]
  73. Kuyk T, Elliott JL, Biehl J, Fuhr PS. 1996. Environmental variables and mobility performance in adults with low vision. J. Am. Optom. Assoc. 67:403–9 [Google Scholar]
  74. Kwon MY, Legge GE, Dubbels BR. 2007. Developmental changes in the visual span for reading. Vis. Res. 47:2889–900 [Google Scholar]
  75. Kwon MY, Legge GE, Fang F, Cheong AMY, He S. 2009. Adaptive changes in visual cortex following prolonged contrast reduction. J. Vis. 9:220,1–16 [Google Scholar]
  76. Kwon MY, Nandy AS, Tjan BS. 2013. Rapid and persistent adaptability of human oculomotor control in response to simulated central vision loss. Curr. Biol. 23:1663–69 [Google Scholar]
  77. Lasker T. 2014. Restoring vision to the blind: the Lasker/IRRF initiative for innovation in vision science. Transl. Vis. Sci. Technol. 3:71 [Google Scholar]
  78. Legge GE, Mansfield JS, Chung STL. 2001. Psychophysics of reading: XX. Linking letter recognition to reading speed in central and peripheral vision. Vis. Res. 41:725–43 [Google Scholar]
  79. Lei H, Schuchard RA. 1997. Using two preferred retina loci for different lighting conditions in patients with central scotomas. Investig. Ophthalmol. Vis. Sci. 38:1812–18 [Google Scholar]
  80. Lesmes LA, Lu ZL, Baek J, Albright TD. 2010. Bayesian adaptive estimation of the contrast sensitivity function: the quick CSF method. J. Vis. 10:317,1–21 [Google Scholar]
  81. Levi DM. 2008. Crowding—an essential bottleneck for object recognition: a mini-review. Vis. Res. 48:635–54 [Google Scholar]
  82. Levi DM, Li RW. 2009. Perceptual learning as a potential treatment for amblyopia: a mini-review. Vis. Res. 49:2535–49 [Google Scholar]
  83. Levin N, Dumoulin SO, Winawer J, Dougherty RF, Wandell BA. 2010. Cortical maps and white matter tracts following long period of visual deprivation and retinal image restoration. Neuron 65:21–31 [Google Scholar]
  84. Lewis TL, Maurer D. 2009. Effects of early pattern deprivation on visual development. Optom. Vis. Sci. 86:640–46 [Google Scholar]
  85. Li RW, Levi DM, Klein SA. 2004. Perceptual learning improves efficiency by re-tuning the decision ‘template’ for position discrimination. Nat. Neurosci. 7:178–83 [Google Scholar]
  86. Liu T, Cheung SH, Schuchard RA, Glielmi CB, Hu X. et al. 2010. Incomplete cortical reorganization in macular degeneration. Investig. Ophthalmol. Vis. Sci. 51:6826–34 [Google Scholar]
  87. Lu Z-L, Dosher BA. 2004. Perceptual learning retunes the perceptual template in foveal orientation identification. J. Vis. 4:144–56 [Google Scholar]
  88. Maguire AM, Simonelli F, Pierce EA, Pugh EN. Mingozzi F. Jr., et al. 2008. Safety and efficacy of gene transfer for Leber's congenital amaurosis. N. Engl. J. Med. 358:2240–48 [Google Scholar]
  89. Mangione CM, Lee PP, Gutierrez PR, Spritzer K, Berry S. et al. 2001. Development of the 25-item National Eye Institute Visual Function Questionnaire. Arch. Ophthalmol. 119:1050–58 [Google Scholar]
  90. Mansfield JS, Ahn SJ, Legge GE, Luebker A. 1993. A new reading-acuity chart for normal and low vision. Ophthalmic & visual optics/noninvasive assessment of the visual system. Opt. Soc. Am. Tech. Dig. 3:232–35 [Google Scholar]
  91. Mansfield JS, Legge GE. 2007. The MNREAD acuity chart. Psychophysics of Reading in Normal and Low Vision GE Legge 167–91 Mahwah, NJ/London: Lawrence Erlbaum Assoc. [Google Scholar]
  92. Marella M, Pesudovs K, Keeffe JE, O'Connor PM, Rees G. et al. 2010. The psychometric validity of the NEI VFQ-25 for use in a low-vision population. Investig. Ophthalmol. Vis. Sci. 51:2878–84 [Google Scholar]
  93. Marron JA, Bailey IL. 1982. Visual factors and orientation-mobility performance. Am. J. Optom. Physiol. Opt. 59:413–26 [Google Scholar]
  94. Massof RW, Fletcher DC. 2001. Evaluation of the NEI visual functioning questionnaire as an interval measure of visual ability in low vision. Vis. Res. 41:397–413 [Google Scholar]
  95. Masuda Y, Dumoulin SO, Nakadomari S, Wandell BA. 2008. V1 projection zone signals in human macular degeneration depend on task, not stimulus. Cereb. Cortex 18:2483–93 [Google Scholar]
  96. McKone E, Crookes K, Jeffrey L, Dilks DD. 2012. A critical review of the development of face recognition: Experience is less important than previously believed. Cogn. Neuropsychol. 29:174–212 [Google Scholar]
  97. Merabet LB, Battelli L, Obretenova S, Maguire S, Meijer P, Pascual-Leone A. 2009. Functional recruitment of visual cortex for sound encoded object identification in the blind. Neuroreport 20:132–38 [Google Scholar]
  98. Merabet LB, Hamilton R, Schlaug G, Swisher JD, Kiriakopoulos ET. et al. 2008. Rapid and reversible recruitment of early visual cortex for touch. PLOS ONE 3:8e3046 [Google Scholar]
  99. Merabet LB, Pascual-Leone A. 2010. Neural reorganization following sensory loss: the opportunity of change. Nat. Rev. Neurosci. 11:44–52 [Google Scholar]
  100. Natl. Eye Inst. n.d Low Vision and Blindness Rehabilitation—National Plan for Eye and Vision Research Natl. Inst. Health, Bethesda, MD. https://nei.nih.gov/strategicplanning/np_low
  101. Nau A, Bach M, Fisher C. 2013. Clinical tests of ultra-low vision used to evaluate rudimentary visual perceptions enabled by the BrainPort vision device. Transl. Vis. Sci. Technol. 2:1 [Google Scholar]
  102. Nguyen NX, Stockum A, Hahn GA, Trauzettel-Klosinski S. 2011. Training to improve reading speed in patients with juvenile macular dystrophy: a randomized study comparing two training methods. Acta Ophthalmol. 89:e82–88 [Google Scholar]
  103. Owsley C, McGwin G Jr., Lee PP, Wasserman N, Searcey K. 2009. Characteristics of low-vision rehabilitation services in the United States. Arch. Ophthalmol. 127:681–89 [Google Scholar]
  104. Parkosadze K, Kalmakhelidze T, Tolmacheva M, Chichua G, Kezeli A. et al. 2013. Persistent biases in subjective image focus following cataract surgery. Vis. Res. 89:10–17 [Google Scholar]
  105. Peli E. 2001. Vision multiplexing: an engineering approach to vision rehabilitation device development. Optom. Vis. Sci. 78:304–15 [Google Scholar]
  106. Pelli DG, Robson JG, Wilkins AJ. 1988. The design of a new letter chart for measuring contrast sensitivity. Clin. Vis. Sci. 2:187–99 [Google Scholar]
  107. Plow EB, Obretenova SN, Fregni F, Pascual-Leone A, Merabet LB. 2012. Comparison of visual field training for hemianopia with active versus sham transcranial direct cortical stimulation. Neurorehabil. Neural Repair 26:616–26 [Google Scholar]
  108. Ptito M, Matteau I, Zhi Wang A, Paulson OB, Siebner HR, Kupers R. 2012. Crossmodal recruitment of the ventral visual system in congenital blindness. Neural Plast. 2012:304045 [Google Scholar]
  109. Ptito M, Schneider FC, Paulson OB, Kupers R. 2008. Alterations of the visual pathways in congenital blindness. Exp. Brain Res. 187:41–49 [Google Scholar]
  110. Radner W, Obermayer W, Richter-Mueksch S, Willinger U, Velikay-Parel M. et al. 2002. The validity and reliability of short German sentences for measuring reading speed. Graefes Arch. Clin. Exp. Ophthalmol. 240:461–67 [Google Scholar]
  111. Reinhard J, Messias A, Dietz K, Mackeben M, Lakmann R. et al. 2007. Quantifying fixation in patients with Stargardt disease. Vis. Res. 47:2076–85 [Google Scholar]
  112. Reinhard J, Schreiber A, Schiefer U, Kasten E, Sabel BA. et al. 2005. Does visual restitution training change absolute homonymous visual field defects? A fundus controlled study. Br. J. Ophthalmol. 89:30–35 [Google Scholar]
  113. Rosengarth K, Keck I, Brandl-Rühle S, Frolo J, Hufendiek K. et al. 2013. Functional and structural brain modifications induced by oculomotor training in patients with age-related macular degeneration. Front. Psychol. 4:428 [Google Scholar]
  114. Rubin GS, Adamsons IA, Stark WJ. 1993. Comparison of acuity, contrast sensitivity, and disability glare before and after cataract surgery. Arch. Ophthalmol. 111:56–61 [Google Scholar]
  115. Rubin GS, Feely M. 2009. The role of eye movements during reading in patients with age-related macular degeneration (AMD). Neuro-Ophthalmology 33:120–26 [Google Scholar]
  116. Sadato N, Pascual-Leone A, Grafman J, Ibañez V, Deiber MP. et al. 1996. Activation of the primary visual cortex by Braille reading in blind subjects. Nature 380:526–28 [Google Scholar]
  117. Schumacher EH, Jacko JA, Primo SA, Main KL, Moloney KP. et al. 2008. Reorganization of visual processing is related to eccentric viewing in patients with macular degeneration. Restor. Neurol. Neurosci. 26:391–402 [Google Scholar]
  118. Seiple W, Grant P, Szlyk JP. 2011. Reading rehabilitation of individuals with AMD: relative effectiveness of training approaches. Investig. Ophthalmol. Vis. Sci. 52:2938–44 [Google Scholar]
  119. Seiple W, Rosen RB, Garcia PM. 2013. Abnormal fixation in individuals with age-related macular degeneration when viewing an image of a face. Optom. Vis. Sci. 90:45–56 [Google Scholar]
  120. Sinha P, Chatterjee G, Gandhi T, Kalia A. 2013. Restoring vision through “Project Prakash”: the opportunities for merging science and service. PLOS Biol. 11:e1001741 [Google Scholar]
  121. Stelmack JA, Szlyk JP, Stelmack TR, Demers-Turco P, Williams RT. et al. 2004. Psychometric properties of the Veterans Affairs Low-Vision Visual Functioning Questionnaire. Investig. Ophthalmol. Vis. Sci. 45:3919–28 [Google Scholar]
  122. Stingl K, Bartz-Schmidt KU, Besch D, Chee CK, Cottriall CL. et al. 2015. Subretinal visual implant Alpha IMS—clinical trial interim report. Vis. Res. 111:149–60 [Google Scholar]
  123. Strettoi E. 2015. A survey of retinal remodeling. Front. Cell. Neurosci. 9:494 [Google Scholar]
  124. Striem-Amit E, Amedi A. 2014. Visual cortex extrastriate body-selective area activation in congenitally blind people “seeing” by using sounds. Curr. Biol. 24:687–92 [Google Scholar]
  125. Striem-Amit E, Guendelman M, Amedi A. 2012. ‘Visual’ acuity of the congenitally blind using visual-to-auditory sensory substitution. PLOS ONE 7:e33136 [Google Scholar]
  126. Subramanian A, Legge GE, Wagoner GH, Yu D. 2014. Learning to read vertical text in peripheral vision. Optom. Vis. Sci. 91:1097–105 [Google Scholar]
  127. Summers CG. 2009. Albinism: classification, clinical characteristics, and recent findings. Optom. Vis. Sci. 86:659–62 [Google Scholar]
  128. Sunness JS, Liu T, Yantis S. 2004. Retinotopic mapping of the visual cortex using functional magnetic resonance imaging in a patient with central scotomas from atropic macular degeneration. Ophthalmology 111:1595–98 [Google Scholar]
  129. Tarita-Nistor L, Brent MH, Steinbach MJ, Markowitz SN, Gonzalez EG. 2014. Reading training with threshold stimuli in people with central vision loss: a feasibility study. Optom. Vis. Sci. 91:86–96 [Google Scholar]
  130. Tarita-Nistor L, Gonzalez EG, Markowitz SN, Steinbach MJ. 2008. Fixation characteristics of patients with macular degeneration recorded with the MP-1 microperimeter. Retina 28:125–33 [Google Scholar]
  131. Teng S, Puri A, Whitney D. 2012. Ultrafine spatial acuity of blind expert human echolocators. Exp. Brain Res. 216:483–88 [Google Scholar]
  132. Thaler L, Arnott SR, Goodale MA. 2011. Neural correlates of natural human echolocation in early and late blind echolocation experts. PLOS ONE 6:e20162 [Google Scholar]
  133. Timberlake GT, Mainster MA, Webb RH, Hughes GW, Trempe CL. 1982. Retinal localization of scotomata by scanning laser ophthalmoscopy. Investig. Ophthalmol. Vis. Sci. 22:91–97 [Google Scholar]
  134. Toet A, Levi DM. 1992. The two-dimensional shape of spatial interaction zones in the parafovea. Vis. Res. 32:1349–57 [Google Scholar]
  135. Trauzettel-Klosinski S. 2011. Current methods of visual rehabilitation. Dtsch. Ärztebl. Int. 108:871–78 [Google Scholar]
  136. Trauzettel-Klosinski S, Dietz K. the IReST Study Group 2012. Standardized assessment of reading performance: the new international reading speed texts IReST. Investig. Ophthalmol. Vis. Sci. 53:5452–61 [Google Scholar]
  137. Turano KA, Broman AT, Bandeen-Roche K, Munoz B, Rubin GS. et al. 2004. Association of visual field loss and mobility performance in older adults: Salisbury Eye Evaluation Study. Optom. Vis. Sci. 81:298–307 [Google Scholar]
  138. Valvo A. 1971. Sight Restoration After Long-Term Blindness: The Problems and Behavior Patterns of Visual Rehabilitation New York: Am. Found. Blind
  139. von Senden M. 1960 (1932). Space and Sight: The Perception of Space and Shape in the Congenitally Blind Before and After Operation transl. P Heath London: Methuen. (from German)
  140. Walsh DV, Liu L. 2014. Adaptation to a simulated central scotoma during visual search training. Vis. Res. 96:75–86 [Google Scholar]
  141. Wandell BA, Smirnakis SM. 2009. Plasticity and stability of visual field maps in adult primary visual cortex. Nat. Rev. Neurosci. 10:873–84 [Google Scholar]
  142. Wandell BA, Winawer J. 2015. Computational neuroimaging and population receptive fields. Trends Cogn. Sci. 19:349–57 [Google Scholar]
  143. Wang D, Qin W, Liu Y, Zhang Y, Jiang T. et al. 2013. Altered white matter integrity in the congenital and late blind people. Neural Plast. 2013:128236 [Google Scholar]
  144. Wensveen JM, Bedell HE, Loshin DS. 1995. Reading rates with artificial central scotomata with and without spatial remapping of print. Optom. Vis. Sci. 72:100–14 [Google Scholar]
  145. White JM, Bedell HE. 1990. The oculomotor reference in humans with bilateral macular disease. Investig. Ophthalmol. Vis. Sci. 31:1149–61 [Google Scholar]
  146. Wiecek E, Jackson ML, Dakin SC, Bex P. 2012. Visual search with image modification in age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 53:6600–9 [Google Scholar]
  147. Wiesel TN, Hubel DH. 1965a. Binocular interaction in striate cortex of kittens reared with artificial squint. J. Neurophysiol. 28:1029–40 [Google Scholar]
  148. Wiesel TN, Hubel DH. 1965b. Extent of recovery from the effects of visual deprivation in kittens. J. Neurophysiol. 28:1060–72 [Google Scholar]
  149. WHO (World Health Organ.) 2014. Visual impairment and blindness. Fact Sheet No. 282. Geneva: WHO http://www.who.int/mediacentre/factsheets/fs282/en/ [Google Scholar]
  150. Yu D, Cheung SH, Legge GE, Chung STL. 2010. Reading speed in the peripheral visual field of older adults: Does it benefit from perceptual learning?. Vis. Res. 50:860–69 [Google Scholar]
  151. Zhang P, Bao M, Kwon M, He S, Engel SA. 2009. Effects of orientation-specific visual deprivation induced with altered reality. Curr. Biol. 19:1956–60 [Google Scholar]
/content/journals/10.1146/annurev-vision-111815-114344
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error