1932

Abstract

Stellar clusters are born embedded within giant molecular clouds (GMCs) and during their formation and early evolution are often only visible at infrared wavelengths, being heavily obscured by dust. Over the past 15 years advances in infrared detection capabilities have enabled the first systematic studies of embedded clusters in galactic molecular clouds. In this article we review the current state of empirical knowledge concerning these extremely young protocluster systems. From a survey of the literature we compile the first extensive catalog of galactic embedded clusters. We use the catalog to construct the mass function and estimate the birthrate for embedded clusters within ∼2 kpc of the sun. We find that the embedded cluster birthrate exceeds that of visible open clusters by an order of magnitude or more indicating a high infant mortality rate for protocluster systems. Less than 4–7% of embedded clusters survive emergence from molecular clouds to become bound clusters of Pleiades age. The vast majority (90%) of stars that form in embedded clusters form in rich clusters of 100 or more members with masses in excess of 50 . Moreover, observations of nearby cloud complexes indicate that embedded clusters account for a significant (70–90%) fraction of all stars formed in GMCs. We review the role of embedded clusters in investigating the nature of the initial mass function (IMF) that, in one nearby example, has been measured over the entire range of stellar and substellar mass, from OB stars to substellar objects near the deuterium burning limit. We also review the role embedded clusters play in the investigation of circumstellar disk evolution and the important constraints they provide for understanding the origin of planetary systems. Finally, we discuss current ideas concerning the origin and dynamical evolution of embedded clusters and the implications for the formation of bound open clusters.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.astro.41.011802.094844
2003-09-01
2024-04-16
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.astro.41.011802.094844
Loading
/content/journals/10.1146/annurev.astro.41.011802.094844
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error