1932

Abstract

All chemical transformations pass through an unstable structure called the transition state, which is poised between the chemical structures of the substrates and products. The transition states for chemical reactions are proposed to have lifetimes near 10−13 sec, the time for a single bond vibration. No physical or spectroscopic method is available to directly observe the structure of the transition state for enzymatic reactions. Yet transition state structure is central to understanding catalysis, because enzymes function by lowering activation energy. An accepted view of enzymatic catalysis is tight binding to the unstable transition state structure. Transition state mimics bind tightly to enzymes by capturing a fraction of the binding energy for the transition state species. The identification of numerous transition state inhibitors supports the transition state stabilization hypothesis for enzymatic catalysis. Advances in methods for measuring and interpreting kinetic isotope effects and advances in computational chemistry have provided an experimental route to understand transition state structure. Systematic analysis of intrinsic kinetic isotope effects provides geometric and electronic structure for enzyme-bound transition states. This information has been used to compare transition states for chemical and enzymatic reactions; determine whether enzymatic activators alter transition state structure; design transition state inhibitors; and provide the basis for predicting the affinity of enzymatic inhibitors. Enzymatic transition states provide an understanding of catalysis and permit the design of transition state inhibitors. This article reviews transition state theory for enzymatic reactions. Selected examples of enzymatic transition states are compared to the respective transition state inhibitors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.biochem.67.1.693
1998-07-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/biochem/67/1/annurev.biochem.67.1.693.html?itemId=/content/journals/10.1146/annurev.biochem.67.1.693&mimeType=html&fmt=ahah

Literature Cited

  1. Radzicka A, Wolfenden R. 1995. Science 267:90–93
  2. Glasstone S, Laidler KJ, Eyring HK. 1941. The Theory of Rate Processes. New York: McGraw-Hill [Google Scholar]
  3. Pauling L. 1948. Am. Sci. 36:50–58
  4. Wolfenden R. 1972. Acc. Chem. Res. 5:10–18
  5. Wolfenden R. 1976. Annu. Rev. Biophys. Bioeng. 5:271–306
  6. Morrison JF, Walsh CT. 1988. Adv. Enzymol. Relat. Areas Mol. Biol. 61:201–301
  7. Radzicka A, Wolfenden R. 1995. Methods Enzymol. 249:284–312
  8. Bigeleisen J, Mayer MG. 1947. J. Chem. Phys. 15:261–67
  9. Bigeleisen J, Wolfsberg M. 1958. Adv. Chem. Phys. 1:15–76
  10. Streitwiser A Jr, Jagow RH, Fahey RC, Suzuki S. 1958. J. Am. Chem. Soc. 80:2326–32
  11. Cleland WW, O'Leary MH, Northrop DB. eds 1977. Isotope Effects on Enzyme-Catalyzed Reactions. Baltimore, MD: Univ. Park Press [Google Scholar]
  12. Gandour RD, Schowen RL. eds 1978. Transition States of Biochemical Processes. New York: Plenum [Google Scholar]
  13. Northrop DB. 1981. Annu. Rev. Biochem. 50:103–31
  14. Cook PF, Cleland WW. 1981. Biochemistry 20:1790–96
  15. Cook PF, Oppenheimer NJ, Cleland WW. 1981. Biochemistry 20:1817–25
  16. Cleland WW. 1982. Methods Enzymol. 87:625–41
  17. Scharschmidt M, Fisher MA, Cleland WW. 1984. Biochemistry 23:5471–78
  18. Bolin JT, Filman DJ, Matthews DA, Hamlin RC, Kraut J. 1982. J. Biol. Chem. 257:13650–62
  19. Kimble E, Hadala J, Ludewig R, Peters P, Greenberg G. et al. 1995. Inflamm. Res. 44:S181–82
  20. Kline PC, Schramm VL. 1993. Biochemistry 32:13212–19
  21. Shan S-O, Herschlag D. 1996. Proc. Natl. Acad. Sci. USA 93:14474–79
  22. Cleland WW, Kreevoy MM. 1994. Science 264:1887–90
  23. Truhlar DG, Hase WL, Hynes JT. 1983. J. Phys. Chem. 87:2664–82
  24. Albery WJ. 1993. Adv. Phys. Org. Chem. 28:139–70
  25. Kurz LC, Weitkamp E, Frieden C. 1987. Biochemistry 26:3027–32
  26. Frick L, Yang C, Marquez VE, Wolfenden R. 1989. Biochemistry 28:9423–30
  27. Wilson DK, Rudolph FB, Quiocho FA. 1991. Science 252:1278–84
  28. Warshel A. 1991. Computer Modeling of Chemical Reactions in Enzymes and Solutions. New York: Wiley & Sons [Google Scholar]
  29. Cleland WW. 1977. Adv. Enzymol. Relat. Areas Mol. Biol. 45:273–387
  30. Parkin DW, Schramm VL. 1995. Biochemistry 34:13961–66
  31. Albery WJ, Knowles JR. 1977. Angew. Chem. 16:285–93
  32. Schowen RL. 1978. In Transition States of Biochemical Processes, ed. RD Gandour, RL Schowen 77–114 New York: Plenum
  33. Melander L, Saunders WJ Jr. 1980. Reaction Rates of Isotopic Molecules. New York: Wiley & Sons [Google Scholar]
  34. Cleland WW. 1995. Methods Enzymol. 249:341–73
  35. Jencks WP. 1987. In Catalysis in Chemistry and Enzymology 170–82 New York: Dover
  36. Hammond GS. 1955. J. Am. Chem. Soc. 77:334–38
  37. Agarwal RP, Spector T, Parks RE Jr. 1977. Biochem. Pharmacol. 26:359–67
  38. Bachovin WW, Wong WYL, Farr-Jones S, Shenvi AB, Kettner CA. 1988. Biochemistry 27:12839–46
  39. Rodgers J, Femec DA, Schowen RL. 1982. J. Am. Chem. Soc. 104:3263–68
  40. Schramm VL, Horenstein BA, Kline PC. 1994. J. Biol. Chem. 269:18259–62
  41. Huskey WP. 1991. See Ref. 116 37–72
  42. Suhnel J, Schowen RL. 1991. See Ref. 116 3–35
  43. Cleland WW. 1987. Bioorg. Chem. 15:282–302
  44. Sunko DE, Szele I, Hehre WJ. 1977. J. Am. Chem. Soc. 99:5000–4
  45. Bennet AJ, Sinnott ML. 1986. J. Am. Chem. Soc. 108:7287–94
  46. Northrop DB. 1975. Biochemistry 14:2644–51
  47. Sims LB, Burton GW, Lewis DE. 1977. BEBOVIB-IV, QCPE No. 337. Bloomington, IN. Quantum Chem. Program Exch., Dep. Chem., Univ. Indiana
  48. Sims LB, Lewis DE. 1984. In Isotopes in Organic Chemistry, ed. E Buncel, CC Lee 6161–259 New York: Elsevier
  49. Stewart JJP. 1989. Comput. Chem. 10:209–20
  50. Frisch MJ, Trucks GW, Schlegel HB, Gill PMW, Johnson BG. et al. 1995. Gaussian 94, Rev. C. 2, 1995. Pittsburgh, PA: Gaussian Inc
  51. Schramm VL. 1976. J. Biol. Chem. 251:3417–24
  52. Schramm VL. 1974. J. Biol. Chem. 249:1729–36
  53. Leung HB, Schramm VL. 1984. J. Biol. Chem. 259:6972–78
  54. Parkin DW, Leung HB, Schramm VL. 1984. J. Biol. Chem. 259:9411–17
  55. Parkin DW, Schramm VL. 1987. Biochemistry 26:913–20
  56. Mentch F, Parkin DW, Schramm VL. 1987. Biochemistry 26:921–30
  57. Srinivasan K, Konstantinidis A, Sinnott ML, Hall BG. 1993. Biochem. J. 291:15–17
  58. Pauling L. 1960. The Nature of the Chemical Bond. Ithaca, NY: Cornell Univ. Press. 3rd ed [Google Scholar]
  59. DeWolf WE Jr, Fullin FA, Schramm VL. 1979. J. Biol. Chem. 254:10868–75
  60. Leung HB, Schramm VL. 1980. J. Biol. Chem. 255:10867–74
  61. Giranda VL, Berman HM, Schramm VL. 1988. Biochemistry 27:5813–18
  62. Ehrlich JI, Schramm VL. 1994. Biochemistry 33:8890–96
  63. Leung HB, Schramm VL. 1981. J. Biol. Chem. 256:12823–29
  64. Parkin DW, Mentch F, Banks GA, Horenstein BA, Schramm VL. 1991. Biochemistry 30:921–30
  65. Parry RJ, Minta A. 1982. J. Am. Chem. Soc. 104:871–72
  66. Markham GD, Hafner EW, Tabor CW, Tabor H. 1980. J. Biol Chem. 255:9082–92
  67. Larsen TM, Laughlin LT, Holden HM, Rayment I, Reed GH. 1994. Biochemistry 33:6301–9
  68. Markham GD, Parkin DW, Mentch F, Schramm VL. 1987. J. Biol. Chem. 262:5609–15
  69. Rose IW. 1980. Methods Enzymol. 64:47–59
  70. Carey FA, Sundberg RF. 1990. Advanced Organic Chemistry. Part A: Structure and Mechanism,579–83 New York: Plenum. 3rd ed [Google Scholar]
  71. Merkler DJ, Wali AS, Taylor J, Schramm VL. 1989. J. Biol. Chem. 264:21422–30
  72. Lowenstein JM. 1972. Physiol. Rev. 52:382–414
  73. Sabina RL, Holmes EW. 1995. See Ref. 117 1769–80
  74. Xia Y, Khatchikian G, Zweier JL. 1996. J. Biol. Chem. 271:10096–102
  75. Hershfield MS, Mitchell BS. 1995. See Ref. 117 1725–68
  76. Frieden C, Kurz LC, Gilbert HR. 1980. Biochemistry 19:5303–9
  77. Kati WM, Wolfenden R. 1989. Science 243:1591–93
  78. Merkler DJ, Brenowitz M, Schramm VL. 1990. Biochemistry 29:8358–64
  79. Merkler DJ, Kline PC, Weiss P, Schramm VL. 1993. Biochemistry 32:12993–3001
  80. Weiss PM, Cook PF, Hermes JD, Cleland WW. 1987. Biochemistry 26:7378–84
  81. Merkler DJ, Schramm VL. 1993. Biochemistry 32:5792–99
  82. Kline PC, Schramm VL. 1994. Biochemistry 34:1153–62
  83. Hammond DJ, Gutteridge WE. 1984. Mol. Biochem. Parasitol. 13:243–61
  84. Parkin DW, Horenstein BA, Abdulah DR, Estupiñán B, Schramm VL. 1991. J. Biol. Chem. 266:20658–65
  85. Estupiñán B, Schramm VL. 1994. J. Biol. Chem. 269:23068–73
  86. Parkin DW. 1996. J. Biol. Chem. 271:21713–19
  87. Horenstein BA, Parkin DW, Estupiñán B, Schramm VL. 1991. Biochemistry 30:10788–95
  88. Pelle R, Schramm VL, Parkin DW. 1998. J. Biol. Chem. 273:2118–26
  89. Horenstein BA, Schramm VL. 1993. Biochemistry 32:7089–97
  90. Horenstein BA, Schramm VL. 1993. Biochemistry 32:9917–25
  91. Degano M, Almo SC, Sacchettini JC, Schramm VL. 1998. Biochemistry. In press
  92. Horenstein BA, Zabinski RF, Schramm VL. 1993. Tetrahedron Lett. 34:7213–16
  93. Boutellier M, Horenstein BA, Semenyaka A, Schramm VL, Ganem B. 1994. Biochemistry 33:3994–4000
  94. Parkin DW, Schramm VL. 1995. Biochemistry 34:13961–66
  95. Furneaux RH, Limberg G, Tyler PC, Schramm VL. 1997. Tetrahedron 53:2915–30
  96. Deng H, Chan AWY, Bagdassarian CK, Estupiñán B, Ganem B. et al. 1996. Biochemistry 35:6037–47
  97. Markert ML, Finkel BD, McLaughlin TM, Watson TJ, Collard HR. et al. 1997. Hum. Mutat. 9:118–21
  98. Kline PC, Schramm VL. 1992. Biochemistry 31:5964–73
  99. Kline PC, Schramm VL. 1995. Biochemistry 34:1153–62
  100. Goiten RK, Chelsky D, Parsons SM. 1978. J. Biol. Chem. 253:2963–71
  101. Tao W, Grubmeyer C, Blanchard JS. 1996. Biochemistry 35:14–21
  102. Scapin G, Grubmeyer C, Sacchettini JC. 1994. Biochemistry 33:1287–94
  103. Scapin G, Ozturk DH, Grubmeyer C, Sacchettini JC. 1995. Biochemistry 34:10744–54
  104. Bull HG, Ferraz JP, Cordes EH, Ribbi A, Apitz-Castro R. 1978. J. Biol. Chem. 253:5186–92
  105. Ferraz JP, Bull HG, Cordes EH. 1978. Arch. Biochem. Biophys. 191:431–36
  106. Rising KA, Schramm VL. 1994. J. Am. Chem. Soc. 116:6531–36
  107. Moss J, Vaughan M. eds 1990. ADP-Ribosylating Toxins and G-Proteins. Insights into Signal Transduction. Washington, DC: Am. Soc. Microbiol [Google Scholar]
  108. Rising KA, Schramm VL. 1997. J. Am. Chem. Soc. 119:27–37
  109. Berti PJ, Schramm VL. 1997. J. Am. Chem. Soc. 119:12069–78
  110. Scheuring J, Schramm VL. 1997. Biochemistry 36:4526–34
  111. Berti PJ, Blanke SR, Schramm VL. 1997. J. Am. Chem. Soc. 119:12079–88
  112. Scheuring J, Schramm VL. 1997. Biochemistry 36:8215–23
  113. Scheuring J, Berti PJ, Schramm VL. 1998. Biochemistry. 37:2748–58
  114. Bell CE, Eisenberg D. 1996. Biochemistry 35:1137–49
  115. Bagdassarian CK, Braunheim BB, Schramm VL, Schwartz DD. 1996. Int. J. Quantum Chem. 60:73–80
  116. Bagdassarian CK, Schramm VL, Schwartz SD. 1996. J. Am. Chem. Soc. 118:8825–36
  117. Cook PF. ed 1991. Enzyme Mechanism from Isotope Effects. Boca Raton, FL: CRC [Google Scholar]
  118. Scriver CR, Beaudet AL, Sly WS, Valle D. eds 1995. The Metabolic and Molecular Basis of Inherited Disease. New York: McGraw-Hill. 7th ed [Google Scholar]
/content/journals/10.1146/annurev.biochem.67.1.693
Loading
/content/journals/10.1146/annurev.biochem.67.1.693
Loading

Data & Media loading...

  • Article Type: Introduction
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error