1932

Abstract

Abstract

I was born in Vienna and came to the United States as a refugee in October 1938. This experience played an important role in my view of the world and my approach to science: It contributed to my realization that it was safe to stop working in fields that I felt I understood and to focus on different areas of research by asking questions that would teach me and others something new. I describe my experiences that led me from chemistry and physics back to my first love, biology, and outline some of the contributions I have made as part of my ongoing learning experience.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.biophys.33.110502.133350
2006-06-09
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/bb/35/1/annurev.biophys.33.110502.133350.html?itemId=/content/journals/10.1146/annurev.biophys.33.110502.133350&mimeType=html&fmt=ahah

Literature Cited

  1. Alder BJ, Wainwright TE. 1957. Phase transition for a hard sphere system. J. Chem. Phys. 27:1208–9 [Google Scholar]
  2. Anfinsen CB. 1973. Principles that govern folding of protein chains. Science 181:223–30 [Google Scholar]
  3. Artymiuk PJ, Blake CCF, Grace DEP, Oatley SJ, Phillips DC, Sternberg MJE. 1979. Crystallographic studies of the dynamic properties of lysozyme. Nature 280:563–68 [Google Scholar]
  4. Balint-Kurti GG, Karplus M. 1969. Multistructure valence-bond and atoms-in-molecules calculations for LiF, F2, and F2-. J. Chem. Phys. 50:478–88 [Google Scholar]
  5. Berendsen H. 1976. Report of CECAM Workshop: models for protein dynamics. Orsay, May 24–July 17
  6. Beuhler RJ, Bernstein RB, Kramer KH. 1966. Observation of reactive asymmetry of methyl iodide crossed beam study of reaction of rubidium with oriented methyl iodide molecules. J. Am. Chem. Soc. 88:5331–32 [Google Scholar]
  7. Bradshaw WH, Conrad HE, Corey EJ, Gunsalus IC, Lednicer D. 1959. Microbiological degradation of (+)-camphor. J. Am. Chem. Soc. 81:5507 [Google Scholar]
  8. Brooks BR, Karplus M. 1983. Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor. Proc. Natl. Acad. Sci. USA 80:6571–75 [Google Scholar]
  9. Brooks BR, Karplus M. 1985. Normal modes for specific motions of macromolecules: application to the hinge-bending mode of lysozyme. Proc. Natl. Acad. Sci. USA 82:4995–99 [Google Scholar]
  10. Brooks CL III, Karplus M, Pettitt BM. 1988. Proteins: A Theoretical Perspective of Dynamics, Structure, and Thermodynamics New York: Wiley
  11. Brünger AT, Brooks CL III, Karplus M. 1985. Active site dynamics of ribonuclease. Proc. Natl. Acad. Sci. USA 82:8458–62 [Google Scholar]
  12. Brünger AT, Clore GM, Gronenborn AM, Karplus M. 1986. Three-dimensional structure of proteins determined by molecular dynamics with interproton distance restraints: application to crambin. Proc. Natl. Acad. Sci. USA 83:3801–5 [Google Scholar]
  13. Brünger AT, Huber R, Karplus M. 1987. Trypsinogen-trypsin transition: a molecular dynamics study of induced conformational change in the activation domain. Biochemistry 26:5153–62 [Google Scholar]
  14. Brünger AT, Karplus M. 1991. Molecular dynamics simulations with experimental restraints. Acc. Chem. Res. 24:54–61 [Google Scholar]
  15. Brünger AT, Kuriyan J, Karplus M. 1987. Crystallographic R factor refinement by molecular dynamics. Science 235:458–60 [Google Scholar]
  16. Case DA, Karplus M. 1979. Dynamics of ligand binding to heme proteins. J. Mol. Biol. 132:343–68 [Google Scholar]
  17. Caves TC, Karplus M. 1969. Perturbed Hartree-Fock theory. I. Diagrammatic double-perturbation analysis. J. Chem. Phys. 50:3649–61 [Google Scholar]
  18. Colonna-Cesari F, Perahia D, Karplus M, Ecklund H, Brändén CI, Tapia O. 1986. Interdomain motion in liver alcohol dehydrogenase: structural and energetic analysis of the hinge bending mode. J. Biol. Chem. 261:15273–80 [Google Scholar]
  19. Conroy H. 1960. Nuclear magnetic resonance in organic structural elucidation. Adv. Org. Chem. Vol. II p. 265 [Google Scholar]
  20. Cusack S, Smith J, Finney J, Karplus M, Trewhella J. 1986. Low frequency dynamics of proteins studied by neutron time-of-flight spectroscopy. Physica 136B:256–59 [Google Scholar]
  21. Dalton L. 2003. Karplus Equation. Chem. Eng. News 81:37–39 [Google Scholar]
  22. Deisenhofer J, Steigemann W. 1975. Crystallographic refinement and the structure of the bovine pancreatic trypsin inhibitor at 1.5 Å resolution. Acta Crystallogr. B 31:238–50 [Google Scholar]
  23. Dobson CM. 2003. Protein folding and misfolding. Nature 426:884–90 [Google Scholar]
  24. Dobson CM, Karplus M. 1986. Internal motion of proteins: nuclear magnetic resonance measurements and dynamic simulations. Methods Enzymol. 131:362–89 [Google Scholar]
  25. Dobson CM, Sali A, Karplus M. 1998. Protein folding: a perspective from theory and experiment. Angew. Chem. Int. Ed. 37:868–93 [Google Scholar]
  26. Elber R, Karplus M. 1990. Enhanced sampling in molecular dynamics: use of the time-dependent Hartree approximation for a simulation of carbon monoxide diffusion through myoglobin. J. Am. Chem. Soc. 112:9161–75 [Google Scholar]
  27. Farkas A, Farkas L. 1935. Experiments on heavy hydrogen. V. The elementary reactions of light and heavy hydrogen. The thermal conversion of ortho-deuterium and the interaction of hydrogen and deuterium. Proc. R. Soc. London A 152:124–51 [Google Scholar]
  28. Feynman RP, Leighton RB, Sands M. 1963. The Feynman Lectures in Physics. Addison-Wesley
  29. Field MJ, Bash PA, Karplus M. 1990. A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J. Comp. Chem. 11:700–33 [Google Scholar]
  30. Frauenfelder H, Hartmann H, Karplus M, Kuntz ID Jr, Kuriyan J. et al. 1987. Thermal expansion of a protein. Biochemistry 26:254–61 [Google Scholar]
  31. Frauenfelder H, Petsko GA, Tsernoglou D. 1979. Temperature-dependent x-ray diffraction as a probe of protein structural dynamics. Nature 280:558–63 [Google Scholar]
  32. Freeman DL, Karplus M. 1976. Many-body perturbation theory applied to molecules: analysis and calculation correlation energy calculation for Li2, N2, and H3. J. Chem. Phys. 64:2461–59 [Google Scholar]
  33. Gao J, Kuczera K, Tidor B, Karplus M. 1989. Hidden thermodynamics of mutant proteins: a molecular dynamics analysis. Science 244:1069–72 [Google Scholar]
  34. Gao YQ, Yang W, Karplus M. 2005. A structure-based model for synthesis and hydrolysis of ATP by F1ATPase. Cell 123:195–205 [Google Scholar]
  35. Gelin BR. 1976. Application of empirical energy functions to conformational problems in biochemical systems PhD thesis. Harvard Univ.
  36. Gelin BR, Karplus M. 1975. Sidechain torsional potentials and motion of amino acids in proteins: bovine pancreatic trypsin inhibitor. Proc. Natl. Acad. Sci. USA 72:2002–6 [Google Scholar]
  37. Gelin BR, Karplus M. 1977. Mechanism of tertiary structural change in hemoglobin. Proc. Natl. Acad. Sci. USA 74:801–5 [Google Scholar]
  38. Gilardi R, Karle IL, Karle J, Sperling W. 1971. Crystal structure of visual chromophores, 11-cis and all-trans retinal. Nature 232:187 [Google Scholar]
  39. Godfrey M, Karplus M. 1968. Theoretical investigation of reactive collisions in molecular beams: K+Br2. J. Chem. Phys. 49:3602–9 [Google Scholar]
  40. Harvey SC, Prabhakaran M, Mao B, McCammon JA. 1984. Phenylalanine transfer RNA: molecular dynamics simulation. Science 223:1189–91 [Google Scholar]
  41. Hemley RJ, Dinur U, Vaida V, Karplus M. 1985. Theoretical study of the ground and excited singlet states of styrene. J. Am. Chem. Soc. 107:836–44 [Google Scholar]
  42. Hirschfelder JA, Eyring H, Topley B. 1936. Reactions involving hydrogen molecules and atoms. J. Chem. Phys. 4:170–77 [Google Scholar]
  43. Honig B, Hudson B, Sykes BD, Karplus M. 1971. Ring orientation in β-ionone and retinals. Proc. Natl. Acad. Sci. USA 68:1289–93 [Google Scholar]
  44. Honig B, Karplus M. 1971. Implications of torsional potential of retinal isomers for visual excitation. Nature 229:558–60 [Google Scholar]
  45. Honig B, Warshel A, Karplus M. 1975. Theoretical studies of the visual chromophore. Acc. Chem. Res. 8:92–100 [Google Scholar]
  46. Hvidt A, Nielsen SO. 1966. Hydrogen exchange in proteins. Adv. Protein Chem. 21:287–86 [Google Scholar]
  47. Ichiye T, Karplus M. 1983. Fluorescence depolarization of tryptophan residues in proteins: a molecular dynamics study. Biochemistry 22:2884–93 [Google Scholar]
  48. Imai K, Osawa E. 1989. An extension of multiparameteric Karplus equation. Tetrahedron Lett. 30:4251–54 [Google Scholar]
  49. Irikura KK, Tidor B, Brooks BR, Karplus M. 1985. Transition from B to Z DNA: contribution of internal fluctuations to the configurational entropy difference. Science 229:571–72 [Google Scholar]
  50. Islam SA, Karplus M, Weaver DL. 2002. Application of the diffusion-collision model to the folding of three-helix bundle proteins. J. Mol. Biol. 318:199–215 [Google Scholar]
  51. Islam SA, Karplus M, Weaver DL. 2004. The role of sequence and structure in protein folding kinetics: the diffusion-collision model applied to proteins L and G. Structure 12:1833–45 [Google Scholar]
  52. Karplus M. 1952. Bird activity in the continuous daylight of arctic summer. Ecology 33:129 [Google Scholar]
  53. Karplus M. 1956. Charge distribution in the hydrogen molecule. J. Chem. Phys. 25:605–6 [Google Scholar]
  54. Karplus M. 1959. Contact electron-spin interactions of nuclear magnetic moments. J. Chem. Phys. 30:11–15 [Google Scholar]
  55. Karplus M. 1959. Interpretation of the electron-spin resonance spectrum of the methyl radical. J. Chem. Phys. 30:15–18 [Google Scholar]
  56. Karplus M. 1960. Theory of proton coupling constants in unsaturated molecules. J. Am. Chem. Soc. 82:4431 [Google Scholar]
  57. Karplus M. 1960. Weak interactions in molecular quantum mechanics. Rev. Mod. Phys. 32:455–60 [Google Scholar]
  58. Karplus M. 1963. Vicinal proton coupling in nuclear magnetic resonance. J. Am. Chem. Soc. 85:2870 [Google Scholar]
  59. Karplus M. 1968. Structural implications of reaction kinetics. In Structural Chemistry and Molecular Biology: A Volume Dedicated to Linus Pauling by His Students, Colleagues, and Friends ed. A Rich, N Davidson pp. 837–47 San Francisco: Freeman [Google Scholar]
  60. Karplus M. 1982. Dynamics of proteins. Ber. Bunsen-Ges. Phys. Chem. 86:386–95 [Google Scholar]
  61. Karplus M. 1996. Theory of vicinal coupling constants. In Encyclopedia of Nuclear Magnetic Resonance. Vol. 1: Historical Perspectives ed. DM Grant, RK Harris pp. 420–22 New York: Wiley [Google Scholar]
  62. Karplus M. 1997. The Levinthal Paradox: yesterday and today. Fold. Des. 2:569–76 [Google Scholar]
  63. Karplus M. 2002. Molecular dynamics simulations of biomolecules. Acc. Chem. Res. 35:321–23 [Google Scholar]
  64. Karplus M, Fraenkel GK. 1961. Theoretical interpretation of carbon-13 hyperfine interactions in electron spin resonance spectra. J. Chem. Phys. 35:1312–23 [Google Scholar]
  65. Karplus M, Godfrey M. 1966. Quasiclassical trajectory analysis for the reaction of potassium atoms with oriented methyl iodide molecules. J. Am. Chem. Soc. 88:5332 [Google Scholar]
  66. Karplus M, Kuppermann A, Isaacson LM. 1958. Quantum-mechanical calculation of one-electron properties. I. General formulation. J. Chem. Phys. 29:1240–46 [Google Scholar]
  67. Karplus M, Kuriyan J. 2005. Molecular dynamics and protein function. Proc. Natl. Acad. Sci. USA 102:6679–85 [Google Scholar]
  68. Karplus M, Lawler RG, Fraenkel GK. 1965. Electron spin resonance studies of deuterium isotope effects. A novel resonance-integral perturbation. J. Am. Chem. Soc. 87:5260 [Google Scholar]
  69. Karplus M, McCammon JA. 2002. Molecular dynamics simulations of biomolecules. Nat. Struct. Biol. 9:646–52 [Google Scholar]
  70. Karplus M, Porter RN. 1970. Atoms and Molecules: An Introduction for Students of Physical Chemistry Menlo Park, CA: Benjamin Cummins
  71. Karplus M, Porter RN, Sharma RD. 1965. Exchange reactions with activation energy. I. Simple barrier potential for (H,H2). J. Chem. Phys. 43:3259–87 [Google Scholar]
  72. Karplus M, Weaver DL. 1976. Protein-folding dynamics. Nature 260:404–6 [Google Scholar]
  73. Karplus M, Weaver DL. 1994. Folding dynamics: the diffusion-collision model and experimental data. Protein Sci. 3:650–68 [Google Scholar]
  74. Karplus R, Kroll NM. 1950. Fourth-order corrections in quantum electrodynamics and the magnetic moment of the electron. Phys. Rev. 77:536–49 [Google Scholar]
  75. Karplus S, Karplus M. 1972. Nuclear magnetic resonance determination of the angle ψ in peptides. Proc. Natl. Acad. Sci. USA 69:3204–6 [Google Scholar]
  76. Deleted in proof
  77. Kirkwood JG, Oppenheim I. 1961. Chemical Thermodynamics New York: McGraw Hill
  78. Kline AD, Braun W, Wüthrich K. 1988. Determination of the complete 3-dimensional structure of the alpha-amylase inhibitor tendamistat in aqueous-solution by nuclear magnetic resonance and distance geometry. J. Mol. Biol. 204:675–724 [Google Scholar]
  79. Kuppermann A, Karplus M, Isaacson LM. 1959. The quantum-mechanical calculation of one-electron properties. II. One-and two-center moment integrals. Zeit. Nat. 14a:311–18 [Google Scholar]
  80. Kuppermann A, Schatz GC. 1975. Quantum-mechanical reactive scattering: accurate 3-dimensional calculation. J. Chem. Phys. 62:2502–4 [Google Scholar]
  81. Kuriyan J, Weis WI. 1991. Rigid protein motion as a model for crystallographic temperature factors. Proc. Natl. Acad. Sci. USA 88:2773–77 [Google Scholar]
  82. Lawler RG, Bolton JR, Karplus M, Fraenkel GK. 1967. Deuterium isotope effects in the electron spin resonance spectra of naphthalene negative ions. J. Chem. Phys. 47:2149–65 [Google Scholar]
  83. Lee A-W, Karplus M, Poyart C, Bursaux E. 1988. Analysis of proton release in oxygen binding by hemoglobin: implications for the cooperative mechanism. Biochemistry 27:1285–301 [Google Scholar]
  84. Levitt M, Lifson S. 1969. Refinement of protein conformations using a macromolecular energy minimization procedure. J. Mol. Biol. 46:269–79 [Google Scholar]
  85. Levy RM, Karplus M, Wolynes PG. 1981. NMR relaxation parameters in molecules with internal motion: exact Langevin trajectory results compared with simplified relaxation models. J. Am. Chem. Soc. 103:5998–6011 [Google Scholar]
  86. Lifson S, Warshel A. 1969. Consistent force field for calculations of conformations vibrational spectra and enthalpies of cycloalkanes and n-alkane molecules. J. Chem. Phys. 49:5116–29 [Google Scholar]
  87. Linderstrom-Lang K. 1955. Deuterium exchange between peptides and water. Chem. Soc. Spec. Publ. 2, p. 1. [Google Scholar]
  88. Liu B. 1973. Ab-initio potential-energy surface for linear H-3. J. Chem. Phys. 58:1925–37 [Google Scholar]
  89. Ma J, Sigler PB, Xu Z, Karplus M. 2000. A dynamic model for the allosteric mechanism of GroEL. J. Mol. Biol. 302:303–13 [Google Scholar]
  90. McCammon JA, Gelin BR, Karplus M. 1977. Dynamics of folded proteins. Nature 267:585–90 [Google Scholar]
  91. Mierke DF, Huber T, Kessler H. 1994. Coupling-constants again: experimental restraints in structure refinement. J. Comp. Aided Mol. Des. 8:29–40 [Google Scholar]
  92. Miranker A, Karplus M. 1991. Functionality maps of binding sites: a multiple copy simultaneous search method. Proteins Struct. Funct. Genet. 11:29–34 [Google Scholar]
  93. Moffitt W. 1954. Atomic valence states and chemical binding. Rep. Prog. Phys. 17:173–200 [Google Scholar]
  94. Monod J, Wyman J, Changeux JP. 1965. On nature of allosteric transitions: a plausible model. J. Mol. Biol. 12:88–118 [Google Scholar]
  95. Morokuma K, Eu BC, Karplus M. 1969. Collision dynamics and the statistical theories of chemical reactions. I. Average cross section from transition-state theory. J. Chem. Phys. 51:5193–203 [Google Scholar]
  96. Morokuma K, Karplus M. 1971. Collision dynamics and the statistical theories of chemical reactions. II. Comparison of reaction probabilities. J. Chem. Phys. 55:63–75 [Google Scholar]
  97. Nadler W, Brünger AT, Schulten K, Karplus M. 1987. Molecular and stochastic dynamics of proteins. Proc. Natl. Acad. Sci. USA 84:7933–37 [Google Scholar]
  98. Nilsson L, Clore GM, Gronenborn AM, Brünger AT, Karplus M. 1986. Structure refinement of oligonucleotides by molecular dynamics with nuclear Overhauser effect interproton distance restraints: application to 5′ d(C-G-T-A-C-G)2. J. Mol. Biol. 188:455–75 [Google Scholar]
  99. Olejniczak ET, Dobson CM, Levy RM, Karplus M. 1984. Motional averaging of proton nuclear Overhauser effects in proteins. Predictions from a molecular dynamics simulation of lysozyme. J. Am. Chem. Soc. 106:1923–30 [Google Scholar]
  100. Perutz M. 1971. Stereochemistry of cooperative effects in haemoglobin. Nature 232:408–13 [Google Scholar]
  101. Phillips DC. 1981. Closing remarks. In Biomolecular Stereodynamics ed. RH Sarma 2497–48 Guilderland, NY: Adenine [Google Scholar]
  102. Porter RN, Karplus M. 1964. Potential energy surface for H3. J. Chem. Phys. 40:1105–15 [Google Scholar]
  103. Post CB, Dobson CM. 2005. Meeting review frontiers in computational biophysics: a symposium in honor of Martin Karplus. Structure 13:949–52 [Google Scholar]
  104. Purins D, Karplus M. 1969. Spin delocalization and vibrational-electronic interaction in the toluene ion-radicals. J. Chem. Phys. 50:214–33 [Google Scholar]
  105. Rahman A. 1964. Correlations in motion of atoms in liquid argon. Phys. Rev. 136:A405–11 [Google Scholar]
  106. Sali A, Shakhnovich E, Karplus M. 1994. How does a protein fold. Nature 369:248–51 [Google Scholar]
  107. Schatz GC. 2000. Perspective on “Exchange reactions with activation energy. I. Simple barrier potential for (H, H2)”: Karplus M, Porter RN, Sharma RD (1965). J. Chem. Phys. 43:32593287 Theor. Chem. Acc. 103:270–72 [Google Scholar]
  108. Schekkerman H, Tulp I, Piersma T, Visser GH. 2003. Mechanisms promoting higher growth rate in arctic than in temperate shorebirds. Ecophysiology 134:332–42 [Google Scholar]
  109. Scheraga HA. 1968. Calculations of the conformations of small molecules. Adv. Phys. Org. Chem. 6:103–84 [Google Scholar]
  110. Schulten K, Karplus M. 1972. On the origin of a low-lying forbidden transition in polyenes and related molecules. Chem. Phys. Lett. 14:305–9 [Google Scholar]
  111. Shavitt I, Karplus M. 1962. Multicenter integrals in molecular quantum mechanics. J. Chem. Phys. 36:550–51 [Google Scholar]
  112. Shavitt I, Stevens RM, Minn FL, Karplus M. 1968. Potential-energy surface for H3. J. Chem. Phys. 48:2700–13 [Google Scholar]
  113. Shulman RG, Glarum SH, Karplus M. 1971. Electronic structure of cyanide complexes of hemes and heme protein. J. Mol. Biol. 57:93–115 [Google Scholar]
  114. Simonson T, Archontis G, Karplus M. 2002. Free energy simulations come of age: protein-ligand recognition. Acc. Chem. Res. 35:430–37 [Google Scholar]
  115. Smith J, Cusack S, Pezzeca U, Brooks BR, Karplus M. 1986. Inelastic neutron scattering analysis of low frequency motion in proteins: a normal mode study of the bovine pancreatic trypsin inhibitor. J. Chem. Phys. 85:3636–54 [Google Scholar]
  116. Stillinger FH, Rahman A. 1974. Improved simulation of liquid water by molecular-dynamics. J. Chem. Phys. 60:1545–57 [Google Scholar]
  117. Szabo A, Karplus M. 1972. A mathematical model for structure-function relations in hemoglobin. J. Mol. Biol. 72:163–97 [Google Scholar]
  118. Szent-Györgyi A. 1948. Nature of Life, A Study of Muscle New York: Academic102 pp.
  119. Taylor EH, Datz S. 1955. Study of chemical reaction mechanisms with molecular beams: the reaction of K with HBr. J. Chem. Phys. 23:1711–18 [Google Scholar]
  120. van der Vaart A, Ma J, Karplus M. 2004. The unfolding action of GroEL on a protein substrate. Biophys. J. 87:562–73 [Google Scholar]
  121. Wall FT, Porter RN. 1963. Sensitivity of exchange-reaction probabilities to potential-energy surface. J. Chem. Phys. 39:311 [Google Scholar]
  122. Warshel A, Karplus M. 1974. Calculation of ππ* excited state conformations and vibronic structure of retinal and related molecules. J. Am. Chem. Soc. 96:5677–89 [Google Scholar]
  123. Wong CF, McCammon JA. 1986. Dynamics and design of enzymes and inhibitors. J. Am. Chem. Soc. 108:3830–32 [Google Scholar]
  124. Yang W, Bitetti-Putzer R, Karplus M. 2004. Free energy simulations: use of reverse cumulative averaging to determine the equilibrated region and the time required for convergence. J. Chem. Phys. 120:2618–28 [Google Scholar]
  125. Young MA, Gonfloni S, Superti-Furga G, Roux B, Kuriyan J. 2001. Dynamic coupling between the SH2 and SH3 domains of c-Src and hck underlies their inactivation by C-terminal tyrosin phosphorylation. Cell 105:115–26 [Google Scholar]
/content/journals/10.1146/annurev.biophys.33.110502.133350
Loading
/content/journals/10.1146/annurev.biophys.33.110502.133350
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error