1932

Abstract

Mammals are exposed to a diverse array of parasites and infectious diseases, many of which affect host survival and reproduction. Species that live in dense populations, large social groups, or with promiscuous mating systems may be especially vulnerable to infectious diseases owing to the close proximity and higher contact rates among individuals. We review the effects of host density and social contacts on parasite spread and the importance of promiscuity and mating structure for the spread and evolution of sexually transmitted diseases. Host social organization and mating system should influence not only parasite diversity and prevalence but may also determine the fitness advantages of different transmission strategies to parasites. Because host behavior and immune defenses may have evolved to reduce the spread and pathogenicity of infectious diseases, we also consider selective pressures that parasites may exert on host social and mating behavior and the evolutionary responses of hosts at both the immunological and behavioral levels. In examining these issues, we relate modeling results to observations from wild populations, highlighting the similarities and differences among theoretical and empirical approaches. Finally, the epidemiological consequences of host sociality are very relevant to the practical issues of conserving mammalian biodiversity and understanding the interactions between extinction risk and infectious diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.ecolsys.34.030102.151725
2003-11-01
2024-04-24
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.ecolsys.34.030102.151725
Loading
/content/journals/10.1146/annurev.ecolsys.34.030102.151725
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error