1932

Abstract

▪ Abstract 

Two consequences of terrestrial ectothermy (low energy needs and behavioral control of body temperatures) have had major consequences for the evolution of reptile life-history traits. For example, reproducing females can manipulate incubation temperatures and thus phenotypic traits of their offspring by retaining developing eggs in utero. This ability has resulted in multiple evolutionary transitions from oviparity to viviparity in cool-climate reptile populations. The spatial and temporal heterogeneity of operative temperatures in terrestrial habitats also has favored careful nest-site selection and a matching of embryonic reaction norms to thermal regimes during incubation (e.g., via temperature-dependent sex determination). Many of the life-history features in which reptiles differ from endothermic vertebrates—such as their small offspring sizes, large litter sizes, and infrequent reproduction—are direct consequences of ectothermy, reflecting freedom from heat-conserving constraints on body size and energy storage. Ectothermy confers immense flexibility, enabling a dynamic matching of life-history traits to local circumstances. This flexibility has generated massive spatial and temporal variation in life-history traits via phenotypic plasticity as well as adaptation. The diversity of life histories in reptiles can best be interpreted within a conceptual framework that views reptiles as low-energy, variable-temperature systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.ecolsys.36.102003.152631
2005-12-15
2024-04-25
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.ecolsys.36.102003.152631
Loading
/content/journals/10.1146/annurev.ecolsys.36.102003.152631
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error