1932

Abstract

▪ Abstract 

This account recalls early observations of elementary particles from cosmic ray experiments, using the nuclear emulsion technique. Discoveries in this field in the 1940s and 50s led to the development of high energy particle accelerators and associated detectors, resulting eventually in the observation of the quark and lepton constituents of matter and of the fundamental interactions between them, as described in the Standard Model. The concept of unification of the fundamental interactions led to the prediction of proton decay, and although this has not been observed, the unwanted background due to atmospheric neutrino interactions led to the discovery of neutrino oscillations and neutrino mass, and the first indications of new physics beyond that of the Standard Model. In all this research, unexpected developments have often played an important role.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.nucl.55.102703.130016
2005-12-08
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/ns/55/1/annurev.nucl.55.102703.130016.html?itemId=/content/journals/10.1146/annurev.nucl.55.102703.130016&mimeType=html&fmt=ahah

Literature Cited

  1. Perkins DH. Nature 159:126 (1947).
  2. Occhialini GPS, Powell CF. Nature 159:186 (1947).
  3. Conversi M, Pancini E, Piccioni O. Phys. Rev 71:209 (1947).
  4. Piccioni O. In The Birth of Particle Physics ed. LM Brown and L Hoddeson p. 222 New York: CUP (1983).
  5. Fujimoto Y, Yamaguchi Y. Phys. Rev 75:1776(L) (1949).
  6. Harding JB, Lattimore S, Perkins DH. Proc. Roy. Soc. A196:325 (1949).
  7. Lattes CMG, Muirhead H, Occhialini GPS, Powell CF. Nature 159:694 (1947).
  8. Lattes CMG, Occhialini GPS, Powell CF. Nature 160:486 (1947).
  9. Marshak RE, Bethe HA. Phys. Rev. 72:506 (1947).
  10. Weisskopf VF. Phys. Rev. 72:510 (1947).
  11. Sakata S, Inoue T. Prog. Theor. Phys. 1:143 (1946).
  12. Frank FC. Nature 160:525 (1947).
  13. Brown R. et al. Nature 163:82 (1949).
  14. Dilworth CC, Occhialini GPS, Payne RM. Nature 162:102 (1948).
  15. Rochester GD, Butler CC. Nature 160:855 (1947).
  16. Amaldi E. The Bruno Touschek Legacy. CERN Report81–19 (1981). [Google Scholar]
  17. Kim Y, Burwell J, Huggett R, Thompson R. Phys. Rev 96:229 (1954).
  18. Barkas WH. et al. Phys. Rev 105:1037 (1957).
  19. Duthie J. et al. Il. Nuov. Cim. 24:122 (1962).
  20. Danby GT. et al. Phys. Rev. Lett 9:36 (1962).
  21. Block MM. et al. Phys. Lett. 12:281 (1964).
  22. Paty M. CERN Report65–11 (1965).
  23. 't Hooft G. Nucl. Phys. B33:173 (1971).
  24. Hasert FJ. et al. Phys. Lett. 46B:121 ( 1973). 138; Phys. Lett. B73:1 (1974)
  25. Bosetti PC. et al. Nucl. Phys. B142:1 ( 1978). B203:362 (1982)
  26. Dimopoulos A. Proc. 28th Intl. Conf. High Energy Phys., Glasgow (1994).
  27. Pati JC, Salam A. Phys. Rev. Lett. 31:661 ( 1973). Georgi H, Glashow S. Phys. Rev. Lett. 32:438 (1974)
  28. Yamaguchi Y. Prog. Theor. Phys. 22:373 ( 1959). Backenstoss GK, et al. Nuovo. Cim. 16:749 (1960)
  29. Perkins DH. Ann. Rev. Nucl. Part. Sci. 34:1 (1984).
  30. Miyake S. et al. Phys. Lett. 18:196 ( 1965). Reines F, et al. Phys. Rev. Lett. 15:429 (1965)
  31. Olbert S. Phys. Rev. 96:1400 ( 1954). Perkins DH. Nucl. Phys. B399:3 (1993)
  32. Conversi M. Phys. Rev. 79:749 (1950).
  33. Osborne JL. et al. Proc. Phys. Soc. 86:93 ( 1965). Volkova LV. Sov. J. Nucl. Phys. 31:784 (1980); Tam AC, Young ECM. Acta Phys. Acad. Sci. Hung. 29:S4,307 (1970)
  34. Barr G, Gaisser TK, Stanev T. Phys. Rev D39:3532 ( 1989). Honda M, et al. Phys. Rev. D52:4985 (1995)
  35. Pontecorvo B. JETP 26:984 ( 1968). Maki Z, Nakagawa M, Sakata S. Prog. Theor. Phys. 28:870 (1962)
/content/journals/10.1146/annurev.nucl.55.102703.130016
Loading
/content/journals/10.1146/annurev.nucl.55.102703.130016
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error