1932

Abstract

Breath analysis is a young field of research with great clinical potential. As a result of this interest, researchers have developed new analytical techniques that permit real-time analysis of exhaled breath with breath-to-breath resolution in addition to the conventional central laboratory methods using gas chromatography–mass spectrometry. Breath tests are based on endogenously produced volatiles, metabolites of ingested precursors, metabolites produced by bacteria in the gut or the airways, or volatiles appearing after environmental exposure. The composition of exhaled breath may contain valuable information for patients presenting with asthma, renal and liver diseases, lung cancer, chronic obstructive pulmonary disease, inflammatory lung disease, or metabolic disorders. In addition, oxidative stress status may be monitored via volatile products of lipid peroxidation. Measurement of enzyme activity provides phenotypic information important in personalized medicine, whereas breath measurements provide insight into perturbations of the human exposome and can be interpreted as preclinical signals of adverse outcome pathways.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-071213-020043
2014-06-12
2024-05-05
Loading full text...

Full text loading...

/deliver/fulltext/anchem/7/1/annurev-anchem-071213-020043.html?itemId=/content/journals/10.1146/annurev-anchem-071213-020043&mimeType=html&fmt=ahah

Literature Cited

  1. Phillips M.1.  1992. Breath tests in medicine. Sci. Am. 267:74–79 [Google Scholar]
  2. Baumbach JI, Vautz W, Ruzsanyi V, Freitag L. 2.  2005. Metabolites in human breath: ion mobility spectrometers as diagnostic tools for lung diseases. See Ref. 217 53–66
  3. Buszewski B, Kesy M, Ligor T, Amann A. 3.  2007. Human exhaled air analytics: biomarkers of diseases. Biomed. Chromatogr. 21:553–66 [Google Scholar]
  4. Amann A, Smith D. 4.  2013. Volatile Biomarkers: Non-Invasive Diagnosis in Physiology and Medicine Amsterdam: Elsevier
  5. Solga SF, Risby TH. 5.  2013. Issues and challenges in human breath research: perspectives from our experience. See Ref. 4 19–24
  6. Pleil JD, Stiegel MA, Risby TH. 6.  2013. Clinical breath analysis: discriminating between human endogenous compounds and exogenous (environmental) chemical confounders. J. Breath Res. 7:1–11 [Google Scholar]
  7. Kazui M, Andreoni KA, Norris EJ, Klein AS, Burdick JF. 7.  et al. 1992. Breath ethane: a specific indicator of free-radical-mediated lipid peroxidation following reperfusion of the ischemic liver. Free Radic. Biol. Med. 13:509–15 [Google Scholar]
  8. Risby TH, Maley W, Scott RP, Bulkley GB, Kazui M. 8.  et al. 1994. Evidence for free radical-mediated lipid peroxidation at reperfusion of human orthotopic liver transplants. Surgery 115:94–101 [Google Scholar]
  9. Kazui M, Andreoni KA, Williams GM, Perler BA, Bulkley GB. 9.  et al. 1994. Visceral lipid peroxidation occurs at reperfusion after supraceliac aortic cross-clamping. J. Vasc. Surg. 19:473–77 [Google Scholar]
  10. Andreoni KA, Kazui M, Cameron DE, Nyhan D, Sehnert SS. 10.  et al. 1999. Ethane: a marker of lipid peroxidation during cardiopulmonary bypass in humans. Free Radic. Biol. Med. 26:439–45 [Google Scholar]
  11. Pabst F, Miekisch W, Fuchs P, Kischkel S, Schubert JK. 11.  2007. Monitoring of oxidative and metabolic stress during cardiac surgery by means of breath biomarkers: an observational study. J. Cardiothorac. Surg. 2:37 [Google Scholar]
  12. Brown RH, Wagner EM, Cope KA, Risby TH. 12.  2009. Propofol and in vivo oxidative stress: effects of preservative. J. Breath Res. 3:016003 [Google Scholar]
  13. King J, Mochalski P, Kupferthaler A, Unterkofler K, Koc H. 13.  et al. 2010. Dynamic profiles of volatile organic compounds in exhaled breath as determined by a coupled PTR-MS/GC-MS study. Physiol. Meas. 31:1169–84 [Google Scholar]
  14. Amann A, Telser S, Hofer L, Schmid A, Hinterhuber H. 14.  2005. Exhaled breath gas as a biochemical probe during sleep. See Ref. 217 305–16
  15. King J, Kupferthaler A, Frauscher B, Hackner H, Unterkofler K. 15.  et al. 2012. Measurement of endogenous acetone and isoprene in exhaled breath during sleep. Physiol. Meas. 33:413–28 [Google Scholar]
  16. Teranishi R, Mon TR, Robinson AB, Cary P, Pauling L. 16.  1972. Gas chromatography of volatiles from breath and urine. Anal. Chem. 44:18–20 [Google Scholar]
  17. Mueller J.17.  1898. Über die Ausscheidungsstätten des Acetons und die Bestimmung desselben in der Athemluft und den Hautausdünstungen des Menschen. Arch. Exp. Pathol. Pharmacol. 40:315–62 [Google Scholar]
  18. Henderson MJ, Karger BA, Wren Shall GA. 18.  1952. Acetone in the breath: a study of acetone exhalation in diabetic and nondiabetic human subjects. Diabetes 1:188–93 [Google Scholar]
  19. McKee HC, Rhoades JW, Campbell J, Gross AL. 19.  1962. Acetonitrile in body fluids related to smoking. Public Health Rep. 77:553–54 [Google Scholar]
  20. Bajtarevic A, Ager C, Pienz M, Klieber M, Schwarz K. 20.  et al. 2009. Noninvasive detection of lung cancer by analysis of exhaled breath. BMC Cancer 9:348 [Google Scholar]
  21. Rooth G, Ostenson S. 21.  1966. Acetone in alveolar air, and the control of diabetes. Lancet 2:1102–5 [Google Scholar]
  22. Simenhoff ML, Burke JF, Saukkonen JJ, Ordinario AT, Doty R. 22.  1977. Biochemical profile or uremic breath. N. Engl. J. Med. 297:132–35 [Google Scholar]
  23. Conkle JP, Camp BJ, Welch BE. 23.  1975. Trace composition of human respiratory gas. Arch. Environ. Health 30:290–95 [Google Scholar]
  24. Jansson BO, Larsson BT. 24.  1969. Analysis of organic compounds in human breath by gas chromatography-mass spectrometry. J. Lab. Clin. Med. 74:961–66 [Google Scholar]
  25. Gelmont D, Stein RA, Mead JF. 25.  1981. Isoprene—the main hydrocarbon in human breath. Biochem. Biophys. Res. Commun. 99:1456–60 [Google Scholar]
  26. Kushch I, Arendacka B, Stolc S, Mochalski P, Filipiak W. 26.  et al. 2008. Breath isoprene: aspects of normal physiology related to age, gender and cholesterol profile as determined in a proton transfer reaction mass spectrometry study. Clin. Chem. Lab. Med. 46:1011–18 [Google Scholar]
  27. King J, Kupferthaler A, Unterkofler K, Koc H, Teschl S. 27.  et al. 2009. Isoprene and acetone concentration profiles during exercise on an ergometer. J. Breath Res. 3:027006 [Google Scholar]
  28. Manolis A.28.  1983. The diagnostic potential of breath analysis. Clin. Chem. 29:5–15 [Google Scholar]
  29. Phillips M, Herrera J, Krishnan S, Zain M, Greenberg J, Cataneo RN. 29.  1999. Variation in volatile organic compounds in the breath of normal humans. J. Chromatogr. B 729:75–88 [Google Scholar]
  30. Phillips M, Gleeson K, Hughes JM, Greenberg J, Cataneo RN. 30.  et al. 1999. Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study. Lancet 353:1930–33 [Google Scholar]
  31. Taucher J, Hansel A, Jordan A, Fall R, Futrell JH, Lindinger W. 31.  1997. Detection of isoprene in expired air from human subjects using proton-transfer-reaction mass spectrometry. Rapid Commun. Mass Spectrom. 11:1230–34 [Google Scholar]
  32. Spanel P, Smith D. 32.  2000. Selected ion flow tube mass spectrometry analyses of stable isotopes in water: isotopic composition of H3O+ and H3O+ (H2O)3 ions in exchange reactions with water vapor. J. Am. Soc. Mass Spectrom. 11:866–75 [Google Scholar]
  33. Risby TH, Tittel FK. 33.  2010. Current status of midinfrared quantum and interband cascade lasers for clinical breath analysis. Opt. Eng. 49:111123 [Google Scholar]
  34. Ruzsanyi V, Baumbach JI, Sielemann S, Litterst P, Westhoff M, Freitag L. 34.  2005. Detection of human metabolites using multi-capillary columns coupled to ion mobility spectrometers. J. Chromatogr. A 1084:145–51 [Google Scholar]
  35. King J, Unterkofler K, Teschl G, Teschl S, Mochalski P. 35.  et al. 2012. A modeling-based evaluation of isothermal rebreathing for breath gas analyses of highly soluble volatile organic compounds. J. Breath Res. 6:016005 [Google Scholar]
  36. Spanel P, Smith D. 36.  2007. Selected ion flow tube mass spectrometry for on-line trace gas analysis in biology and medicine. Eur. J. Mass Spectrom. 13:77–82 [Google Scholar]
  37. King J, Koc H, Unterkofler K, Teschl G, Teschl S. 37.  et al. 2013. Physiological modeling for analysis of exhaled breath. See Ref. 4 27–46
  38. Parameswaran KR, Rosen DI, Allen MG, Ganz AM, Risby TH. 38.  2009. Off-axis integrated cavity output spectroscopy with a mid-infrared interband cascade laser for real-time breath ethane measurements. Appl. Opt. 48:B73–79 [Google Scholar]
  39. Shorter JH, Nelson DD, McManus JB, Zahniser MS, Sama SR, Milton DK. 39.  2011. Clinical study of multiple breath biomarkers of asthma and COPD (NO, CO2, CO and N2O) by infrared laser spectroscopy. J. Breath Res. 5:037108 [Google Scholar]
  40. Mochalski P, Rudnicka J, Agapiou A, Statheropoulos M, Amann A, Buszewski B. 40.  2013. Near real-time VOCs analysis using an aspiration ion mobility spectrometer. J. Breath Res. 7:026002 [Google Scholar]
  41. Ruzsanyi V, Fischer L, Herbig J, Ager C, Amann A. 41.  2013. Multi-capillary-column proton-transfer-reaction time-of-flight mass spectrometry. J. Chromatogr. A 1316:112–18 [Google Scholar]
  42. Bernier UR, Booth MM, Yost RA. 42.  1999. Analysis of human skin emanations by gas chromatography/mass spectrometry. 1. Thermal desorption of attractants for the yellow fever mosquito (Aedes aegypti) from handled glass beads. Anal. Chem. 71:1–7 [Google Scholar]
  43. Bernier UR, Kline DL, Barnard DR, Schreck CE, Yost RA. 43.  2000. Analysis of human skin emanations by gas chromatography/mass spectrometry. 2. Identification of volatile compounds that are candidate attractants for the yellow fever mosquito (Aedes aegypti). Anal. Chem. 72:747–56 [Google Scholar]
  44. Gallagher M, Wysocki CJ, Leyden JJ, Spielman AI, Sun X, Preti G. 44.  2008. Analyses of volatile organic compounds from human skin. Br. J. Dermatol. 159:780–91 [Google Scholar]
  45. Ruzsanyi V, Mochalski P, Schmid A, Wiesenhofer H, Klieber M. 45.  et al. 2012. Ion mobility spectrometry for detection of skin volatiles. J. Chromatogr. B 911:84–92 [Google Scholar]
  46. Wagenstaller M, Buettner A. 46.  2013. Characterization of odorants in human urine using a combined chemo-analytical and human-sensory approach: a potential diagnostic strategy. Metabolomics 9:9–20 [Google Scholar]
  47. Mochalski P, King J, Klieber M, Unterkofler K, Hinterhuber H. 47.  et al. 2013. Blood and breath levels of selected volatile organic compounds in healthy volunteers. Analyst 138:2134–45 [Google Scholar]
  48. Larsson BT.48.  1965. Gas chromatography of organic volatiles in human breath and saliva. Acta Chem. Scand. 19:159–64 [Google Scholar]
  49. Lochner A, Weisner S, Zlatkis A, Middleditch BS. 49.  1986. Gas chromatographic-mass spectrometric analysis of volatile constituents in saliva. J. Chromatogr. 378:267–82 [Google Scholar]
  50. Soini HA, Klouckova I, Wiesler D, Oberzaucher E, Grammer K. 50.  et al. 2010. Analysis of volatile organic compounds in human saliva by a static sorptive extraction method and gas chromatography-mass spectrometry. J. Chem. Ecol. 36:1035–42 [Google Scholar]
  51. Al-Kateb H, de Lacy Costello B, Ratcliffe N. 51.  2013. An investigation of volatile organic compounds from the saliva of healthy individuals using headspace-trap/GC-MS. J. Breath Res. 7:036004 [Google Scholar]
  52. Buettner A.52.  2007. A selective and sensitive approach to characterize odour-active and volatile constituents in small-scale human milk samples. Flavour Fragr. J. 22:465–73 [Google Scholar]
  53. Kim SR, Halden RU, Buckley TJ. 53.  2007. Volatile organic compounds in human milk: methods and measurements. Environ. Sci. Technol. 41:1662–67 [Google Scholar]
  54. de Lacy Costello B, Ratcliffe NM. 54.  2013. Volatile organic compounds (VOCs) found in urine and stool. See Ref. 4 405–62
  55. de Lacy Costello B, Amann A, Al-Kateb H, Flynn C, Filipiak W, Ratcliffe NM. 55.  2013. A review of the volatiles from the healthy human body. J. Breath Res. 8:014001 [Google Scholar]
  56. Phillips M, Altorki N, Austin JH, Cameron RB, Cataneo RN. 56.  et al. 2008. Detection of lung cancer using weighted digital analysis of breath biomarkers. Clin. Chim. Acta 393:76–84 [Google Scholar]
  57. Filipiak W, Ruzsanyi V, Mochalski P, Filipiak A, Bajtarevic A. 57.  et al. 2012. Dependence of exhaled breath composition on exogenous factors, smoking habits and exposure to air pollutants. J. Breath Res. 6:036008 [Google Scholar]
  58. Mochalski P, Unterkofler K, Hinterhuber H, Amann A. 58.  2014. Monitoring of selected skin-borne volatile markers of entrapped humans by selective reagent ionization time of flight mass spectrometry in NO+ mode. Anal. Chem. 86:3915–23 [Google Scholar]
  59. Mochalski P, Krapf K, Ager C, Wiesenhofer H, Agapiou A. 59.  et al. 2012. Temporal profiling of human urine VOCs and its potential role under the ruins of collapsed buildings. Toxicol. Mech. Methods 22:502–11 [Google Scholar]
  60. Filipiak W, Sponring A, Filipiak A, Ager C, Schubert J. 60.  et al. 2010. TD-GC-MS analysis of volatile metabolites of human lung cancer and normal cells in vitro. Cancer Epidemiol. Biomarkers Prev. 19:182–95 [Google Scholar]
  61. Filipiak W, Sponring A, Baur MM, Ager C, Filipiak A. 61.  et al. 2012. Characterization of volatile metabolites taken up by or released from Streptococcus pneumoniae and Haemophilus influenzae by using GC-MS. Microbiology 158:3044–53 [Google Scholar]
  62. Filipiak W, Sponring A, Baur MM, Filipiak A, Ager C. 62.  et al. 2012. Molecular analysis of volatile metabolites released specifically by Staphylococcus aureus and Pseudomonas aeruginosa. BMC Microbiol. 12:113 [Google Scholar]
  63. Filipiak W, Sponring A, Mikoviny T, Ager C, Schubert J. 63.  et al. 2008. Release of volatile organic compounds (VOCs) from the lung cancer cell line CALU-1 in vitro. Cancer Cell Int. 8:17 [Google Scholar]
  64. Sponring A, Filipiak W, Mikoviny T, Ager C, Schubert J. 64.  et al. 2009. Release of volatile organic compounds from the lung cancer cell line NCI-H2087 in vitro. Anticancer Res. 29:419–26 [Google Scholar]
  65. Sponring A, Filipiak W, Ager C, Schubert J, Miekisch W. 65.  et al. 2010. Analysis of volatile organic compounds (VOCs) in the headspace of NCI-H1666 lung cancer cells. Cancer Biomarkers A 7:153–61 [Google Scholar]
  66. Filipiak W, Filipiak A, Sponring A, Schmid T, Zelger B. 66.  et al. 2014. Comparative analyses of volatile organic compounds (VOCs) from patients, tumors and transformed cell lines for the validation of lung cancer-derived breath markers. J. Breath Res. 8:027111
  67. Pleil JD, Stiegel M. 67.  2013. Evolution of environmental exposure science: using breath-borne biomarkers for “discovery” of the human exposome. Anal. Chem. 85:9984–90 [Google Scholar]
  68. Erhart S, Amann A, Haberlandt E, Edlinger G, Schmid A. 68.  et al. 2009. 3-Heptanone as a potential new marker for valproic acid therapy. J. Breath Res. 3:016004 [Google Scholar]
  69. Pleil JD, Smith LB, Zelnick SD. 69.  2000. Personal exposure to JP-8 jet fuel vapors and exhaust at air force bases. Environ. Health Perspect. 108:183–92 [Google Scholar]
  70. Pleil JD, Kim D, Prah JD, Rappaport SM. 70.  2007. Exposure reconstruction for reducing uncertainty in risk assessment: example using MTBE biomarkers and a simple pharmacokinetic model. Biomarkers 12:331–48 [Google Scholar]
  71. Ghimenti S, Di Francesco F, Onor M, Stiegel MA, Trivella MG. 71.  et al. 2013. Post-operative elimination of sevoflurane anesthetic and hexafluoroisopropanol metabolite in exhaled breath: pharmacokinetic models for assessing liver function. J. Breath Res. 7:036001 [Google Scholar]
  72. Kim D, Andersen ME, Pleil JD, Nylander-French LA, Prah JD. 72.  2007. Refined PBPK model of aggregate exposure to methyl tertiary-butyl ether. Toxicol. Lett. 169:222–35 [Google Scholar]
  73. King J, Koc H, Unterkofler K, Mochalski P, Kupferthaler A. 73.  et al. 2010. Physiological modeling of isoprene dynamics in exhaled breath. J. Theor. Biol. 267:626–37 [Google Scholar]
  74. Koc H, King J, Teschl G, Unterkofler K, Teschl S. 74.  et al. 2011. The role of mathematical modeling in VOC analysis using isoprene as a prototypic example. J. Breath Res. 5:037102 [Google Scholar]
  75. Pleil JD, Lindstrom AB. 75.  1997. Exhaled human breath measurement method for assessing exposure to halogenated volatile organic compounds. Clin. Chem. 43:723–30 [Google Scholar]
  76. Pleil JD, Lindstrom AB. 76.  1998. Sample timing and mathematical considerations for modeling breath elimination of volatile organic compounds. Risk Anal. 18:585–602 [Google Scholar]
  77. Pleil JD.77.  2008. Role of exhaled breath biomarkers in environmental health science. J. Toxicol. Environ. Health. B 11:613–29 [Google Scholar]
  78. Beauchamp J, Kirsch F, Buettner A. 78.  2010. Real-time breath gas analysis for pharmacokinetics: monitoring exhaled breath by on-line proton-transfer-reaction mass spectrometry after ingestion of eucalyptol-containing capsules. J. Breath Res. 4:026006 [Google Scholar]
  79. Lindstrom AB, Pleil JD, Berkoff DC. 79.  1997. Alveolar breath sampling and analysis to assess trihalomethane exposures during competitive swimming training. Environ. Health Perspect. 105:636–42 [Google Scholar]
  80. Zhu J, Jimenez-Diaz J, Bean HD, Daphtary NA, Aliyeva MI. 80.  et al. 2013. Robust detection of P. aeruginosa and S. aureus acute lung infections by secondary electrospray ionization-mass spectrometry (SESI-MS) breathprinting: from initial infection to clearance. J. Breath Res. 7:037106 [Google Scholar]
  81. Schubert R, Schwoebel H, Mau-Moeller A, Behrens M, Fuchs P. 81.  et al. 2012. Metabolic monitoring and assessment of anaerobic threshold by means of breath biomarkers. Metabolomics 8:1069–80 [Google Scholar]
  82. King J, Mochalski P, Unterkofler K, Teschl G, Klieber M. 82.  et al. 2012. Breath isoprene: muscle dystrophy patients support the concept of a pool of isoprene in the periphery of the human body. Biochem. Biophys. Res. Commun. 423:526–30 [Google Scholar]
  83. Farhi LE.83.  1967. Elimination of inert gas by the lung. Respir. Physiol. 3:1–11 [Google Scholar]
  84. Mochalski P, King J, Kupferthaler A, Unterkofler K, Hinterhuber H, Amann A. 84.  2011. Measurement of isoprene solubility in water, human blood and plasma by multiple headspace extraction gas chromatography coupled with solid phase microextraction. J. Breath Res. 5:046010 [Google Scholar]
  85. Mochalski P, King J, Kupferthaler A, Unterkofler K, Hinterhuber H, Amann A. 85.  2012. Human blood and plasma partition coefficients for C4-C8 n-alkanes, isoalkanes, and 1-alkenes. Int. J. Toxicol. 31:267–75 [Google Scholar]
  86. Filser JG, Csanady GA, Denk B, Hartmann M, Kauffmann A. 86.  et al. 1996. Toxicokinetics of isoprene in rodents and humans. Toxicology 113:278–87 [Google Scholar]
  87. Ezzeldin HH, Acosta EP, Mattison LK, Fourie J, Modak A, Diasio RB. 87.  2009. 13C-5-FU breath test current status and future directions: a comprehensive review. J. Breath Res. 3:047002 [Google Scholar]
  88. Opdam FL, Modak AS, Gelderblom H, Guchelaar HJ. 88.  2013. Breath tests to phenotype drug disposition in oncology. Clin. Pharmacokinet. 52:919–28 [Google Scholar]
  89. Modak A.89.  2009. Breath tests with 13C substrates. J. Breath Res. 3:040201 [Google Scholar]
  90. Desta Z, Modak A, Nguyen PD, Lemler SM, Kurogi Y. 90.  et al. 2009. Rapid identification of the hepatic cytochrome P450 2C19 activity using a novel and noninvasive [13C]pantoprazole breath test. J. Pharmacol. Exp. Ther. 329:297–305 [Google Scholar]
  91. Ingelman-Sundberg M.91.  2001. Genetic susceptibility to adverse effects of drugs and environmental toxicants. The role of the CYP family of enzymes. Mutat. Res. 482:11–19 [Google Scholar]
  92. Ozsoylu S.92.  1996. End-tidal carbon monoxide and neonatal jaundice. J. Pediatr. 129:485–86 [Google Scholar]
  93. Eisenmann A, Amann A, Said M, Datta B, Ledochowski M. 93.  2008. Implementation and interpretation of hydrogen breath tests. J. Breath Res. 2:046002 [Google Scholar]
  94. de Lacy Costello BP, Ledochowski M, Ratcliffe NM. 94.  2013. The importance of methane breath testing: a review. J. Breath Res. 7:024001 [Google Scholar]
  95. Tomikawa M, Ogura K, Iikura K, Yanagida N, Sato S. 95.  et al. 2013. Asthma diagnosis and treatment - 1005. Optimization for the withdrawal of inhaled corticosteroid treatment by monitoring fractional exhaled nitric oxide (feno) and lung functions. World Allergy Organ. J. 6:Suppl. 1P5 [Google Scholar]
  96. Pike K, Selby A, Price S, Warner J, Connett G. 96.  et al. 2012. Exhaled nitric oxide monitoring does not reduce exacerbation frequency or inhaled corticosteroid dose in paediatric asthma: a randomised controlled trial. Clin. Respir. J. 7:204–13 [Google Scholar]
  97. Phillips M, Boehmer JP, Cataneo RN, Cheema T, Eisen HJ. 97.  et al. 2004. Prediction of heart transplant rejection with a breath test for markers of oxidative stress. Am. J. Cardiol. 94:1593–94 [Google Scholar]
  98. Sehnert SS, Jiang L, Burdick JF, Risby TH. 98.  2002. Breath biomarkers for detection of human liver diseases: preliminary study. Biomarkers 7:174–87 [Google Scholar]
  99. Xue R, Dong L, Zhang S, Deng C, Liu T. 99.  et al. 2008. Investigation of volatile biomarkers in liver cancer blood using solid-phase microextraction and gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 22:1181–86 [Google Scholar]
  100. Wzorek B, Mochalski P, Sliwka I, Amann A. 100.  2010. Application of GC-MS with a SPME and thermal desorption technique for determination of dimethylamine and trimethylamine in gaseous samples for medical diagnostic purposes. J. Breath Res. 4:026002 [Google Scholar]
  101. Wehinger A, Schmid A, Mechtcheriakov S, Ledochowski M, Grabmer C. 101.  et al. 2007. Lung cancer detection by proton transfer reaction mass-spectrometric analysis of human breath gas. Int. J. Mass Spectrom. 265:49–59 [Google Scholar]
  102. Hakim M, Broza YY, Barash O, Peled N, Phillips M. 102.  et al. 2012. Volatile organic compounds of lung cancer and possible biochemical pathways. Chem. Rev. 112:5949–66 [Google Scholar]
  103. van de Kant KD, van der Sande LJ, Jobsis Q, van Schayck OC, Dompeling E. 103.  2012. Clinical use of exhaled volatile organic compounds in pulmonary diseases: a systematic review. Respir. Res. 13:117 [Google Scholar]
  104. Paredi P, Kharitonov SA, Barnes PJ. 104.  2000. Elevation of exhaled ethane concentration in asthma. Am. J. Respir. Crit. Care Med. 162:1450–54 [Google Scholar]
  105. Simpson JL, Wark PA. 105.  2008. The role of exhaled nitric oxide and exhaled breath condensates in evaluating airway inflammation in asthma. Expert Opin. Med. Diagn. 2:607–20 [Google Scholar]
  106. Modak A.106.  2013. An update on 13C-breath tests: the transition to acceptability into clinical practice. See Ref. 4 245–62
  107. Liu S, Pleil JD. 107.  1999. Method for liquid-liquid extraction of blood surrogates for assessing human exposure to jet fuel. J. Chromatogr. B 728:193–207 [Google Scholar]
  108. Tu RH, Mitchell CS, Kay GG, Risby TH. 108.  2004. Human exposure to the jet fuel, JP-8. Aviat. Space Environ. Med. 75:49–59 [Google Scholar]
  109. Cope KA, Merritt WT, Krenzischek DA, Schaefer J, Bukowski J. 109.  et al. 2002. Phase II collaborative pilot study: preliminary analysis of central neural effects from exposure to volatile anesthetics in the PACU. J. Perianesth. Nurs. 17:240–50 [Google Scholar]
  110. Pleil JD, Stiegel MA, Sobus JR. 110.  2011. Breath biomarkers in environmental health science: exploring patterns in the human exposome. J. Breath Res. 5:046005 [Google Scholar]
  111. Pleil JD, Stiegel MA, Sobus JR, Liu Q, Madden MC. 111.  2011. Observing the human exposome as reflected in breath biomarkers: heat map data interpretation for environmental and intelligence research. J. Breath Res. 5:037104 [Google Scholar]
  112. Gilchrist FJ, Bright-Thomas RJ, Jones AM, Smith D, Spanel P. 112.  et al. 2013. Hydrogen cyanide concentrations in the breath of adult cystic fibrosis patients with and without Pseudomonas aeruginosa infection. J. Breath Res. 7:026010 [Google Scholar]
  113. Filipiak W, Sponring A, Filipiak A, Baur MM, Ager C. 113.  et al. 2013. Volatile organic compounds (VOCs) released by pathogenic microorganisms in vitro: potential breath biomarkers for early-stage diagnosis of disease. See Ref. 4 463–512
  114. Lalazar G, Adar T, Ilan Y. 114.  2009. Point-of-care continuous 13C-methacetin breath test improves decision making in acute liver disease: results of a pilot clinical trial. World J. Gastroenterol. 15:966–72 [Google Scholar]
  115. Giannini EG, Fasoli A, Borro P, Botta F, Malfatti F. 115.  et al. 2005. 13C-galactose breath test and 13C-aminopyrine breath test for the study of liver function in chronic liver disease. Clin. Gastroenterol. Hepatol. 3:279–85 [Google Scholar]
  116. Adrover R, Cocozzella D, Ridruejo E, Garcia A, Rome J, Podesta JJ. 116.  2012. Breath-ammonia testing of healthy subjects and patients with cirrhosis. Dig. Dis. Sci. 57:189–95 [Google Scholar]
  117. Endre ZH, Pickering JW, Storer MK, Hu WP, Moorhead KT. 117.  et al. 2011. Breath ammonia and trimethylamine allow real-time monitoring of haemodialysis efficacy. Physiol. Meas. 32:115–30 [Google Scholar]
  118. Grabowska-Polanowska B, Faber J, Skowron M, Miarka P, Pietrzycka A. 118.  et al. 2013. Detection of potential CKD markers in breath using GCMS coupled with thermal desorption method. J. Chromatogr. A 1301:179–89 [Google Scholar]
  119. Zschocke J, Kohlmueller D, Quak E, Meissner T, Hoffmann GF, Mayatepek E. 119.  1999. Mild trimethylaminuria caused by common variants in FMO3 gene. Lancet 354:834–35 [Google Scholar]
  120. Chalmers RA, Bain MD, Michelakakis H, Zschocke J, Iles RA. 120.  2006. Diagnosis and management of trimethylaminuria (FMO3 deficiency) in children. J. Inherit. Metab. Dis. 29:162–72 [Google Scholar]
  121. Alving K, Weitzberg E, Lundberg JM. 121.  1993. Increased amount of nitric oxide in exhaled air of asthmatics. Eur. Respir. J. 6:1368–70 [Google Scholar]
  122. Högman M.122.  2012. Extended NO analysis in health and disease. J. Breath Res. 6:047103 [Google Scholar]
  123. Högman M, Stromberg S, Schedin U, Frostell C, Hedenstierna G, Gustafsson LE. 123.  1997. Nitric oxide from the human respiratory tract efficiently quantified by standardized single breath measurements. Acta Physiol. Scand. 159:345–46 [Google Scholar]
  124. Silkoff PE, McClean PA, Slutsky AS, Furlott HG, Hoffstein E. 124.  et al. 1997. Marked flow-dependence of exhaled nitric oxide using a new technique to exclude nasal nitric oxide. Am. J. Respir. Crit. Care Med. 155:260–67 [Google Scholar]
  125. Kharitonov S, Alving K, Barnes PJ. 125.  1997. Exhaled and nasal nitric oxide measurements: recommendations. The European Respiratory Society Task Force. Eur. Respir. J. 10:1683–93 [Google Scholar]
  126. Am. Thorac. Soc., Eur. Respir. Soc 2005. ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am. J. Respir. Crit. Care Med. 171:912–30 [Google Scholar]
  127. George SC, Högman M, Permutt S, Silkoff PE. 127.  2004. Modeling pulmonary nitric oxide exchange. J. Appl. Physiol. 96:831–39 [Google Scholar]
  128. Van Berkel JJ, Dallinga JW, Moller GM, Godschalk RW, Moonen EJ. 128.  et al. 2010. A profile of volatile organic compounds in breath discriminates COPD patients from controls. Respir. Med. 104:557–63 [Google Scholar]
  129. Phillips M, Cataneo RN, Cummin AR, Gagliardi AJ, Gleeson K. 129.  et al. 2003. Detection of lung cancer with volatile markers in the breath. Chest 123:2115–23 [Google Scholar]
  130. Westhoff M, Freitag PLL, Ruzsanyi V, Bader S, Urfer W, Baumbach JI. 130.  2005. Ion mobility spectrometry: a new method for the detection of lung cancer and airway infection in exhaled air? First results of a pilot study. Chest 128:155S [Google Scholar]
  131. Phillips M, Altorki N, Austin JH, Cameron RB, Cataneo RN. 131.  et al. 2007. Prediction of lung cancer using volatile biomarkers in breath. Cancer Biomark. A 3:95–109 [Google Scholar]
  132. Hakim M, Broza YY, Barash O, Peled N, Phillips M. 132.  et al. 2012. Volatile organic compounds of lung cancer and possible biochemical pathways. Chem. Rev. 112:5949–66 [Google Scholar]
  133. Peng G, Tisch U, Adams O, Hakim M, Shehada N. 133.  et al. 2009. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat. Nanotechnol. 4:669–73 [Google Scholar]
  134. Haick H, Broza Y, Mochalski P, Ruzsanyi V, Amann A. 134.  2014. Assessment, origin, and implementation of breath volatile cancer markers. Chem. Soc. Rev. 43:1423–49 [Google Scholar]
  135. Fuchs P, Loeseken C, Schubert JK, Miekisch W. 135.  2010. Breath gas aldehydes as biomarkers of lung cancer. Int. J. Cancer 126:2663–70 [Google Scholar]
  136. Fuchs D, Jamnig H, Heininger P, Klieber M, Schroecksnadel S. 136.  et al. 2012. Decline of exhaled isoprene in lung cancer patients correlates with immune activation. J. Breath Res. 6:027101 [Google Scholar]
  137. Pounder RE, Ng D. 137.  1995. The prevalence of Helicobacter pylori infection in different countries. Aliment Pharmacol. Ther. 9:Suppl. 233–39 [Google Scholar]
  138. Selgrad M, Malfertheiner P. 138.  2008. New strategies for Helicobacter pylori eradication. Curr. Opin. Pharmacol. 8:593–97 [Google Scholar]
  139. Xu ZQ, Broza YY, Ionsecu R, Tisch U, Ding L. 139.  et al. 2013. A nanomaterial-based breath test for distinguishing gastric cancer from benign gastric conditions. Br. J. Cancer 108:941–50 [Google Scholar]
  140. Wisthaler A, Weschler CJ. 140.  2010. Reactions of ozone with human skin lipids: sources of carbonyls, dicarbonyls, and hydroxycarbonyls in indoor air. Proc. Natl. Acad. Sci. USA 107:6568–75 [Google Scholar]
  141. Lieberman M, Hochstein P. 141.  1966. Ethylene formation in rat liver microsomes. Science 152:213–14 [Google Scholar]
  142. Lieberman M, Mapson LW. 142.  1964. Genesis and biogenesis of ethylene. Nature 204:343–45 [Google Scholar]
  143. Meigh DF.143.  1962. Problems of ethylene metabolism. Nature 196:345–47 [Google Scholar]
  144. Riely CA, Cohen G, Lieberma M. 144.  1974. Ethane evolution: new index of lipid peroxidation. Science 183:208–10 [Google Scholar]
  145. Dumelin EE, Tappel AL. 145.  1977. Hydrocarbon gases produced during in vitro peroxidation of polyunsaturated fatty acids and decomposition of preformed hydroperoxides. Lipids 12:894–900 [Google Scholar]
  146. Lawrence GD, Cohen G. 146.  1982. Ethane exhalation as an index of in vivo lipid peroxidation: concentrating ethane from a breath collection chamber. Anal. Biochem. 122:283–90 [Google Scholar]
  147. Lawrence GD, Cohen G. 147.  1984. Concentrating ethane from breath to monitor lipid peroxidation in vivo. Methods Enzymol. 105:305–11 [Google Scholar]
  148. Dillard CJ, Dumelin EE, Tappel AL. 148.  1977. Effect of dietary vitamin E on expiration of pentane and ethane by the rat. Lipids 12:109–14 [Google Scholar]
  149. Sagai M, Ichinose T. 149.  1980. Age-related changes in lipid peroxidation as measured by ethane, ethylene, butane and pentane in respired gases of rats. Life Sci. 27:731–38 [Google Scholar]
  150. Risby TH, Jiang L, Stoll S, Ingram D, Spangler E. 150.  et al. 1999. Breath ethane as a marker of reactive oxygen species during manipulation of diet and oxygen tension in rats. J. Appl. Physiol. 86:617–22 [Google Scholar]
  151. Kohlmuller D, Kochen W. 151.  1993. Is n-pentane really an index of lipid peroxidation in humans and animals? A methodological reevaluation. Anal. Biochem. 210:268–76 [Google Scholar]
  152. Deneris ES, Stein RA, Mead JF. 152.  1985. Acid-catalyzed formation of isoprene from a mevalonate-derived product using a rat liver cytosolic fraction. J. Biol. Chem. 260:1382–85 [Google Scholar]
  153. Risby TH.153.  2002. Volatile organic compounds as markers in normal and diseased states. See Ref. 218 113–22
  154. Van Gossum A, Decuyper J. 154.  1989. Breath alkanes as an index of lipid peroxidation. Eur. Respir. J. 2:787–91 [Google Scholar]
  155. Kneepkens CM, Ferreira C, Lepage G, Roy CC. 155.  1992. The hydrocarbon breath test in the study of lipid peroxidation: principles and practice. Clin. Investig. Med. 15:163–86 [Google Scholar]
  156. Kneepkens CM, Lepage G, Roy CC. 156.  1994. The potential of the hydrocarbon breath test as a measure of lipid peroxidation. Free Radic. Biol. Med. 17:127–60 [Google Scholar]
  157. Risby TH, Sehnert SS. 157.  1999. Clinical application of breath biomarkers of oxidative stress status. Free Radic. Biol. Med. 27:1182–92 [Google Scholar]
  158. Paredi P, Kharitonov SA, Barnes PJ. 158.  2002. Analysis of expired air for oxidation products. Am. J. Respir. Crit. Care Med. 166:S31–37 [Google Scholar]
  159. Brown RH, Risby TH. 159.  2002. Monitoring distant organ reperfusion injury by volatile organic compounds. See Ref. 218 281–306
  160. Miekisch W, Schubert JK, Noeldge-Schomburg GF. 160.  2004. Diagnostic potential of breath analysis: focus on volatile organic compounds. Clin. Chim. Acta 347:25–39 [Google Scholar]
  161. Gorham KA, Sulbaek Andersen MP, Meinardi S, Delfino RJ. 161.  et al. 2009. Ethane and n-pentane in exhaled breath are biomarkers of exposure not effect. Biomarkers 14:17–25 [Google Scholar]
  162. Dryahina K, Spanel P, Pospisilova V, Sovova K, Hrdlicka L. 162.  et al. 2013. Quantification of pentane in exhaled breath, a potential biomarker of bowel disease, using selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 27:1983–92 [Google Scholar]
  163. Harren FJM, Berkelmans R, Kuiper K, Hekkert ST, Scheepers P. 163.  et al. 1999. On-line laser photoacoustic detection of ethene in exhaled air as biomarker of ultraviolet radiation damage of the human skin. Appl. Phys. Lett. 74:1761–63 [Google Scholar]
  164. Patterson CS, McMillan LC, Stevenson K, Radhakrishnan K, Shiels PG. 164.  et al. 2007. Dynamic study of oxidative stress in renal dialysis patients based on breath ethane measured by optical spectroscopy. J. Breath Res. 1:026005 [Google Scholar]
  165. Thelen S, Miekisch W, Halmer D, Schubert J, Hering P, Murtz M. 165.  2008. Intercomparison of infrared cavity leak-out spectroscopy and gas chromatography-flame ionization for trace analysis of ethane. Anal. Chem. 80:2768–73 [Google Scholar]
  166. Phillips M, Cataneo RN, Greenberg J, Gunawardena R, Naidu A, Rahbari-Oskoui F. 166.  2000. Effect of age on the breath methylated alkane contour, a display of apparent new markers of oxidative stress. J. Lab. Clin. Med. 136:243–49 [Google Scholar]
  167. Poli D, Goldoni M, Corradi M, Acampa O, Carbognani P. 167.  et al. 2010. Determination of aldehydes in exhaled breath of patients with lung cancer by means of on-fiber-derivatisation SPME-GC/MS. J. Chromatogr. B 878:2643–51 [Google Scholar]
  168. Corradi M, Rubinstein I, Andreoli R, Manini P, Caglieri A. 168.  et al. 2003. Aldehydes in exhaled breath condensate of patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 167:1380–86 [Google Scholar]
  169. Schubert JK, Miekisch W, Geiger K, Noldge-Schomburg GF. 169.  2004. Breath analysis in critically ill patients: potential and limitations. Expert Rev. Mol. Diagn. 4:619–29 [Google Scholar]
  170. Schubert JK, Miekisch W, Birken T, Geiger K, Noldge-Schomburg GF. 170.  2005. Impact of inspired substance concentrations on the results of breath analysis in mechanically ventilated patients. Biomarkers 10:138–52 [Google Scholar]
  171. Miekisch W, Kischkel S, Sawacki A, Liebau T, Mieth M, Schubert JK. 171.  2008. Impact of sampling procedures on the results of breath analysis. J. Breath Res. 2:026007 [Google Scholar]
  172. Schwoebel H, Schubert R, Sklorz M, Kischkel S, Zimmermann R. 172.  et al. 2011. Phase-resolved real-time breath analysis during exercise by means of smart processing of PTR-MS data. Anal. Bioanal. Chem. 401:2079–91 [Google Scholar]
  173. Schubert JK, Spittler KH, Braun G, Geiger K, Guttmann J. 173.  2001. CO2-controlled sampling of alveolar gas in mechanically ventilated patients. J. Appl. Physiol. 90:486–92 [Google Scholar]
  174. Miekisch W, Hengstenberg A, Kischkel S, Beckmann U, Mieth M, Schubert JK. 174.  2010. Construction and evaluation of a versatile CO2 controlled breath collection device. IEEE Sens. J. 10:211–15 [Google Scholar]
  175. Schubert JK, Esteban-Loos I, Geiger K, Guttmann J. 175.  1999. In vivo evaluation of a new method for chemical analysis of volatile components in the respiratory gas of mechanically ventilated patients. Technol. Health Care 7:29–37 [Google Scholar]
  176. Miekisch W, Schubert JK, Vagts DA, Geiger K. 176.  2001. Analysis of volatile disease markers in blood. Clin. Chem. 47:1053–60 [Google Scholar]
  177. Miekisch W, Fuchs P, Kamysek S, Neumann C, Schubert JK. 177.  2008. Assessment of propofol concentrations in human breath and blood by means of HS-SPME-GC-MS. Clin. Chim. Acta 395:32–37 [Google Scholar]
  178. Mieth M, Kischkel S, Schubert JK, Hein D, Miekisch W. 178.  2009. Multibed needle trap devices for on site sampling and preconcentration of volatile breath biomarkers. Anal. Chem. 81:5851–57 [Google Scholar]
  179. Mieth M, Schubert JK, Groger T, Sabel B, Kischkel S. 179.  et al. 2010. Automated needle trap heart-cut GC/MS and needle trap comprehensive two-dimensional GC/TOF-MS for breath gas analysis in the clinical environment. Anal. Chem. 82:2541–51 [Google Scholar]
  180. Trefz P, Kischkel S, Hein D, James ES, Schubert JK, Miekisch W. 180.  2012. Needle trap micro-extraction for VOC analysis: effects of packing materials and desorption parameters. J. Chromatogr. A 1219:29–38 [Google Scholar]
  181. Trefz P, Rosner L, Hein D, Schubert JK, Miekisch W. 181.  2013. Evaluation of needle trap micro-extraction and automatic alveolar sampling for point-of-care breath analysis. Anal. Bioanal. Chem. 405:3105–15 [Google Scholar]
  182. Kamysek S, Fuchs P, Schwoebel H, Roesner JP, Kischkel S. 182.  et al. 2011. Drug detection in breath: effects of pulmonary blood flow and cardiac output on propofol exhalation. Anal. Bioanal. Chem. 401:2093–102 [Google Scholar]
  183. Boshier PR, Cushnir JR, Mistry V, Knaggs A, Spanel P. 183.  et al. 2011. On-line, real time monitoring of exhaled trace gases by SIFT-MS in the perioperative setting: a feasibility study. Analyst 136:3233–37 [Google Scholar]
  184. Trefz P, Schmidt M, Oertel P, Obermeier J, Brock B. 184.  et al. 2013. Continuous real time breath gas monitoring in the clinical environment by proton-transfer-reaction-time-of-flight-mass spectrometry. Anal. Chem. 85:10321–29 [Google Scholar]
  185. Aghdassi E, Wendland BE, Steinhart AH, Wolman SL, Jeejeebhoy K, Allard JP. 185.  2003. Antioxidant vitamin supplementation in Crohn's disease decreases oxidative stress. a randomized controlled trial. Am. J. Gastroenterol. 98:348–53 [Google Scholar]
  186. Scholpp J, Schubert JK, Miekisch W, Geiger K. 186.  2002. Breath markers and soluble lipid peroxidation markers in critically ill patients. Clin. Chem. Lab. Med. 40:587–94 [Google Scholar]
  187. Mendis S, Sobotka PA, Leja FL, Euler DE. 187.  1995. Breath pentane and plasma lipid peroxides in ischemic heart disease. Free Radic. Biol. Med. 19:679–84 [Google Scholar]
  188. Weitz ZW, Birnbaum AJ, Sobotka PA, Zarling EJ, Skosey JL. 188.  1991. High breath pentane concentrations during acute myocardial infarction. Lancet 337:933–35 [Google Scholar]
  189. Sobotka PA, Gupta DK, Lansky DM, Costanzo MR, Zarling EJ. 189.  1994. Breath pentane is a marker of acute cardiac allograft rejection. J. Heart Lung Transplant. 13:224–29 [Google Scholar]
  190. Olopade CO, Zakkar M, Swedler WI, Rubinstein I. 190.  1997. Exhaled pentane levels in acute asthma. Chest 111:862–65 [Google Scholar]
  191. Paredi P, Kharitonov SA, Leak D, Ward S, Cramer D, Barnes PJ. 191.  2000. Exhaled ethane, a marker of lipid peroxidation, is elevated in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 162:369–73 [Google Scholar]
  192. Olopade CO, Christon JA, Zakkar M, Hua C, Swedler WI. 192.  et al. 1997. Exhaled pentane and nitric oxide levels in patients with obstructive sleep apnea. Chest 111:1500–4 [Google Scholar]
  193. Schubert JK, Muller WP, Benzing A, Geiger K. 193.  1998. Application of a new method for analysis of exhaled gas in critically ill patients. Intensive Care Med. 24:415–21 [Google Scholar]
  194. Foster WM, Jiang L, Stetkiewicz PT, Risby TH. 194.  1996. Breath isoprene: temporal changes in respiratory output after exposure to ozone. J. Appl. Physiol. 80:706–10 [Google Scholar]
  195. Kischkel S, Miekisch W, Fuchs P, Schubert JK. 195.  2012. Breath analysis during one-lung ventilation in cancer patients. Eur. Respir. J. 40:706–13 [Google Scholar]
  196. Holt DW, Johnston A, Ramsey JD. 196.  1994. Breath pentane and heart rejection. J. Heart Lung Transplant. 13:1147–48 [Google Scholar]
  197. Studer SM, Orens JB, Rosas I, Krishnan JA, Cope KA. 197.  et al. 2001. Patterns and significance of exhaled-breath biomarkers in lung transplant recipients with acute allograft rejection. J. Heart Lung Transplant. 20:1158–66 [Google Scholar]
  198. Harrison GR, Critchley AD, Mayhew CA, Thompson JM. 198.  2003. Real-time breath monitoring of propofol and its volatile metabolites during surgery using a novel mass spectrometric technique: a feasibility study. Br. J. Anaesth. 91:797–99 [Google Scholar]
  199. Grossherr M, Hengstenberg A, Meier T, Dibbelt L, Igl BW. 199.  et al. 2009. Propofol concentration in exhaled air and arterial plasma in mechanically ventilated patients undergoing cardiac surgery. Br. J. Anaesth. 102:608–13 [Google Scholar]
  200. Furton KG, Myers LJ. 200.  2001. The scientific foundation and efficacy of the use of canines as chemical detectors for explosives. Talanta 54:487–500 [Google Scholar]
  201. Lorenzo N, Wan T, Harper RJ, Hsu YL, Chow M. 201.  et al. 2003. Laboratory and field experiments used to identify Canis lupus var. familiaris active odor signature chemicals from drugs, explosives, and humans. Anal. Bioanal. Chem. 376:1212–24 [Google Scholar]
  202. Williams H, Pembroke A. 202.  1989. Sniffer dogs in the melanoma clinic?. Lancet 1:734 [Google Scholar]
  203. Church J, Williams H. 203.  2001. Another sniffer dog for the clinic?. Lancet 358:930 [Google Scholar]
  204. Pickel D, Manucy GP, Walker DB, Hall SB, Walker JC. 204.  2004. Evidence for canine olfactory detection of melanoma. Appl. Anim. Behav. Sci. 89:107–16 [Google Scholar]
  205. Willis CM, Church SM, Guest CM, Cook WA, McCarthy N. 205.  et al. 2004. Olfactory detection of human bladder cancer by dogs: proof of principle study. Br. Med. J 329:712 [Google Scholar]
  206. McCulloch M, Jezierski T, Broffman M, Hubbard A, Turner K, Janecki T. 206.  2006. Diagnostic accuracy of canine scent detection in early- and late-stage lung and breast cancers. Integr. Cancer Ther. 5:30–39 [Google Scholar]
  207. Horvath G, Jarverud GA, Jarverud S, Horvath I. 207.  2008. Human ovarian carcinomas detected by specific odor. Integr. Cancer Ther. 7:76–80 [Google Scholar]
  208. Gordon RT, Schatz CB, Myers LJ, Kosty M, Gonczy C. 208.  et al. 2008. The use of canines in the detection of human cancers. J. Altern. Complement. Med. 14:61–67 [Google Scholar]
  209. Cornu JN, Cancel-Tassin G, Ondet V, Girardet C, Cussenot O. 209.  2011. Olfactory detection of prostate cancer by dogs sniffing urine: a step forward in early diagnosis. Eur. Neurol. 59:197–201 [Google Scholar]
  210. Sonoda H, Kohnoe S, Yamazato T, Satoh Y, Morizono G. 210.  et al. 2011. Colorectal cancer screening with odour material by canine scent detection. Gut 60:814–19 [Google Scholar]
  211. Ehmann R, Boedeker E, Friedrich U, Sagert J, Dippon J. 211.  et al. 2012. Canine scent detection in the diagnosis of lung cancer: revisiting a puzzling phenomenon. Eur. Respir. J. 39:669–76 [Google Scholar]
  212. Buszewski B, Ligor T, Jezierski T, Wenda-Piesik A, Walczak M, Rudnicka J. 212.  2012. Identification of volatile lung cancer markers by gas chromatography-mass spectrometry: comparison with discrimination by canines. Anal. Bioanal. Chem. 404:141–46 [Google Scholar]
  213. Buszewski B, Rudnicka J, Ligor T, Walczak M, Jezierski T, Amann A. 213.  2012. Analytical and unconventional methods of cancer detection using odor. Trends Anal. Chem. 38:1–12 [Google Scholar]
  214. Vul E, Harris C, Winkielman P, Pashler H. 214.  2009. Puzzlingly high correlations in fMRI studies of emotion, personality, and social cognition. Perspect. Psychol. Sci. 4:274–90 [Google Scholar]
  215. Miekisch W, Herbig J, Schubert JK. 215.  2012. Data interpretation in breath biomarker research: pitfalls and directions. J. Breath Res. 6:036007 [Google Scholar]
  216. Amann A, Miekisch W, Pleil J, Risby T, Schubert W. 216.  2010. Methodological issues of sample collection and analysis of exhaled breath. Exhaled Biomarkers Eur. Respir. Soc. Monogr. 49, ed. I Horvath, JC de Jongste 96–114 Lausanne: Eur. Respir. Soc. [Google Scholar]
  217. Amann A, Smith D. 217.  2005. Breath Analysis for Clinical Diagnosis and Therapeutic Monitoring. Singapore: World Scientific Publishing
  218. Marczin N, Yacoub M H, Kharitonov S, Barnes P. 218.  2002. Disease Markers in Exhaled Breath: Basic Mechanisms and Clinical Applications New York: Marcel Dekker Inc
/content/journals/10.1146/annurev-anchem-071213-020043
Loading
/content/journals/10.1146/annurev-anchem-071213-020043
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error