1932

Abstract

Cellulose is the most abundant biopolymer on Earth, and certain organisms from bacteria to plants and animals synthesize cellulose as an extracellular polymer for various biological functions. Humans have used cellulose for millennia as a material and an energy source, and the advent of a lignocellulosic fuel industry will elevate it to the primary carbon source for the burgeoning renewable energy sector. Despite the biological and societal importance of cellulose, the molecular mechanism by which it is synthesized is now only beginning to emerge. On the basis of recent advances in structural and molecular biology on bacterial cellulose synthases, we review emerging concepts of how the enzymes polymerize glucose molecules, how the nascent polymer is transported across the plasma membrane, and how bacterial cellulose biosynthesis is regulated during biofilm formation. Additionally, we review evolutionary commonalities and differences between cellulose synthases that modulate the nature of the cellulose product formed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-060614-033930
2015-06-02
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/biochem/84/1/annurev-biochem-060614-033930.html?itemId=/content/journals/10.1146/annurev-biochem-060614-033930&mimeType=html&fmt=ahah

Literature Cited

  1. Payen A. 1.  1838. Mémoire sur la composition du tissu propre des plantes et du ligneux. C. R. Hebd. Séances Acad. Sci. 7:1062–56 [Google Scholar]
  2. Klemm D, Heublein B, Fink HP, Bohn A. 2.  2005. Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44:3358–93 [Google Scholar]
  3. Staudinger H. 3.  1920. Über Polymerisation. Ber. Dtsch. Chem. Ges. 53:1073–85 [Google Scholar]
  4. Wolfenden R, Lu X, Young G. 4.  1998. Spontaneous hydrolysis of glycosides. J. Am. Chem. Soc. 120:6814–15 [Google Scholar]
  5. Pauly M, Keegstra K. 5.  2008. Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J. 54:559–68 [Google Scholar]
  6. Somerville C. 6.  2006. Cellulose synthesis in higher plants. Annu. Rev. Cell Dev. Biol. 22:53–78 [Google Scholar]
  7. Delmer DP. 7.  1999. Cellulose biosynthesis: exciting times for a difficult field of study. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:245–76 [Google Scholar]
  8. Nevins DJ. 8.  1995. Sugars: their origin in photosynthesis and subsequent biological interconversions. Am. J. Clin. Nutr. 61:915–21 [Google Scholar]
  9. Hayashi T, Ihara Y, Nakai T, Takeda T, Tominaga R. 9.  1998. Advances in Chemical Conversions for Mitigating Carbon Dioxide Amsterdam: Elsevier
  10. Davenport A. 10.  2010. Membrane designs and composition for hemodialysis, hemofiltration and hemodialfiltration: past, present and future. Minerva Urol. Nefrol. 62:29–40 [Google Scholar]
  11. Persin Z, Maver U, Pivec T, Maver T, Vesel A. 11.  et al. 2014. Novel cellulose based materials for safe and efficient wound treatment. Carbohydr. Polym. 100:55–64 [Google Scholar]
  12. 12. World Health Organ. (WHO) 2012. Evaluation of Certain Food Additives: Seventy-Sixth Report of the Joint FAO/WHO Expert Committee on Food Additives Geneva: FAO/WHO183
  13. Römling U. 13.  2002. Molecular biology of cellulose production in bacteria. Res. Microbiol. 153:205–12 [Google Scholar]
  14. Grimson MJ, Haigler CH, Blanton RL. 14.  1996. Cellulose microfibrils, cell motility, and plasma membrane protein organization change in parallel during culmination in Dictyostelium discoideum. J. Cell Sci. 109:3079–87 [Google Scholar]
  15. Domozych DS, Ciancia M, Fangel JU, Mikkelsen MD, Ulvskov P, Willats WG. 15.  2012. The cell walls of green algae: a journey through evolution and diversity. Front. Plant Sci. 3:82 [Google Scholar]
  16. Pear JR, Kawagoe Y, Schreckengost WE, Delmer DP, Stalker DM. 16.  1996. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. PNAS 93:12637–42 [Google Scholar]
  17. Kimura S, Ohshima C, Hirose E, Nishikawa J, Itoh T. 17.  2001. Cellulose in the house of the appendicularian Oikopleura rufescens. Protoplasma 216:71–74 [Google Scholar]
  18. Nobles DR, Romanovicz DK, Brown RM. 18.  2001. Cellulose in cyanobacteria. Origin of vascular plant cellulose synthase?. Plant Physiol. 127:529–42 [Google Scholar]
  19. Keegstra K. 19.  2010. Plant cell walls. Plant Physiol. 154:483–86 [Google Scholar]
  20. Saxena IM, Brown RM Jr. 20.  2012. Biosynthesis of bacterial cellulose. Bacterial NanoCellulose: A Sophisticated Multifunctional Material M Gama, P Gatenholm, D Klemm 1–18 Boca Raton, FL: CRC [Google Scholar]
  21. Serra DO, Richter AM, Hengge R. 21.  2013. Cellulose as an architectural element in spatially structured Escherichia coli biofilms. J. Bacteriol. 195:5540–54 [Google Scholar]
  22. Gomes F, Teixeira P, Oliveira R. 22.  2014. Mini-review: Staphylococcus epidermidis as the most frequent cause of nosocomial infections: old and new fighting strategies. Biofouling 30:131–41 [Google Scholar]
  23. Wozniak DJ, Parsek MR. 23.  2014. Surface-associated microbes continue to surprise us in their sophisticated strategies for assembling biofilm communities. F1000Prime Rep. 6:26 [Google Scholar]
  24. Nishiyama Y, Sugiyama J, Chanzy H, Langan P. 24.  2003. Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 125:14300–6 [Google Scholar]
  25. Gardner KH, Blackwell J. 25.  1974. The hydrogen bonding in native cellulose. Biochim. Biophys. Acta 343:232–37 [Google Scholar]
  26. Tester R, Karkalas J, Qi X. 26.  2004. Starch composition, fine structure and architecture. J. Cereal Sci. 39:151–65 [Google Scholar]
  27. Bigge JC, Patel TP, Bruce JA, Goulding PN, Charles SM, Parekh RB. 27.  1995. Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Anal. Biochem. 230:229–38 [Google Scholar]
  28. Gray MC, Converse AO, Wyman CE. 28.  2003. Sugar monomer and oligomer solubility: data and predictions for application to biomass hydrolysis. Appl. Biochem. Biotechnol. 105–8:179–93 [Google Scholar]
  29. Notley SM, Pettersson B, Wagberg L. 29.  2004. Direct measurement of attractive van der Waals forces between regenerated cellulose surfaces in an aqueous environment. J. Am. Chem. Soc. 126:13930–31 [Google Scholar]
  30. Newman RH, Hill SJ, Harris PJ. 30.  2013. Wide-angle X-ray scattering and solid-state nuclear magnetic resonance data combined to test models for cellulose microfibrils in mung bean cell walls. Plant Physiol. 163:1558–67 [Google Scholar]
  31. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. 31.  2009. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37:D233–38 [Google Scholar]
  32. Omadjela O, Narahari A, Strumillo J, Mélida H, Mazur O. 32.  et al. 2013. BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis. PNAS 110:17856–61 [Google Scholar]
  33. Brown C, Leijon F, Bulone V. 33.  2012. Radiometric and spectrophotometric in vitro assays of glycosyltransferases involved in plant cell wall carbohydrate biosynthesis. Nat. Protoc. 7:1634–50 [Google Scholar]
  34. Lin FC, Brown RM Jr. 34.  1989. Purification of cellulose synthase from Acetobacter xylinum. Cellulose and Wood: Chemistry and Technology C Schuerch 473–92 New York: Wiley [Google Scholar]
  35. Kang MS, Elango N, Mattia E, Au-Young J, Robbins PW, Cabib E. 35.  1984. Isolation of chitin synthetase from Saccharomyces cerevisiae. J. Biol. Chem. 259:14966–72 [Google Scholar]
  36. Morgan JLW, Strumillo J, Zimmer J. 36.  2013. Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493:181–86 [Google Scholar]
  37. Brown RM Jr, Montezinos D. 37.  1976. Cellulose microfibrils: visualization of biosynthetic and orienting complexes in association with the plasma membrane. PNAS 73:143–47 [Google Scholar]
  38. Glaser L. 38.  1958. The synthesis of cellulose in cell-free extracts of Acetobacter xylinum. J. Biol. Chem. 232:627–36 [Google Scholar]
  39. Aloni Y, Delmer DP, Benziman M. 39.  1982. Achievement of high rates of in vitro synthesis of 1,4-β-d-glucan: activation by cooperative interaction of the Acetobacter xylinum enzyme system with GTP, polyethylene glycol, and a protein factor. PNAS 79:6448–52 [Google Scholar]
  40. Saxena IM, Lin FC, Brown RM. 40.  1990. Cloning and sequencing of the cellulose synthase catalytic subunit gene of Acetobacter xylinum. Plant Mol. Biol. 15:673–83 [Google Scholar]
  41. Matthysse AG, Deschet K, Williams M, Marry M, White AR, Smith WC. 41.  2004. A functional cellulose synthase from ascidian epidermis. PNAS 101:986–91 [Google Scholar]
  42. Slabaugh E, Davis JK, Haigler CH, Yingling YG, Zimmer J. 42.  2014. Cellulose synthases: new insights from crystallography and modeling. Trends Plant Sci. 19:99–106 [Google Scholar]
  43. Saxena IM, Brown RM Jr. 43.  1997. Identification of cellulose synthase(s) in higher plants: sequence analysis of processive β-glycosyltransferases with the common motif ‘D, D, D35Q(R,Q)XRW.’. Cellulose 4:33–49 [Google Scholar]
  44. Saxena IM, Brown RM, Dandekar T. 44.  2001. Structure–function characterization of cellulose synthase: relationship to other glycosyltransferases. Phytochemistry 57:1135–48 [Google Scholar]
  45. Weigel PH, Deangelis PL. 45.  2007. Hyaluronan synthases: a decade-plus of novel glycosyltransferases. J. Biol. Chem. 282:36777–81 [Google Scholar]
  46. Merzendorfer H. 46.  2006. Insect chitin synthases: a review. J. Comp. Physiol. B 176:1–15 [Google Scholar]
  47. Rehm BH. 47.  2009. Alginate production: precursor biosynthesis, polymerization and secretion. Microbiol. Monogr. 13:55–71 [Google Scholar]
  48. Lairson LL, Henrissat B, Davies GJ, Withers SG. 48.  2008. Glycosyltransferases: structures, functions, and mechanisms. Annu. Rev. Biochem. 77:521–55 [Google Scholar]
  49. Krupicka M, Tvaroska I. 49.  2009. Hybrid quantum mechanical/molecular mechanical investigation of the β-1,4-galactosyltransferase-I mechanism. J. Phys. Chem. B 113:11314–19 [Google Scholar]
  50. Koyama M, Helbert W, Imai T, Sugiyama J, Henrissat B. 50.  1997. Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. PNAS 94:9091–95 [Google Scholar]
  51. Lai-Kee-Him J, Chanzy H, Müller M, Putaux J-L, Imai T, Bulone V. 51.  2002. In vitro versus in vivo cellulose microfibrils from plant primary wall synthases: structural differences. J. Biol. Chem. 277:36931–39 [Google Scholar]
  52. Morgan JLW, McNamara JT, Zimmer J. 52.  2014. Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP. Nat. Struct. Mol. Biol. 21:489–96 [Google Scholar]
  53. Saxena IM, Brown RM, Fevre M, Geremia RA, Henrissat B. 53.  1995. Multidomain architecture of β-glycosyl transferases: implications for mechanism of action. J. Bacteriol. 177:1419–24 [Google Scholar]
  54. Sethaphong L, Haigler CH, Kubicki JD, Zimmer J, Bonetta D. 54.  et al. 2013. Tertiary model of a plant cellulose synthase. PNAS 110:7512–17 [Google Scholar]
  55. Tsutsui Y, Ramakrishnan B, Qasba PK. 55.  2013. Crystal structures of β-1,4-galactosyltransferase 7 enzyme reveal conformational changes and substrate binding. J. Biol. Chem. 288:31963–70 [Google Scholar]
  56. Tumbale P, Jamaluddin H, Thiyagarajan N, Brew K, Acharya KR. 56.  2008. Structural basis of UDP-galactose binding by α-1,3-galactosyltransferase (α3GT): role of negative charge on aspartic acid 316 in structure and activity. Biochemistry 47:8711–18 [Google Scholar]
  57. Scheible WR, Eshed R, Richmond T, Delmer D, Somerville C. 57.  2001. Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in Arabidopsis Ixr1 mutants. PNAS 98:10079–84 [Google Scholar]
  58. Ramakrishnan B, Ramasamy V, Qasba PK. 58.  2006. Structural snapshots of β-1,4-galactosyltransferase-I along the kinetic pathway. J. Mol. Biol. 357:1619–33 [Google Scholar]
  59. Denisov IG, Grinkova YV, Lazarides AA, Sligar SG. 59.  2004. Directed self-assembly of monodisperse phospholipid bilayer nanodiscs with controlled size. J. Am. Chem. Soc. 126:3477–87 [Google Scholar]
  60. Hubbard C, McNamara JT, Azumaya C, Patel MS, Zimmer J. 60.  2012. The hyaluronan synthase catalyzes the synthesis and membrane translocation of hyaluronan. J. Mol. Biol. 418:21–31 [Google Scholar]
  61. Cifuentes C, Bulone V, Emons AMC. 61.  2010. Biosynthesis of callose and cellulose by detergent extracts of tobacco cell membranes and quantification of the polymers synthesized in vitro. J. Integr. Plant Biol. 52:221–33 [Google Scholar]
  62. Davies GJ, Henrissat B. 62.  2013. Current opinion on protein–carbohydrate interactions. Curr. Opin. Struct. Biol. 23:649–703 [Google Scholar]
  63. Kumari M, Sunoj RB, Balaji PV. 63.  2012. Exploration of CH⋅⋅⋅π mediated stacking interactions in saccharide:aromatic residue complexes through conformational sampling. Carbohydr. Res. 361:133–40 [Google Scholar]
  64. Simpson PJ, Xie H, Bolam DN, Gilbert HJ, Williamson MP. 64.  2000. The structural basis for the ligand specificity of family 2 carbohydrate-binding modules. J. Biol. Chem. 275:41137–42 [Google Scholar]
  65. Divne C, Stahlberg J, Reinikainen T, Ruohonen L, Pettersson G. 65.  et al. 1994. The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science 265:524–28 [Google Scholar]
  66. Rouvinen J, Bergfors T, Teeri T, Knowles JK, Jones TA. 66.  1990. Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science 249:380–86 [Google Scholar]
  67. Varrot A, Frandsen TP, von Ossowski I, Boyer V, Cottaz S. 67.  et al. 2003. Structural basis for ligand binding and processivity in cellobiohydrolase Cel6a from Humicola insolens. Structure 11:855–64 [Google Scholar]
  68. Meyer JE, Schulz GE. 68.  1997. Energy profile of maltooligosaccharide permeation through maltoporin as derived from the structure and from a statistical analysis of saccharide–protein interactions. Protein Sci. 6:1084–91 [Google Scholar]
  69. Xie H, Bolam DN, Nagy T, Szabó L, Cooper A. 69.  et al. 2001. Role of hydrogen bonding in the interaction between a xylan binding module and xylan. Biochemistry 40:5700–7 [Google Scholar]
  70. Henshaw JL, Bolam DN, Pires VMR, Czjzek M, Henrissat B. 70.  et al. 2004. The family 6 carbohydrate binding module CmCBM6-2 contains two ligand-binding sites with distinct specificities. J. Biol. Chem. 279:21552–59 [Google Scholar]
  71. Knott BC, Crowley MF, Himmel ME, Stahlberg J, Beckham GT. 71.  2014. Carbohydrate–protein interactions that drive processive polysaccharide translocation in enzymes revealed from a computational study of cellobiohydrolase processivity. J. Am. Chem. Soc. 136:8810–19 [Google Scholar]
  72. Divne C, Ståhlberg J, Teeri TT, Jones TA. 72.  1998. High-resolution crystal structures reveal how a cellulose chain is bound in the 50 Å long tunnel of cellobiohydrolase I from Trichoderma reesei. J. Mol. Biol. 275:309–25 [Google Scholar]
  73. Guerriero G, Fugelstad J, Bulone V. 73.  2010. What do we really know about cellulose biosynthesis in higher plants?. J. Integr. Plant Biol. 52:161–75 [Google Scholar]
  74. May JF, Levengood MR, Splain RA, Brown CD, Kiessling LL. 74.  2012. A processive carbohydrate polymerase that mediates bifunctional catalysis using a single active site. Biochemistry 51:1148–59 [Google Scholar]
  75. Callaghan T, Ross P, Weinberger-Ohana P, Benziman M. 75.  1988. β-Glucoside activators of mung bean UDP-glucose:β-glucan synthase. II. Comparison of effects of an endogenous β-linked glucolipid with synthetic N-alkyl β-d-monoglucopyranosides. Plant Physiol. 86:1104–7 [Google Scholar]
  76. Kamst E, Bakkers J, Quaedvlieg NE, Pilling J, Kijne JW. 76.  et al. 1999. Chitin oligosaccharide synthesis by rhizobia and zebrafish embryos starts by glycosyl transfer to O4 of the reducing-terminal residue. Biochemistry 38:4045–52 [Google Scholar]
  77. Lugemwa FN, Sarkar AK, Esko JD. 77.  1996. Unusual β-d-xylosides that prime glycosaminoglycans in animal cells. J. Biol. Chem. 271:19159–65 [Google Scholar]
  78. DeAngelis PL. 78.  1999. Molecular directionality of polysaccharide polymerization by the Pasteurella multocida hyaluronan synthase. J. Biol. Chem. 274:26557–62 [Google Scholar]
  79. Matthysse AG, Thomas DL, White AR. 79.  1995. Mechanism of cellulose synthesis in Agrobacterium tumefaciens. J. Bacteriol. 177:1076–81 [Google Scholar]
  80. Peng L, Kawagoe Y, Hogan P, Delmer D. 80.  2002. Sitosterol-β-glucoside as primer for cellulose synthesis in plants. Science 295:147–50 [Google Scholar]
  81. Faham S, Watanabe A, Besserer GM, Cascio D, Specht A. 81.  et al. 2008. The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science 321:810–14 [Google Scholar]
  82. Aloni Y, Cohen R, Benziman M, Delmer D. 82.  1983. Solubilization of the UDP-glucose:1,4-β-d-glucan:4-β-d-glucosyltransferase (cellulose synthase) from Acetobacter xylinum. A comparison of regulatory properties with those of the membrane-bound form of the enzyme. J. Biol. Chem. 258:4419–23 [Google Scholar]
  83. Carpita NC. 83.  2011. Update on mechanisms of plant cell wall biosynthesis: how plants make cellulose and other (1→4)-β-d-glycans. Plant Physiol. 155:171–84 [Google Scholar]
  84. Matthysse AG, White S, Lightfoot R. 84.  1995. Genes required for cellulose synthesis in Agrobacterium tumefaciens. J. Bacteriol. 177:1069–75 [Google Scholar]
  85. Saxena IM, Kudlicka K, Okuda K, Brown RM. 85.  1994. Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization. J. Bacteriol. 176:5735–52 [Google Scholar]
  86. Montanier C, van Bueren AL, Dumon C, Flint JE, Correia MA. 86.  et al. 2009. Evidence that family 35 carbohydrate binding modules display conserved specificity but divergent function. PNAS 106:3065–70 [Google Scholar]
  87. Christiansen C, Abou Hachem M, Janecek S, Vikso-Nielsen A, Blennow A, Svensson B. 87.  2009. The carbohydrate-binding module family 20—diversity, structure, and function. FEBS J. 276:5006–29 [Google Scholar]
  88. Shoseyov O, Shani Z, Levy I. 88.  2006. Carbohydrate binding modules: biochemical properties and novel applications. Microbiol. Mol. Biol. Rev. 70:283–95 [Google Scholar]
  89. Chen H, Brown RJ. 89.  1996. Immunochemical studies of the cellulose synthase complex in Acetobacter xylinum. Cellulose 3:63–75 [Google Scholar]
  90. Whitney JC, Howell PL. 90.  2013. Synthase-dependent exopolysaccharide secretion in gram-negative bacteria. Trends Microbiol. 21:63–72 [Google Scholar]
  91. Oglesby LL, Jain S, Ohman DE. 91.  2008. Membrane topology and roles of Pseudomonas aeruginosa Alg8 and Alg44 in alginate polymerization. Microbiology 154:1605–15 [Google Scholar]
  92. Steiner S, Lori C, Boehm A, Jenal U. 92.  2013. Allosteric activation of exopolysaccharide synthesis through cyclic di-GMP-stimulated protein–protein interaction. EMBO J. 32:354–68 [Google Scholar]
  93. Ross P, Weinhouse H, Aloni Y, Michaeli D, Weinberger-Ohana P. 93.  et al. 1987. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325:279–82 [Google Scholar]
  94. Lin FC, Brown RM Jr, Drake RR Jr, Haley BE. 94.  1990. Identification of the uridine 5′-diphosphoglucose (UDP-Glc) binding subunit of cellulose synthase in Acetobacter xylinum using the photoaffinity probe 5-azido-UDP-Glc. J. Biol. Chem. 265:4782–84 [Google Scholar]
  95. Römling UU, Galperin MYM, Gomelsky MM. 95.  2013. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol. Mol. Biol. Rev. 77:1–52 [Google Scholar]
  96. Mayer R, Ross P, Weinhouse H, Amikam D, Volman G. 96.  et al. 1991. Polypeptide composition of bacterial cyclic diguanylic acid–dependent cellulose synthase and the occurrence of immunologically crossreacting proteins in higher plants. PNAS 88:5472–76 [Google Scholar]
  97. Christen M, Christen B, Allan MG, Folcher M, Jeno P. 97.  et al. 2007. DgrA is a member of a new family of cyclic diguanosine monophosphate receptors and controls flagellar motor function in Caulobacter crescentus. PNAS 104:4112–17 [Google Scholar]
  98. Amikam D, Galperin MY. 98.  2006. PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22:3–6 [Google Scholar]
  99. Benach J, Swaminathan SS, Tamayo R, Handelman SK, Folta-Stogniew E. 99.  et al. 2007. The structural basis of cyclic diguanylate signal transduction by PilZ domains. EMBO J. 26:5153–66 [Google Scholar]
  100. Ko J, Ryu K-S, Kim H, Shin J-S, Lee J-O. 100.  et al. 2010. Structure of PP4397 reveals the molecular basis for different c-di-GMP binding modes by PilZ domain proteins. J. Mol. Biol. 398:97–110 [Google Scholar]
  101. Fujiwara T, Komoda K, Sakurai N, Tajima K, Tanaka I, Yao M. 101.  2013. The c-di-GMP recognition mechanism of the PilZ domain of bacterial cellulose synthase subunit A. Biochem. Biophys. Res. Commun. 431:802–7 [Google Scholar]
  102. Weber H, Pesavento C, Possling A, Tischendorf G, Hengge R. 102.  2006. Cyclic-di-GMP-mediated signalling within the sigma network of Escherichia coli. Mol. Microbiol. 62:1014–34 [Google Scholar]
  103. Römling U, Sierralta WD, Eriksson K, Normark S. 103.  1998. Multicellular and aggregative behaviour of Salmonella typhimurium strains is controlled by mutations in the agfD promoter. Mol. Microbiol. 28:249–64 [Google Scholar]
  104. Zogaj X, Bokranz W, Nimtz M, Römling U. 104.  2003. Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect. Immun. 71:4151–58 [Google Scholar]
  105. Brown NL, Stoyanov JV, Kidd SP, Hobman JL. 105.  2003. The MerR family of transcriptional regulators. FEMS Microbiol. Rev. 27:145–63 [Google Scholar]
  106. Hammar M, Arnqvist A, Bian Z, Olsen A, Normark S. 106.  1995. Expression of two csg operons is required for production of fibronectin- and Congo red–binding curli polymers in Escherichia coli K-12. Mol. Microbiol. 18:661–70 [Google Scholar]
  107. Zogaj X, Nimtz M, Rohde M, Bokranz W, Römling U. 107.  2001. The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol. Microbiol. 39:1452–63 [Google Scholar]
  108. Römling U, Rohde M, Olsén A, Normark S, Reinköster J. 108.  2000. AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. Mol. Microbiol. 36:10–23 [Google Scholar]
  109. Nikolskaya AN, Mulkidjanian AY, Beech IB, Galperin MY. 109.  2003. MASE1 and MASE2: two novel integral membrane sensory domains. J. Mol. Microbiol. Biotechnol. 5:11–16 [Google Scholar]
  110. Hufnagel DA, DePas WH, Chapman MR. 110.  2014. The disulfide bonding system suppresses CsgD-independent cellulose production in Escherichia coli. J. Bacteriol. 196:3690–99 [Google Scholar]
  111. Standal R, Iversen TG, Coucheron DH, Fjaervik E, Blatny JM, Valla S. 111.  1994. A new gene required for cellulose production and a gene encoding cellulolytic activity in Acetobacter xylinum are colocalized with the bcs operon. J. Bacteriol. 176:665–72 [Google Scholar]
  112. Koo HM, Song SH, Pyun YR, Kim YS. 112.  1998. Evidence that a β-1,4-endoglucanase secreted by Acetobacter xylinum plays an essential role for the formation of cellulose fiber. Biosci. Biotechnol. Biochem. 62:2257–59 [Google Scholar]
  113. Keiski C-L, Harwich M, Jain S, Neculai AM, Yip P. 113.  et al. 2010. AlgK is a TPR-containing protein and the periplasmic component of a novel exopolysaccharide secretin. Structure 18:265–73 [Google Scholar]
  114. Zeytuni N, Zarivach R. 114.  2012. Structural and functional discussion of the tetra-trico-peptide repeat, a protein interaction module. Structure 20:397–405 [Google Scholar]
  115. Clarke AJ, Hurtado-Guerrero R, Pathak S, Schüttelkopf AW, Borodkin V. 115.  et al. 2008. Structural insights into mechanism and specificity of O-GlcNAc transferase. EMBO J. 27:2780–88 [Google Scholar]
  116. Riley LM, Weadge JT, Baker P, Robinson H, Codee JD. 116.  et al. 2013. Structural and functional characterization of Pseudomonas aeruginosa AlgX: role of AlgX in alginate acetylation. J. Biol. Chem. 288:22299–314 [Google Scholar]
  117. Whitney JC, Hay ID, Li C, Eckford PDW, Robinson H. 117.  et al. 2011. Structural basis for alginate secretion across the bacterial outer membrane. PNAS 108:13083–88 [Google Scholar]
  118. Tan J, Rouse SL, Li D, Pye VE, Vogeley L. 118.  et al. 2014. A conformational landscape for alginate secretion across the outer membrane of Pseudomonas aeruginosa. Acta Crystallogr. D 70:2054–68 [Google Scholar]
  119. Mazur O, Zimmer J. 119.  2011. Apo- and cellopentaose-bound structures of the bacterial cellulose synthase subunit BcsZ. J. Biol. Chem. 286:17601–6 [Google Scholar]
  120. Yasutake Y, Kawano S, Tajima K, Yao M, Satoh Y. 120.  et al. 2006. Structural characterization of the Acetobacter xylinum endo-β-1,4-glucanase CMCax required for cellulose biosynthesis. Proteins 64:1069–77 [Google Scholar]
  121. Vain T, Crowell EF, Timpano H, Biot E, Desprez T. 121.  et al. 2014. The cellulase KORRIGAN is part of the cellulose synthase complex. Plant Physiol. 165:1521–32 [Google Scholar]
  122. Mølhøj M, Pagant S, Höfte H. 122.  2002. Towards understanding the role of membrane-bound endo-β-1,4-glucanases in cellulose biosynthesis. Plant Cell Physiol. 43:1399–406 [Google Scholar]
  123. Nakai T, Sugano Y, Shoda M, Sakakibara H, Oiwa K. 123.  et al. 2013. Formation of highly twisted ribbons in a carboxymethylcellulase gene–disrupted strain of a cellulose-producing bacterium. J. Bacteriol. 195:958–64 [Google Scholar]
  124. Solano C, García B, Valle J, Berasain C, Ghigo J-M. 124.  et al. 2002. Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol. Microbiol. 43:793–808 [Google Scholar]
  125. Fang X, Ahmad I, Blanka A, Schottkowski M, Cimdins A. 125.  et al. 2014. GIL, a new c-di-GMP-binding protein domain involved in regulation of cellulose synthesis in enterobacteria. Mol. Microbiol. 93:439–52 [Google Scholar]
  126. Le Quéré B, Ghigo J-M. 126.  2009. BcsQ is an essential component of the Escherichia coli cellulose biosynthesis apparatus that localizes at the bacterial cell pole. Mol. Microbiol. 72:724–40 [Google Scholar]
  127. Vejborg RM, Klemm P. 127.  2009. Cellular chain formation in Escherichia coli biofilms. Microbiology 155:1407–17 [Google Scholar]
  128. Kimura S, Chen HP, Saxena IM, Brown RM, Itoh T. 128.  2001. Localization of c-di-GMP-binding protein with the linear terminal complexes of Acetobacter xylinum. J. Bacteriol. 183:5668–74 [Google Scholar]
  129. Brown RM, Willison JH, Richardson CL. 129.  1976. Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. PNAS 73:4565–69 [Google Scholar]
  130. Iyer P, Catchmark J, Brown N, Tien M. 130.  2011. Biochemical localization of a protein involved in synthesis of Gluconacetobacter hansenii cellulose. Cellulose 18:737–47 [Google Scholar]
  131. Hu S-Q, Gao Y-G, Tajima K, Sunagawa N, Zhou Y. 131.  et al. 2010. Structure of bacterial cellulose synthase subunit D octamer with four inner passageways. PNAS 107:17957–61 [Google Scholar]
  132. Deng Y, Nagachar N, Xiao C, Tien M, Kao T-H. 132.  2013. Identification and characterization of non-cellulose-producing mutants of Gluconacetobacter hansenii generated by Tn5 transposon mutagenesis. J. Bacteriol. 195:5072–83 [Google Scholar]
  133. Sunagawa N, Fujiwara T, Yoda T, Kawano S, Satoh Y. 133.  et al. 2013. Cellulose complementing factor (Ccp) is a new member of the cellulose synthase complex (terminal complex) in Acetobacter xylinum. J. Biosci. Bioeng. 115:607–12 [Google Scholar]
  134. Kumar M, Turner S. 134.  2014. Plant cellulose synthesis: CESA proteins crossing kingdoms. Phytochemistry. In press
  135. McFarlane HE, Döring A, Persson S. 135.  2014. The cell biology of cellulose synthesis. Annu. Rev. Plant Biol. 65:69–94 [Google Scholar]
  136. Kimura S, Laosinchai W, Itoh T, Cui X, Linder CR, Brown RM Jr. 136.  1999. Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant vigna angularis. Plant Cell 11:2075–86 [Google Scholar]
  137. Pysh L, Alexander N, Swatzyna L, Harbert R. 137.  2012. Four alleles of AtCESA3 form an allelic series with respect to root phenotype in Arabidopsis thaliana. Physiol. Plant 144:369–81 [Google Scholar]
  138. Cano-Delgado A, Penfield S, Smith C, Catley M, Bevan M. 138.  2003. Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant J. 34:351–62 [Google Scholar]
  139. Arioli T, Peng L, Betzner AS, Burn J, Wittke W. 139.  et al. 1998. Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279:717–20 [Google Scholar]
  140. Daras G, Rigas S, Penning B, Milioni D, McCann MC. 140.  et al. 2009. The thanatos mutation in Arabidopsis thaliana cellulose synthase 3 (AtCesA3) has a dominant-negative effect on cellulose synthesis and plant growth. New Phytol. 184:114–26 [Google Scholar]
  141. Zhong R, Morrison WH 3rd, Freshour GD, Hahn MG, Ye ZH. 141.  2003. Expression of a mutant form of cellulose synthase AtCesA7 causes dominant negative effect on cellulose biosynthesis. Plant Physiol. 132:786–95 [Google Scholar]
  142. Vergara CE, Carpita NC. 142.  2001. β-d-Glycan synthases and the CesA gene family: lessons to be learned from the mixed-linkage (1→3),(1→4)β-d-glucan synthase. Plant Mol. Biol. 47:145–60 [Google Scholar]
  143. Bernsel A, Viklund H, Hennerdal A, Elofsson A. 143.  2009. TOPCONS: consensus prediction of membrane protein topology. Nucleic Acids Res. 37:W465–68 [Google Scholar]
  144. Benziman M, Haigler CH, Brown RM, White AR, Cooper KM. 144.  1980. Cellulose biogenesis: Polymerization and crystallization are coupled processes in Acetobacter xylinum. PNAS 77:6678–82 [Google Scholar]
  145. Schindelman G, Morikami A, Jung J, Baskin TI, Carpita NC. 145.  et al. 2001. COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis. Genes Dev. 15:1115–27 [Google Scholar]
  146. Pagant S, Bichet A, Sugimoto K, Lerouxel O, Desprez T. 146.  et al. 2002. KOBITO1 encodes a novel plasma membrane protein necessary for normal synthesis of cellulose during cell expansion in Arabidopsis. Plant Cell 14:2001–13 [Google Scholar]
  147. Lane DR, Wiedemeier A, Peng L, Hofte H, Vernhettes S. 147.  et al. 2001. Temperature-sensitive alleles of RSW2 link the KORRIGAN endo-1,4-β-glucanase to cellulose synthesis and cytokinesis in Arabidopsis. Plant Physiol. 126:278–88 [Google Scholar]
  148. Fujii S, Hayashi T, Mizuno K. 148.  2010. Sucrose synthase is an integral component of the cellulose synthesis machinery. Plant Cell Physiol. 51:294–301 [Google Scholar]
/content/journals/10.1146/annurev-biochem-060614-033930
Loading
/content/journals/10.1146/annurev-biochem-060614-033930
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error