1932

Abstract

The twin-arginine translocation (Tat) system, found in prokaryotes, chloroplasts, and some mitochondria, allows folded proteins to be moved across membranes. How this transport is achieved without significant ion leakage is an intriguing mechanistic question. Tat transport is mediated by complexes formed from small integral membrane proteins from just two protein families. Atomic-resolution structures have recently been determined for representatives of both these protein families, providing the first molecular-level glimpse of the Tat machinery. I review our current understanding of the mechanism of Tat transport in light of these new structural data.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-060614-034251
2015-06-02
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/biochem/84/1/annurev-biochem-060614-034251.html?itemId=/content/journals/10.1146/annurev-biochem-060614-034251&mimeType=html&fmt=ahah

Literature Cited

  1. Park E, Rapoport TA. 1.  2012. Mechanisms of Sec61/SecY-mediated protein translocation across membranes. Annu. Rev. Biophys. 41:21–40 [Google Scholar]
  2. Mould RM, Robinson C. 2.  1991. A proton gradient is required for the transport of two lumenal oxygen-evolving proteins across the thylakoid membrane. J. Biol. Chem. 266:12189–93 [Google Scholar]
  3. Yahr TL, Wickner WT. 3.  2001. Functional reconstitution of bacterial Tat translocation in vitro. EMBO J. 20:2472–79 [Google Scholar]
  4. Simone D, Bay DC, Leach T, Turner RJ. 4.  2013. Diversity and evolution of bacterial twin arginine translocase protein, TatC, reveals a protein secretion system that is evolving to fit its environmental niche. PLOS ONE 8:e78742 [Google Scholar]
  5. Berks BC, Palmer T, Sargent F. 5.  2003. The Tat protein translocation pathway and its role in microbial physiology. Adv. Microb. Physiol. 47:187–254 [Google Scholar]
  6. Palmer T, Berks BC. 6.  2012. The twin-arginine translocation (Tat) protein export pathway. Nat. Rev. Microbiol. 10:483–96 [Google Scholar]
  7. De Buck E, Lammertyn E, Anne J. 7.  2008. The importance of the twin-arginine translocation pathway for bacterial virulence. Trends Microbiol. 16:442–53 [Google Scholar]
  8. Barkan A, Miles D, Taylor WC. 8.  1986. Chloroplast gene expression in nuclear, photosynthetic mutants of maize. EMBO J. 5:1421–27 [Google Scholar]
  9. Celedon JM, Cline K. 9.  2013. Intra-plastid protein trafficking: how plant cells adapted prokaryotic mechanisms to the eukaryotic condition. Biochim. Biophys. Acta 1833:341–51 [Google Scholar]
  10. Burger G, Gray MW, Forget L, Lang BF. 10.  2013. Strikingly bacteria-like and gene-rich mitochondrial genomes throughout Jakobid protists. Genome Biol. Evol. 5:418–38 [Google Scholar]
  11. Pett W, Lavrov DV. 11.  2013. The twin-arginine subunit C in Oscarella: origin, evolution, and potential functional significance. Integr. Comp. Biol. 53:495–502 [Google Scholar]
  12. Hasan S, Platta HW, Erdmann R. 12.  2013. Import of proteins into the peroxisomal matrix. Front. Physiol. 4:261 [Google Scholar]
  13. Sysoeva TA, Zepeda-Rivera MA, Huppert LA, Burton BM. 13.  2014. Dimer recognition and secretion by the ESX secretion system in Bacillus subtilis. PNAS 111:7653–58 [Google Scholar]
  14. Berks BC, Sargent F, Palmer T. 14.  2000. The Tat protein export pathway. Mol. Microbiol. 35:260–74 [Google Scholar]
  15. Sargent F, Bogsch EG, Stanley NR, Wexler M, Robinson C. 15.  et al. 1998. Overlapping functions of components of a bacterial Sec-independent protein export pathway. EMBO J. 17:3640–50 [Google Scholar]
  16. Jack RL, Sargent F, Berks BC, Sawers G, Palmer T. 16.  2001. Constitutive expression of Escherichia coli tat genes indicates an important role for the twin-arginine translocase during aerobic and anaerobic growth. J. Bacteriol. 183:1801–4 [Google Scholar]
  17. Berks BC, Lea SM, Stansfeld PJ. 17.  2014. Structural biology of Tat protein transport. Curr. Opin. Struct. Biol. 27:32–37 [Google Scholar]
  18. Kudva R, Denks K, Kuhn P, Vogt A, Müller M, Koch HG. 18.  2013. Protein translocation across the inner membrane of gram-negative bacteria: the Sec and Tat dependent protein transport pathways. Res. Microbiol. 164:505–34 [Google Scholar]
  19. Cline K, Mori H. 19.  2001. Thylakoid ΔpH-dependent precursor proteins bind to a cpTatC–Hcf106 complex before Tha4-dependent transport. J. Cell Biol. 154:719–29 [Google Scholar]
  20. Alami M, Luke I, Deitermann S, Eisner G, Koch HG. 20.  et al. 2003. Differential interactions between a twin-arginine signal peptide and its translocase in Escherichia coli. Mol. Cell 12:937–46 [Google Scholar]
  21. Mori H, Cline K. 21.  2002. A twin arginine signal peptide and the pH gradient trigger reversible assembly of the thylakoid ΔpH/Tat translocase. J. Cell Biol. 157:205–10 [Google Scholar]
  22. Dabney-Smith C, Cline K. 22.  2009. Clustering of C-terminal stromal domains of Tha4 homo-oligomers during translocation by the Tat protein transport system. Mol. Biol. Cell 20:2060–69 [Google Scholar]
  23. Dabney-Smith C, Mori H, Cline K. 23.  2006. Oligomers of Tha4 organize at the thylakoid Tat translocase during protein transport. J. Biol. Chem. 281:5476–83 [Google Scholar]
  24. Alcock F, Baker MA, Greene NP, Palmer T, Wallace MI, Berks BC. 24.  2013. Live cell imaging shows reversible assembly of the TatA component of the twin-arginine protein transport system. PNAS 110:e3650–59 [Google Scholar]
  25. Rose P, Fröbel J, Graumann PL, Müller M. 25.  2013. Substrate-dependent assembly of the Tat translocase as observed in live Escherichia coli cells. PLOS ONE 8:e69488 [Google Scholar]
  26. Luke I, Handford JI, Palmer T, Sargent F. 26.  2009. Proteolytic processing of Escherichia coli twin-arginine signal peptides by LepB. Arch. Microbiol. 191:919–25 [Google Scholar]
  27. Bolhuis A, Mathers JE, Thomas JD, Barrett CM, Robinson C. 27.  2001. TatB and TatC form a functional and structural unit of the twin-arginine translocase from Escherichia coli. J. Biol. Chem. 276:20213–19 [Google Scholar]
  28. de Leeuw E, Granjon T, Porcelli I, Alami M, Carr SB. 28.  et al. 2002. Oligomeric properties and signal peptide binding by Escherichia coli Tat protein transport complexes. J. Mol. Biol. 322:1135–46 [Google Scholar]
  29. Aldridge C, Ma X, Gerard F, Cline K. 29.  2014. Substrate-gated docking of pore subunit Tha4 in the TatC cavity initiates Tat translocase assembly. J. Cell Biol. 205:51–65 [Google Scholar]
  30. Zoufaly S, Fröbel J, Rose P, Flecken T, Maurer C. 30.  et al. 2012. Mapping precursor-binding site on TatC subunit of twin arginine specific protein translocase by site-specific photo cross-linking. J. Biol. Chem. 287:13430–41 [Google Scholar]
  31. Rollauer SE, Tarry MJ, Graham JE, Jääskeläinen M, Jäger F. 31.  et al. 2012. Structure of the TatC core of the twin-arginine protein transport system. Nature 492:210–14 [Google Scholar]
  32. Ramasamy S, Abrol R, Suloway CJ, Clemons WM Jr. 32.  2013. The glove-like structure of the conserved membrane protein TatC provides insight into signal sequence recognition in twin-arginine translocation. Structure 21:777–88 [Google Scholar]
  33. Buchanan G, de Leeuw E, Stanley NR, Wexler M, Berks BC. 33.  et al. 2002. Functional complexity of the twin-arginine translocase TatC component revealed by site-directed mutagenesis. Mol. Microbiol. 43:1457–70 [Google Scholar]
  34. Holzapfel E, Eisner G, Alami M, Barrett CML, Buchanan G. 34.  et al. 2007. The entire N-terminal half of TatC is involved in twin-arginine precursor binding. Biochemistry 46:2892–98 [Google Scholar]
  35. Ma X, Cline K. 35.  2013. Mapping the signal peptide binding and oligomer contact sites of the core subunit of the pea twin arginine protein translocase. Plant Cell 25:999–1015 [Google Scholar]
  36. Hu Y, Zhao E, Li H, Xia B, Jin C. 36.  2010. Solution NMR structure of the TatA component of the twin-arginine protein transport system from gram-positive bacterium Bacillus subtilis. J. Am. Chem. Soc. 132:15942–44 [Google Scholar]
  37. Rodriguez F, Rouse SL, Tait CE, Harmer J, De Riso A. 37.  et al. 2013. Structural model for the protein-translocating element of the twin-arginine transport system. PNAS 110:e1092–101 [Google Scholar]
  38. Zhang Y, Hu Y, Li H, Jin C. 38.  2014. Structural basis for TatA oligomerization: an NMR study of Escherichia coli TatA dimeric structure. PLOS ONE 9:e103157 [Google Scholar]
  39. Zhang Y, Wang L, Hu Y, Jin C. 39.  2014. Solution structure of the TatB component of the twin-arginine translocation system. Biochim. Biophys. Acta 1838:1881–88 [Google Scholar]
  40. Walther TH, Grage SL, Roth N, Ulrich AS. 40.  2010. Membrane alignment of the pore-forming component TatAd of the twin-arginine translocase from Bacillus subtilis resolved by solid-state NMR spectroscopy. J. Am. Chem. Soc. 132:15945–56 [Google Scholar]
  41. Porcelli I, de Leeuw E, Wallis R, van den Brink–van der Laan E, de Kruijff B. 41.  et al. 2002. Characterization and membrane assembly of the TatA component of the Escherichia coli twin-arginine protein transport system. Biochemistry 41:13690–97 [Google Scholar]
  42. Lee PA, Buchanan G, Stanley NR, Berks BC, Palmer T. 42.  2002. Truncation analysis of TatA and TatB defines the minimal functional units required for protein translocation. J. Bacteriol. 184:5871–79 [Google Scholar]
  43. Weiner JH, Bilous PT, Shaw GM, Lubitz SP, Frost L. 43.  et al. 1998. A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins. Cell 93:93–101 [Google Scholar]
  44. Dabney-Smith C, Mori H, Cline K. 44.  2003. Requirement of a Tha4-conserved transmembrane glutamate in thylakoid Tat translocase assembly revealed by biochemical complementation. J. Biol. Chem. 278:43027–33 [Google Scholar]
  45. Lee PA, Orriss GL, Buchanan G, Greene NP, Bond PJ. 45.  et al. 2006. Cysteine-scanning mutagenesis and disulfide mapping studies of the conserved domain of the twin-arginine translocase TatB component. J. Biol. Chem. 281:34072–85 [Google Scholar]
  46. Mori H, Summer EJ, Ma X, Cline K. 46.  1999. Component specificity for the thylakoidal Sec and ΔpH-dependent protein transport pathways. J. Cell Biol. 146:45–56 [Google Scholar]
  47. Koch S, Fritsch MJ, Buchanan G, Palmer T. 47.  2012. Escherichia coli TatA and TatB proteins have N-out, C-in topology in intact cells. J. Biol. Chem. 287:14420–31 [Google Scholar]
  48. Fincher V, McCaffery M, Cline K. 48.  1998. Evidence for a loop mechanism of protein transport by the thylakoid ΔpH pathway. FEBS Lett. 423:66–70 [Google Scholar]
  49. Aldridge C, Storm A, Cline K, Dabney-Smith C. 49.  2012. The chloroplast twin arginine transport (Tat) component, Tha4, undergoes conformational changes leading to Tat protein transport. J. Biol. Chem. 287:34752–63 [Google Scholar]
  50. Fincher V, Dabney-Smith C, Cline K. 50.  2003. Functional assembly of thylakoid ΔpH-dependent/Tat protein transport pathway components in vitro. Eur. J. Biochem. 270:4930–41 [Google Scholar]
  51. Greene NP, Porcelli I, Buchanan G, Hicks MG, Schermann SM. 51.  et al. 2007. Cysteine scanning mutagenesis and disulfide mapping studies of the TatA component of the bacterial twin arginine translocase. J. Biol. Chem. 282:23937–45 [Google Scholar]
  52. Hicks MG, de Leeuw E, Porcelli I, Buchanan G, Berks BC, Palmer T. 52.  2003. The Escherichia coli twin-arginine translocase: conserved residues of TatA and TatB family components involved in protein transport. FEBS Lett. 539:61–67 [Google Scholar]
  53. Barnett JP, Eijlander RT, Kuipers OP, Robinson C. 53.  2008. A minimal Tat system from a gram-positive organism: A bifunctional TatA subunit participates in discrete TatAC and TatA complexes. J. Biol. Chem. 283:2534–42 [Google Scholar]
  54. Blaudeck N, Kreutzenbeck P, Müller M, Sprenger GA, Freudl R. 54.  2005. Isolation and characterization of bifunctional Escherichia coli TatA mutant proteins that allow efficient Tat-dependent protein translocation in the absence of TatB. J. Biol. Chem. 280:3426–32 [Google Scholar]
  55. Hicks MG, Lee PA, Georgiou G, Berks BC, Palmer T. 55.  2005. Positive selection for loss-of-function tat mutations identifies critical residues required for TatA activity. J. Bacteriol. 187:2920–25 [Google Scholar]
  56. Barnett JP, Lawrence J, Mendel S, Robinson C. 56.  2011. Expression of the bifunctional Bacillus subtilis TatAd protein in Escherichia coli reveals distinct TatA/B-family and TatB-specific domains. Arch. Microbiol. 193:583–94 [Google Scholar]
  57. Ma X, Cline K. 57.  2000. Precursors bind to specific sites on thylakoid membranes prior to transport on the ΔpH protein translocation system. J. Biol. Chem. 275:10016–22 [Google Scholar]
  58. Alder NN, Theg SM. 58.  2003. Protein transport via the cpTat pathway displays cooperativity and is stimulated by transport-incompetent substrate. FEBS Lett. 540:96–100 [Google Scholar]
  59. Whitaker N, Bageshwar UK, Musser SM. 59.  2012. Kinetics of precursor interactions with the bacterial Tat translocase detected by real-time FRET. J. Biol. Chem. 287:11252–60 [Google Scholar]
  60. Tarry MJ, Schafer E, Chen S, Buchanan G, Greene NP. 60.  et al. 2009. Structural analysis of substrate binding by the TatBC component of the twin-arginine protein transport system. PNAS 106:13284–89 [Google Scholar]
  61. Gerard F, Cline K. 61.  2007. The thylakoid proton gradient promotes an advanced stage of signal peptide binding deep within the Tat pathway receptor complex. J. Biol. Chem. 282:5263–72 [Google Scholar]
  62. Bageshwar UK, Whitaker N, Liang FC, Musser SM. 62.  2009. Interconvertibility of lipid- and translocon-bound forms of the bacterial Tat precursor pre-SufI. Mol. Microbiol. 74:209–26 [Google Scholar]
  63. Berks BC. 63.  1996. A common export pathway for proteins binding complex redox cofactors?. Mol. Microbiol. 22:393–404 [Google Scholar]
  64. Stanley NR, Palmer T, Berks BC. 64.  2000. The twin arginine consensus motif of Tat signal peptides is involved in Sec-independent protein targeting in Escherichia coli. J. Biol. Chem. 275:11591–96 [Google Scholar]
  65. Peltier JB, Friso G, Kalume DE, Roepstorff P, Nilsson F. 65.  et al. 2000. Proteomics of the chloroplast: systematic identification and targeting analysis of lumenal and peripheral thylakoid proteins. Plant Cell 12:319–41 [Google Scholar]
  66. Bendtsen JD, Nielsen H, Widdick D, Palmer T, Brunak S. 66.  2005. Prediction of twin-arginine signal peptides. BMC Bioinform. 6:167 [Google Scholar]
  67. Bagos PG, Nikolaou EP, Liakopoulos TD, Tsirigos KD. 67.  2010. Combined prediction of Tat and Sec signal peptides with hidden Markov models. Bioinformatics 26:2811–17 [Google Scholar]
  68. Rose RW, Brüser T, Kissinger JC, Pohlschröder M. 68.  2002. Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway. Mol. Microbiol. 45:943–50 [Google Scholar]
  69. Kreutzenbeck P, Kröger C, Lausberg F, Blaudeck N, Sprenger GA, Freudl R. 69.  2007. Escherichia coli twin arginine (Tat) mutant translocases possessing relaxed signal peptide recognition specificities. J. Biol. Chem. 282:7903–11 [Google Scholar]
  70. Lausberg F, Fleckenstein S, Kreutzenbeck P, Fröbel J, Rose P. 70.  et al. 2012. Genetic evidence for a tight cooperation of TatB and TatC during productive recognition of twin-arginine (Tat) signal peptides in Escherichia coli. PLOS ONE 7:e39867 [Google Scholar]
  71. Strauch EM, Georgiou G. 71.  2007. Escherichia coli tatC mutations that suppress defective twin-arginine transporter signal peptides. J. Mol. Biol. 374:283–91 [Google Scholar]
  72. Gerard F, Cline K. 72.  2006. Efficient twin arginine translocation (Tat) pathway transport of a precursor protein covalently anchored to its initial cpTatC binding site. J. Biol. Chem. 281:6130–35 [Google Scholar]
  73. Fröbel J, Rose P, Lausberg F, Blummel AS, Freudl R, Müller M. 73.  2012. Transmembrane insertion of twin-arginine signal peptides is driven by TatC and regulated by TatB. Nat. Commun. 3:1311 [Google Scholar]
  74. Oates J, Barrett CM, Barnett JP, Byrne KG, Bolhuis A, Robinson C. 74.  2005. The Escherichia coli twin-arginine translocation apparatus incorporates a distinct form of TatABC complex, spectrum of modular TatA complexes and minor TatAB complex. J. Mol. Biol. 346:295–305 [Google Scholar]
  75. Orriss GL, Tarry MJ, Ize B, Sargent F, Lea SM. 75.  et al. 2007. TatBC, TatB, and TatC form structurally autonomous units within the twin arginine protein transport system of Escherichia coli. FEBS Lett. 581:4091–97 [Google Scholar]
  76. Behrendt J, Lindenstrauss U, Brüser T. 76.  2007. The TatBC complex formation suppresses a modular TatB multimerization in Escherichia coli. FEBS Lett. 581:4085–90 [Google Scholar]
  77. Martin JR, Harwood JH, McCaffery M, Fernandez DE, Cline K. 77.  2009. Localization and integration of thylakoid protein translocase subunit cpTatC. Plant J. 58:831–42 [Google Scholar]
  78. Celedon JM, Cline K. 78.  2012. Stoichiometry for binding and transport by the twin arginine translocation system. J. Cell Biol. 197:523–34 [Google Scholar]
  79. Punginelli C, Maldonado B, Grahl S, Jack R, Alami M. 79.  et al. 2007. Cysteine scanning mutagenesis and topological mapping of the Escherichia coli twin-arginine translocase TatC component. J. Bacteriol. 189:5482–94 [Google Scholar]
  80. Ma X, Cline K. 80.  2010. Multiple precursor proteins bind individual Tat receptor complexes and are collectively transported. EMBO J. 29:1477–88 [Google Scholar]
  81. James MJ, Coulthurst SJ, Palmer T, Sargent F. 81.  2013. Signal peptide etiquette during assembly of a complex respiratory enzyme. Mol. Microbiol. 90:400–14 [Google Scholar]
  82. Kneuper H, Maldonado B, Jäger F, Krehenbrink M, Buchanan G. 82.  et al. 2012. Molecular dissection of TatC defines critical regions essential for protein transport and a TatB–TatC contact site. Mol. Microbiol. 85:945–61 [Google Scholar]
  83. Leake MC, Greene NP, Godun RM, Granjon T, Buchanan G. 83.  et al. 2008. Variable stoichiometry of the TatA component of the twin-arginine protein transport system observed by in vivo single-molecule imaging. PNAS 105:15376–81 [Google Scholar]
  84. Gohlke U, Pullan L, McDevitt CA, Porcelli I, de Leeuw E. 84.  et al. 2005. The TatA component of the twin-arginine protein transport system forms channel complexes of variable diameter. PNAS 102:10482–86 [Google Scholar]
  85. Beck D, Vasisht N, Baglieri J, Monteferrante CG, van Dijl JM. 85.  et al. 2013. Ultrastructural characterisation of Bacillus subtilis TatA complexes suggests they are too small to form homooligomeric translocation pores. Biochim. Biophys. Acta 1833:1811–19 [Google Scholar]
  86. Baglieri J, Beck D, Vasisht N, Smith CJ, Robinson C. 86.  2012. Structure of TatA paralog, TatE, suggests a structurally homogeneous form of Tat protein translocase that transports folded proteins of differing diameter. J. Biol. Chem. 287:7335–44 [Google Scholar]
  87. White GF, Schermann SM, Bradley J, Roberts A, Greene NP. 87.  et al. 2010. Subunit organization in the TatA complex of the twin arginine protein translocase: a site-directed EPR spin labeling study. J. Biol. Chem. 285:2294–301 [Google Scholar]
  88. Walther TH, Gottselig C, Grage SL, Wolf M, Vargiu AV. 88.  et al. 2013. Folding and self-assembly of the TatA translocation pore based on a charge zipper mechanism. Cell 152:316–26 [Google Scholar]
  89. Song C, Weichbrodt C, Salnikov ES, Dynowski M, Forsberg BO. 89.  et al. 2013. Crystal structure and functional mechanism of a human antimicrobial membrane channel. PNAS 110:4586–91 [Google Scholar]
  90. Bageshwar UK, Musser SM. 90.  2007. Two electrical potential-dependent steps are required for transport by the Escherichia coli Tat machinery. J. Cell Biol. 179:87–99 [Google Scholar]
  91. Braun NA, Theg SM. 91.  2008. The chloroplast Tat pathway transports substrates in the dark. J. Biol. Chem. 283:8822–28 [Google Scholar]
  92. Brock IW, Mills JD, Robinson D, Robinson C. 92.  1995. The ΔpH-driven, ATP-independent protein translocation mechanism in the chloroplast thylakoid membrane. Kinetics and energetics. J. Biol. Chem. 270:1657–62 [Google Scholar]
  93. Alder NN, Theg SM. 93.  2003. Energetics of protein transport across biological membranes. A study of the thylakoid ΔpH-dependent/cpTat pathway. Cell 112:231–42 [Google Scholar]
  94. Braun NA, Davis AW, Theg SM. 94.  2007. The chloroplast Tat pathway utilizes the transmembrane electric potential as an energy source. Biophys. J. 93:1993–98 [Google Scholar]
  95. Musser SM, Theg SM. 95.  2000. Characterization of the early steps of OE17 precursor transport by the thylakoid ΔpH/Tat machinery. Eur. J. Biochem. 267:2588–98 [Google Scholar]
  96. Teter SA, Theg SM. 96.  1998. Energy-transducing thylakoid membranes remain highly impermeable to ions during protein translocation. PNAS 95:1590–94 [Google Scholar]
  97. DeLisa MP, Tullman D, Georgiou G. 97.  2003. Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway. PNAS 100:6115–20 [Google Scholar]
  98. Cline K, McCaffery M. 98.  2007. Evidence for a dynamic and transient pathway through the TAT protein transport machinery. EMBO J. 26:3039–49 [Google Scholar]
  99. Richter S, Lindenstrauss U, Lucke C, Bayliss R, Brüser T. 99.  2007. Functional Tat transport of unstructured, small, hydrophilic proteins. J. Biol. Chem. 282:33257–64 [Google Scholar]
  100. Rocco MA, Waraho-Zhmayev D, DeLisa MP. 100.  2012. Twin-arginine translocase mutations that suppress folding quality control and permit export of misfolded substrate proteins. PNAS 109:13392–97 [Google Scholar]
  101. Panahandeh S, Maurer C, Moser M, DeLisa MP, Müller M. 101.  2008. Following the path of a twin-arginine precursor along the TatABC translocase of Escherichia coli. J. Biol. Chem. 283:33267–75 [Google Scholar]
  102. Blobel GA. 102.  2000. Protein targeting [Nobel lecture]. ChemBioChem 1:86–102 [Google Scholar]
  103. Mikhaleva NI, Santini CL, Giordano G, Nesmeyanova MA, Wu LF. 103.  1999. Requirement for phospholipids of the translocation of the trimethylamine N-oxide reductase through the Tat pathway in Escherichia coli. FEBS Lett. 463:331–35 [Google Scholar]
  104. Sikdar R, Doerrler WT. 104.  2010. Inefficient Tat-dependent export of periplasmic amidases in an Escherichia coli strain with mutations in two DedA family genes. J. Bacteriol. 192:807–18 [Google Scholar]
  105. Ma X, Browse J. 105.  2006. Altered rates of protein transport in Arabidopsis mutants deficient in chloroplast membrane unsaturation. Phytochemistry 67:1629–36 [Google Scholar]
  106. Brüser T, Sanders C. 106.  2003. An alternative model of the twin arginine translocation system. Microbiol. Res. 158:7–17 [Google Scholar]
/content/journals/10.1146/annurev-biochem-060614-034251
Loading
/content/journals/10.1146/annurev-biochem-060614-034251
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error