1932

Abstract

Severe changes in the environmental redox potential, and resulting alterations in the oxidation states of intracellular metabolites and enzymes, have historically been considered negative stressors, requiring responses that are strictly defensive. However, recent work in diverse organisms has revealed that more subtle changes in the intracellular redox state can act as signals, eliciting responses with benefits beyond defense and detoxification. Changes in redox state have been shown to influence or trigger chromosome segregation, sporulation, aerotaxis, and social behaviors, including luminescence as well as biofilm establishment and dispersal. Connections between redox state and complex behavior allow bacteria to link developmental choices with metabolic state and coordinate appropriate responses. Promising future directions for this area of study include metabolomic analysis of species- and condition-dependent changes in metabolite oxidation states and elucidation of the mechanisms whereby the redox state influences circadian regulation.

[Erratum, Closure]

An erratum has been published for this article:
Erratum: Redox-Based Regulation of Bacterial Development and Behavior
Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-061516-044453
2017-06-20
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/biochem/86/1/annurev-biochem-061516-044453.html?itemId=/content/journals/10.1146/annurev-biochem-061516-044453&mimeType=html&fmt=ahah

Literature Cited

  1. Imlay JA. 1.  2003. Pathways of oxidative damage. Annu. Rev. Microbiol. 57:395–418 [Google Scholar]
  2. Imlay JA. 2.  2008. Cellular defenses against superoxide and hydrogen peroxide. Annu. Rev. Biochem. 77:755–76 [Google Scholar]
  3. Dalle-Donne I, Rossi R, Colombo G, Giustarini D, Milzani A. 3.  2009. Protein S-glutathionylation: a regulatory device from bacteria to humans. Trends Biochem. Sci. 34:285–96 [Google Scholar]
  4. Carmel-Harel O, Storz G. 4.  2000. Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu. Rev. Microbiol 54:439–61 [Google Scholar]
  5. Jones DP, Sies H. 5.  2015. The redox code. Antioxid. Redox Signal 23:9734–46 [Google Scholar]
  6. Ray PD, Huang B-W, Tsuji Y. 6.  2012. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal 24:5981–90 [Google Scholar]
  7. Foyer CH, Noctor G. 7.  2005. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:71866–75 [Google Scholar]
  8. Gilbert HF. 8.  1990. Molecular and cellular aspects of thiol-disulfide exchange. Adv. Enzymol. Relat. Areas Mol. Biol. 63:69–172 [Google Scholar]
  9. Holmgren A, Fagerstedt M. 9.  1982. The in vivo distribution of oxidized and reduced thioredoxin in Escherichia coli. . J. Biol. Chem. 257:126926–30 [Google Scholar]
  10. Hwang C, Sinskey AJ, Lodish HF. 10.  1992. Oxidized redox state of glutathione in the endoplasmic reticulum. Science 257:50761496–502 [Google Scholar]
  11. Bennett BD, Kimball EH, Gao M, Osterhout R, Van Dien SJ, Rabinowitz JD. 11.  2009. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. . Nat. Chem. Biol. 5:8593–99 [Google Scholar]
  12. Aslund F, Zheng M, Beckwith J, Storz G. 12.  1999. Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status. PNAS 96:116161–65 [Google Scholar]
  13. Leichert LI, Jakob U. 13.  2004. Protein thiol modifications visualized in vivo. PLOS Biol 2:11e333 [Google Scholar]
  14. Meyer Y, Buchanan BB, Vignols F, Reichheld J-P. 14.  2009. Thioredoxins and glutaredoxins: unifying elements in redox biology. Annu. Rev. Genet 43:335–67 [Google Scholar]
  15. Fahey RC, Brown WC, Adams WB, Worsham MB. 15.  1978. Occurrence of glutathione in bacteria. J. Bacteriol 133:31126–29 [Google Scholar]
  16. Newton GL, Rawat M, La Clair JJ, Jothivasan VK, Budiarto T. 16.  et al. 2009. Bacillithiol is an antioxidant thiol produced in Bacilli. Nat. Chem. Biol 5:9625–27 [Google Scholar]
  17. Antelmann H, Helmann JD. 17.  2011. Thiol-based redox switches and gene regulation. Antioxid. Redox Signal 14:61049–63 [Google Scholar]
  18. Go Y-M, Jones DP. 18.  2013. Thiol/disulfide redox states in signaling and sensing. Crit. Rev. Biochem. Mol. Biol 48:2173–81 [Google Scholar]
  19. Berndt C, Lillig CH, Flohé L. 19.  2014. Redox regulation by glutathione needs enzymes. Front. Pharmacol 5:168 [Google Scholar]
  20. Crack JC, Green J, Hutchings MI, Thomson AJ, Le Brun NE. 20.  2012. Bacterial iron-sulfur regulatory proteins as biological sensor-switches. Antioxid. Redox Signal 17:91215–31 [Google Scholar]
  21. Watanabe S, Kita A, Kobayashi K, Miki K. 21.  2008. Crystal structure of the [2Fe-2S] oxidative-stress sensor SoxR bound to DNA. PNAS 105:114121–26 [Google Scholar]
  22. Palma M, Zurita J, Ferreras JA, Worgall S, Larone DH. 22.  et al. 2005. Pseudomonas aeruginosa SoxR does not conform to the archetypal paradigm for SoxR-dependent regulation of the bacterial oxidative stress adaptive response. Infect. Immun. 73:52958–66 [Google Scholar]
  23. Dietrich LEP, Price-Whelan A, Petersen A, Whiteley M, Newman DK. 23.  2006. The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol. Microbiol. 61:51308–21 [Google Scholar]
  24. Gu M, Imlay JA. 24.  2011. The SoxRS response of Escherichia coli is directly activated by redox-cycling drugs rather than by superoxide. Mol. Microbiol. 79:51136 [Google Scholar]
  25. Dietrich LEP, Kiley PJ. 25.  2011. A shared mechanism of SoxR activation by redox-cycling compounds. Mol. Microbiol 79:51119–22 [Google Scholar]
  26. Wei Q, Minh PNL, Dötsch A, Hildebrand F, Panmanee W. 26.  et al. 2012. Global regulation of gene expression by OxyR in an important human opportunistic pathogen. Nucleic Acids Res 40:104320–33 [Google Scholar]
  27. Imlay JA. 27.  2015. Transcription factors that defend bacteria against reactive oxygen species. Annu. Rev. Microbiol. 69:93–108 [Google Scholar]
  28. Swem LR, Kraft BJ, Swem DL, Setterdahl AT, Masuda S. 28.  et al. 2003. Signal transduction by the global regulator RegB is mediated by a redox-active cysteine. EMBO J 22:184699–708 [Google Scholar]
  29. Elsen S, Swem LR, Swem DL, Bauer CE. 29.  2004. RegB/RegA, a highly conserved redox-responding global two-component regulatory system. Microbiol. Mol. Biol. Rev 68:2263–79 [Google Scholar]
  30. Wu J, Bauer CE. 30.  2010. RegB kinase activity is controlled in part by monitoring the ratio of oxidized to reduced ubiquinones in the ubiquinone pool. mBio 1:5e00272–10 [Google Scholar]
  31. Henry JT, Crosson S. 31.  2011. Ligand-binding PAS domains in a genomic, cellular, and structural context. Annu. Rev. Microbiol 65:261–86 [Google Scholar]
  32. Macheroux P, Hill S, Austin S, Eydmann T, Jones T. 32.  et al. 1998. Electron donation to the flavoprotein NifL, a redox-sensing transcriptional regulator. Biochem. J. 332:Part 2413 [Google Scholar]
  33. Narayanan S, Janakiraman B, Kumar L, Radhakrishnan SK. 33.  2015. A cell cycle-controlled redox switch regulates the topoisomerase IV activity. Genes Dev 29:111175–87 [Google Scholar]
  34. Chater KF. 34.  1972. A morphological and genetic mapping study of white colony mutants of Streptomyces coelicolor. . J. Gen. Microbiol. 72:19–28 [Google Scholar]
  35. Bush MJ, Chandra G, Bibb MJ, Findlay KC, Buttner MJ. 35.  2016. Genome-wide chromatin immunoprecipitation sequencing analysis shows that WhiB is a transcription factor that cocontrols its regulon with WhiA to initiate developmental cell division in Streptomyces. . mBio 7:2e00523–16 [Google Scholar]
  36. Bush MJ, Bibb MJ, Chandra G, Findlay KC, Buttner MJ. 36.  2013. Genes required for aerial growth, cell division, and chromosome segregation are targets of WhiA before sporulation in Streptomyces venezuelae. . mBio 4:5e00684–13 [Google Scholar]
  37. Surdova K, Gamba P, Claessen D, Siersma T, Jonker MJ. 37.  et al. 2013. The conserved DNA-binding protein WhiA is involved in cell division in Bacillus subtilis. . J. Bacteriol. 195:245450–60 [Google Scholar]
  38. Dietrich LEP, Okegbe C, Price-Whelan A, Sakhtah H, Hunter RC, Newman DK. 38.  2013. Bacterial community morphogenesis is intimately linked to the intracellular redox state. J. Bacteriol 195:71371–80 [Google Scholar]
  39. Peters AC, Wimpenny JW, Coombs JP. 39.  1987. Oxygen profiles in, and in the agar beneath, colonies of Bacillus cereus, Staphylococcus albus and Escherichia coli. J. Gen. Microbiol 133:51257–63 [Google Scholar]
  40. Xu KD, Stewart PS, Xia F, Huang CT, McFeters GA. 40.  1998. Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl. Environ. Microbiol. 64:104035–39 [Google Scholar]
  41. Stewart PS. 41.  2003. Diffusion in biofilms. J. Bacteriol. 185:51485–91 [Google Scholar]
  42. Chai Y, Chu F, Kolter R, Losick R. 42.  2008. Bistability and biofilm formation in Bacillus subtilis. . Mol. Microbiol. 67:2254–63 [Google Scholar]
  43. Molle V, Fujita M, Jensen ST, Eichenberger P, González-Pastor JE. 43.  et al. 2003. The Spo0A regulon of Bacillus subtilis. Mol. Microbiol. 50:51683–1701 [Google Scholar]
  44. Kolodkin-Gal I, Elsholz AKW, Muth C, Girguis PR, Kolter R, Losick R. 44.  2013. Respiration control of multicellularity in Bacillus subtilis by a complex of the cytochrome chain with a membrane-embedded histidine kinase. Genes Dev 27:8887–99 [Google Scholar]
  45. Kempes CP, Okegbe C, Mears-Clarke Z, Follows MJ, Dietrich LEP. 45.  2014. Morphological optimization for access to dual oxidants in biofilms. PNAS 111:1208–13 [Google Scholar]
  46. Römling U, Galperin MY, Gomelsky M. 46.  2013. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol. Mol. Biol. Rev 77:11–52 [Google Scholar]
  47. 47.  Deleted in proof
  48. Morgan R, Kohn S, Hwang S-H, Hassett DJ, Sauer K. 48.  2006. BdlA, a chemotaxis regulator essential for biofilm dispersion in Pseudomonas aeruginosa. J. Bacteriol. 188:217335–43 [Google Scholar]
  49. Petrova OE, Sauer K. 49.  2012. PAS domain residues and prosthetic group involved in BdlA-dependent dispersion response by Pseudomonas aeruginosa biofilms. J. Bacteriol. 194:215817–28 [Google Scholar]
  50. Roy AB, Petrova OE, Sauer K. 50.  2012. The phosphodiesterase DipA (PA5017) is essential for Pseudomonas aeruginosa biofilm dispersion. J. Bacteriol. 194:112904–15 [Google Scholar]
  51. Li Y, Xia H, Bai F, Xu H, Yang L. 51.  et al. 2007. Identification of a new gene PA5017 involved in flagella-mediated motility, chemotaxis and biofilm formation in Pseudomonas aeruginosa. . FEMS Microbiol. Lett. 272:2188–95 [Google Scholar]
  52. An S, Wu J, Zhang L-H. 52.  2010. Modulation of Pseudomonas aeruginosa biofilm dispersal by a cyclic-di-GMP phosphodiesterase with a putative hypoxia-sensing domain. Appl. Environ. Microbiol. 76:248160–73 [Google Scholar]
  53. Taylor BL. 53.  2007. Aer on the inside looking out: paradigm for a PAS-HAMP role in sensing oxygen, redox and energy. Mol. Microbiol. 65:61415–24 [Google Scholar]
  54. Bibikov SI, Biran R, Rudd KE, Parkinson JS. 54.  1997. A signal transducer for aerotaxis in Escherichia coli. J. Bacteriol. 179:124075–79 [Google Scholar]
  55. Bibikov SI, Barnes LA, Gitin Y, Parkinson JS. 55.  2000. Domain organization and flavin adenine dinucleotide-binding determinants in the aerotaxis signal transducer Aer of Escherichia coli. PNAS 97:115830–35 [Google Scholar]
  56. Rivera-Chávez F, Winter SE, Lopez CA, Xavier MN, Winter MG. 56.  et al. 2013. Salmonella uses energy taxis to benefit from intestinal inflammation. PLOS Pathog 9:4e1003267 [Google Scholar]
  57. Alvarez C. 57.  2007. Responses to low oxygen and energy taxis by Pseudomonas aeruginosa PhD thesis Univ. Iowa Iowa City:
  58. Malpica R, Sandoval GRP, Rodríguez C, Franco B, Georgellis D. 58.  2006. Signaling by the Arc two-component system provides a link between the redox state of the quinone pool and gene expression. Antioxid. Redox Signal 8:5–6781–95 [Google Scholar]
  59. Malpica R, Franco B, Rodriguez C, Kwon O, Georgellis D. 59.  2004. Identification of a quinone-sensitive redox switch in the ArcB sensor kinase. PNAS 101:3613318–23 [Google Scholar]
  60. Georgellis D, Kwon O, De Wulf P, Lin EC. 60.  1998. Signal decay through a reverse phosphorelay in the Arc two-component signal transduction system. J. Biol. Chem 273:4932864–69 [Google Scholar]
  61. Georgellis D, Kwon O, Lin EC, Wong SM, Akerley BJ. 61.  2001. Redox signal transduction by the ArcB sensor kinase of Haemophilus influenzae lacking the PAS domain. J. Bacteriol. 183:247206–12 [Google Scholar]
  62. Bose JL, Kim U, Bartkowski W, Gunsalus RP, Overley AM. 62.  et al. 2007. Bioluminescence in Vibrio fischeri is controlled by the redox-responsive regulator ArcA. Mol. Microbiol. 65:2538–53 [Google Scholar]
  63. Lane N. 63.  2015. The Vital Question: Energy, Evolution, and the Origins of Complex Life New York: W.W. Norton
  64. Tanaka N, Kanazawa M, Tonosaki K, Yokoyama N, Kuzuyama T, Takahashi Y. 64.  2016. Novel features of the ISC machinery revealed by characterization of Escherichia coli mutants that survive without iron-sulfur clusters. Mol. Microbiol. 99:5835–48 [Google Scholar]
  65. Posey JE, Gherardini FC. 65.  2000. Lack of a role for iron in the Lyme disease pathogen. Science 288:54711651–53 [Google Scholar]
  66. Liochev SI, Fridovich I. 66.  1992. Fumarase C, the stable fumarase of Escherichia coli, is controlled by the soxRS regulon. PNAS 89:135892–96 [Google Scholar]
  67. Rocha AG, Dancis A. 67.  2016. Life without Fe-S clusters. Mol. Microbiol 99:5821–26 [Google Scholar]
  68. Ritz D, Beckwith J. 68.  2001. Roles of thiol-redox pathways in bacteria. Annu. Rev. Microbiol 55:21–48 [Google Scholar]
  69. Jordan A, Reichard P. 69.  1998. Ribonucleotide reductases. Annu. Rev. Biochem 67:71–98 [Google Scholar]
  70. Bessette PH, Aslund F, Beckwith J, Georgiou G. 70.  1999. Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. PNAS 96:2413703–8 [Google Scholar]
  71. Lim CJ, Daws T, Gerami-Nejad M, Fuchs JA. 71.  2000. Growth-phase regulation of the Escherichia coli thioredoxin gene. Biochim. Biophys. Acta. 1491:1–31–6 [Google Scholar]
  72. Kosower NS, Kosower EM. 72.  1978. The glutathione status of cells. Int. Rev. Cytol 54:109–60 [Google Scholar]
  73. Mallick P, Boutz DR, Eisenberg D, Yeates TO. 73.  2002. Genomic evidence that the intracellular proteins of archaeal microbes contain disulfide bonds. PNAS 99:159679–84 [Google Scholar]
  74. Wimpenny JW, Firth A. 74.  1972. Levels of nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide in facultative bacteria and the effect of oxygen. J. Bacteriol 111:124–32 [Google Scholar]
  75. Spaans SK, Weusthuis RA, van der Oost J, Kengen SWM. 75.  2015. NADPH-generating systems in bacteria and archaea. Front. Microbiol 6:742 [Google Scholar]
  76. Stincone A, Prigione A, Cramer T, Wamelink MMC, Campbell K. 76.  et al. 2015. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol. Rev. Camb. Philos. Soc 90:927–63 [Google Scholar]
  77. Yuan J, Doucette CD, Fowler WU, Feng X-J, Piazza M. 77.  et al. 2009. Metabolomics-driven quantitative analysis of ammonia assimilation in E. coli. Mol. Syst. Biol 5:302 [Google Scholar]
  78. Reddy AB, Rey G. 78.  2014. Metabolic and nontranscriptional circadian clocks: eukaryotes. Annu. Rev. Biochem 83:165–89 [Google Scholar]
  79. Hoyle NP, O'Neill JS. 79.  2015. Oxidation-reduction cycles of peroxiredoxin proteins and nontranscriptional aspects of timekeeping. Biochemistry 54:2184–93 [Google Scholar]
  80. Cohen SE, Golden SS. 80.  2015. Circadian rhythms in cyanobacteria. Microbiol. Mol. Biol. Rev 79:4373–85 [Google Scholar]
  81. Kim Y-I, Vinyard DJ, Ananyev GM, Dismukes GC, Golden SS. 81.  2012. Oxidized quinones signal onset of darkness directly to the cyanobacterial circadian oscillator. PNAS 109:4417765–69 [Google Scholar]
  82. Ivleva NB, Bramlett MR, Lindahl PA, Golden SS. 82.  2005. LdpA: a component of the circadian clock senses redox state of the cell. EMBO J 24:61202–10 [Google Scholar]
  83. Ivleva NB, Gao T, LiWang AC, Golden SS. 83.  2006. Quinone sensing by the circadian input kinase of the cyanobacterial circadian clock. PNAS 103:4617468–73 [Google Scholar]
  84. Wood TL, Bridwell-Rabb J, Kim Y-I, Gao T, Chang Y-G. 84.  et al. 2010. The KaiA protein of the cyanobacterial circadian oscillator is modulated by a redox-active cofactor. PNAS 107:135804–9 [Google Scholar]
  85. Katayama M, Kondo T, Xiong J, Golden SS. 85.  2003. ldpA encodes an iron-sulfur protein involved in light-dependent modulation of the circadian period in the cyanobacterium Synechococcus elongatus PCC 7942. J. Bacteriol 185:41415–22 [Google Scholar]
  86. Edgar RS, Green EW, Zhao Y, van Ooijen G, Olmedo M. 86.  et al. 2012. Peroxiredoxins are conserved markers of circadian rhythms. Nature 485:7399459–64 [Google Scholar]
  87. Harrison DE, Pirt SJ. 87.  1967. The influence of dissolved oxygen concentration on the respiration and glucose metabolism of Klebsiella aerogenes during growth. J. Gen. Microbiol. 46:2193–211 [Google Scholar]
  88. Schembri MA, Klemm P. 88.  2001. Coordinate gene regulation by fimbriae-induced signal transduction. EMBO J 20:123074–81 [Google Scholar]
  89. Holmgren A, Sengupta R. 89.  2010. The use of thiols by ribonucleotide reductase. Free Radic. Biol. Med 49:111617–28 [Google Scholar]
  90. Mavrodi DV, Peever TL, Mavrodi OV, Parejko JA, Raaijmakers JM. 90.  et al. 2010. Diversity and evolution of the phenazine biosynthesis pathway. Appl. Environ. Microbiol 76:3866–79 [Google Scholar]
  91. Moura-Alves P, Faé K, Houthuys E, Dorhoi A, Kreuchwig A. 91.  et al. 2014. AhR sensing of bacterial pigments regulates antibacterial defence. Nature 512:7515387–92 [Google Scholar]
  92. Glasser NR, Kern SE, Newman DK. 92.  2014. Phenazine redox cycling enhances anaerobic survival in Pseudomonas aeruginosa by facilitating generation of ATP and a proton-motive force. Mol. Microbiol. 92:2399–412 [Google Scholar]
  93. Horton HR, Moran LA, Ochs RS, David Rawn J, Gray Scrimgeour K. 93.  2002. Principles of Biochemistry Upper Saddle River, NJ: Prentice Hall, 3rd ed..
  94. Wang Y, Newman DK. 94.  2008. Redox reactions of phenazine antibiotics with ferric (hydr)oxides and molecular oxygen. Environ. Sci. Technol 42:72380–86 [Google Scholar]
  95. Zheng H, Kim J, Liew M, Yan JK, Herrera O. 95.  et al. 2015. Redox metabolites signal polymicrobial biofilm development via the NapA oxidative stress cascade in Aspergillus. . Curr. Biol. 25:129–37 [Google Scholar]
  96. Åslund F, Berndt KD, Holmgren A. 96.  1997. Redox potentials of glutaredoxins and other thiol-disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein-protein redox equilibria. J. Biol. Chem 272:4930780–86 [Google Scholar]
  97. Sharma SV, Arbach M, Roberts AA, Macdonald CJ, Groom M, Hamilton CJ. 97.  2013. Biophysical features of bacillithiol, the glutathione surrogate of Bacillus subtilis and other Firmicutes. ChemBioChem 14:162160–68 [Google Scholar]
  98. Sharma SV, Van Laer K, Messens J, Hamilton CJ. 98.  2016. Thiol redox and pKa properties of mycothiol, the predominant low-molecular-weight thiol cofactor in the Actinomycetes. ChemBioChem 17:181689–92 [ Erratum] [Google Scholar]
  99. Keire DA, Strauss E, Guo W, Noszal B, Rabenstein DL. 99.  1992. Kinetics and equilibria of thiol/disulfide interchange reactions of selected biological thiols and related molecules with oxidized glutathione. J. Org. Chem 57:1123–27 [Google Scholar]
/content/journals/10.1146/annurev-biochem-061516-044453
Loading
/content/journals/10.1146/annurev-biochem-061516-044453
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error