1932

Abstract

The order parameter and its variations in space and time in many different states in condensed matter physics at low temperatures are described by the complex function Ψ(, ). These states include superfluids, superconductors, and a subclass of antiferromagnets and charge density waves. The collective fluctuations in the ordered state may then be categorized as oscillations of phase and amplitude of Ψ(, ). The phase oscillations are the Goldstone modes of the broken continuous symmetry. The amplitude modes, even at long wavelengths, are well defined and are decoupled from the phase oscillations only near particle-hole symmetry, where the equations of motion have an effective Lorentz symmetry, as in particle physics and if there are no significant avenues for decay into other excitations. They bear close correspondence with the so-called Higgs modes in particle physics, whose prediction and discovery are very important for the standard model of particle physics. In this review, we discuss the theory and the possible observation of the amplitude or Higgs modes in condensed matter physics—in superconductors, cold atoms in periodic lattices, and uniaxial antiferromagnets. We discuss the necessity for at least approximate particle-hole symmetry as well as the special conditions required to couple to such modes because, being scalars, they do not couple linearly to the usual condensed matter probes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031214-014350
2015-03-10
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/6/1/annurev-conmatphys-031214-014350.html?itemId=/content/journals/10.1146/annurev-conmatphys-031214-014350&mimeType=html&fmt=ahah

Literature Cited

  1. Ginzburg VL, Landau LD. 1950. Zh. Eksp. Teor. Fiz. 20:1064–82
  2. Landau LD. 1941. Zh. Eksp. Teor. Fiz. 11:592–614
  3. Bogoliubov NN. 1947. Izv. Akad. Nauk SSR Ser. Fiz. 11:77–90
  4. Bogoliubov NN. . 1947. J. Phys. USSR 11:23–32
  5. Bardeen J, Cooper LN, Schrieffer JR. 1957. Phys. Rev. 108:1175–204
  6. Gor’kov LP. 1959. Sov. Phys. JETP-USSR 36:1364–67
  7. Gross E. 1961. Nuovo Cimento Ser. 10 20:454–77
  8. Pitaevskii LP. 1961. Sov. Phys. JETP-USSR 13:451–54
  9. Goldstone J. 1961. Nuovo Cimento. 19:154–64
  10. Goldstone J, Salam A, Weinberg S. 1962. Phys. Rev. 127:965–70
  11. Anderson PW. 1958. Phys. Rev. 110:827–35
  12. Higgs PW. 1964. Phys. Rev. Lett. 13:508–9
  13. Littlewood PB, Varma CM. 1981. Phys. Rev. Lett. 47:811–14
  14. Littlewood PB, Varma CM. 1982. Phys. Rev. B 26:4883–93
  15. Varma C. 2002. J. Low Temp. Phys. 126:901–9
  16. Huber SD, Altman E, Büchler HP, Blatter G. 2007. Phys. Rev. B 75:085106
  17. Keeling J, Marchetti FM, Szymanska MH, Littlewood PB. 2007. Semicond. Sci. Technol. 22:R1–26
  18. Nambu Y. 1960. Phys. Rev. 117:648–63
  19. Martin PC. 1969. Superconductivity Vol. 1 Parks RD. 371–92 New York: Marcel Dekker
  20. Abrahams E, Tsuneto T. 1966. Phys. Rev. 152:416–32
  21. Caroli C, Maki K. 1967. Phys. Rev. 159:306–15
  22. Hoddeson L, Brown L, Riordan M, Dresden M. 1997. The Rise of the Standard Model Cambridge, UK: Cambridge Univ. Press
  23. Anderson PW. 1963. Phys. Rev. 130:439–42
  24. Nambu Y, Jona-Lasinio G. 1961. Phys. Rev. 122:345–58
  25. Englert F, Brout R. 1964. Phys. Rev. Lett. 13:321–23
  26. Guralnik GS, Hagen CR, Kibble TWB. 1964. Phys. Rev. Lett. 13:585–87
  27. Weinberg S. 1967. Phys. Rev. Lett. 19:1264–66
  28. Salam A, Ward JC. 1964. Phys. Lett. 13:168–71
  29. Salam A. 1968. Proc. Nobel Symp., Lerum, Swed., pp. 367–77. Stockholm, Swed.: Almqvist and Wiksells
  30. CMS Collab 2012. Science 339:1569–75
  31. ATLAS Collab 2012. Science 339:1576–82
  32. Shifman M. 2012. arXiv:1211.0004
  33. Sooryakumar R, Klein MV. 1980. Phys. Rev. Lett. 45:660–62
  34. Sooryakumar R, Klein MV. 1981. Phys. Rev. B 23:3213–21
  35. Higgs P. 1997. See Ref. 22, pp. 478–524
  36. Rüegg C, Normand B, Matsumoto M, Furrer A, McMorrow DF et al. 2008. Phys. Rev. Lett. 100:205701
  37. Méasson M-A, Gallais Y, Cazayous M, Clair B, Rodière P et al. 2014. Phys. Rev. B 89:060503
  38. Schrieffer JR. 1964. Theory of Superconductivity New York: W.A. Benjamin
  39. Hackl R, Kaiser R, Schicktanz S. 1983. J. Phys. C Solid State Phys. 16:1729–39
  40. Browne D, Levin K. 1983. Phys. Rev. B 28:4029–32
  41. Kurihara Y. 1983. J. Phys. Soc. Jpn. 52:542–48
  42. Balseiro C, Falicov LM. 1980. Phys. Rev. Lett. 45:662–65
  43. Klein MV, Dierker SB. 1984. Phys. Rev. B 29:4976–91
  44. Bardasis A, Schrieffer JR. 1961. Phys. Rev 121:1050–62
  45. Tüttö I, Zawadowski A. 1992. Phys. Rev. B 45:4842–54
  46. Matsunaga R, Hamada Y, Makise K, Uzawa Y, Terai H et al. 2013. Phys. Rev. Lett 111:057002
  47. Barankov RA, Levitov LS. 2006. Phys. Rev. Lett. 96:230403
  48. Yuzbashyan EA, Tsyplyatyev O, Altshuler BL. 2006. Phys. Rev. Lett. 96:097005
  49. Carlson R, Goldman AM. 1975. Phys. Rev. Lett. 34:11–15
  50. Kadin AM, Goldman AM. 1982. Phys. Rev. B 25:6701–10
  51. Leggett AJ. 1975. Rev. Mod. Phys. 4:331–414
  52. Wölfle P. 1977. Phys. B 90:96–106
  53. McKenzie R, Sauls JA. 1990. Modern Problems in Condensed Matter Physics Vol. 26 Halperin WP, Pitaevskii LP. 255–311 Amsterdam, Neth.: North-Holland Publ.
  54. Volovik GE, Zubkov MA. 2014. J. Low Temp. Phys. 175:486–97
  55. Gallais Y, Sacuto A, Devereaux TP, Colson D. 2005. Phys. Rev. B 71:012506
  56. Phillips WD. 1998. Rev. Mod. Phys. 70:721–41
  57. Davis KB, Mewes MO, Andrews MR, van Druten NJ, Durfee DS et al. 1995. Phys. Rev. Lett. 75:3969–73
  58. Greiner M, Mandel O, Esslinger T, Hansch TW, Bloch I. 2002. Nature 415:39–44
  59. Jaksch D, Zoller P. 2005. Ann. Phys. 315:52–79
  60. Pethick C, Smith H. 2008. Bose-Einstein Condensation in Dilute Gases Cambridge, UK: Cambridge Univ. Press, 2nd ed..
  61. Fisher MPA, Weichman PB, Grinstein G, Fisher DS. 1989. Phys. Rev. B 40:546–70
  62. Freericks JK, Monien H. 1996. Phys. Rev. B 53:2691–700
  63. Dutta A, Trefzger C, Sengupta K. 2012. Phys. Rev. B 86:085140
  64. Krauth W, Trivedi N. 1991. Europhys. Lett. 14:627–32
  65. Capogrosso-Sansone NV. 2007. Phys. Rev. B 75:134302
  66. Capogrosso-Sansone B, Söyler G, Prokof’ev N, Svistunov B. 2008. Phys. Rev. A 77:015602
  67. Sachdev S. 2011. Quantum Phase Transitions. Cambridge, UK: Cambridge Univ. Press
  68. Altman E, Auerbach A. 2002. Phys. Rev. Lett. 89:250404
  69. Huber SD, Theiler B, Altman E, Blatter G. 2008. Phys. Rev. Lett. 100:050404
  70. Pekker D, Wunsch B, Kitagawa T, Manousakis E, Sørensen AS, Demler E. 2012. Phys. Rev. B 86:144527
  71. Chubukov AV, Sachdev S, Ye J. 1994. Phys. Rev. B 49:11919–61
  72. Sachdev S. 1999. Phys. Rev. B 59:14054–73
  73. Zwerger W. 2004. Phys. Rev. Lett. 92:027203
  74. Lindner NH, Auerbach A. 2010. Phys. Rev. B 81:054512
  75. Podolsky D, Auerbach A, Arovas DP. 2011. Phys. Rev. B 84:174522
  76. Endres M, Fukuhara T, Pekker D, Cheneau M, Schauss P et al. 2012. Nature 487:454–58
  77. Endres M. 2013. Probing correlated quantum many-body systems at the single-particle level. PhD thesis, Ludwig Maximilians Univ., München, Ger.
  78. Podolsky D, Sachdev S. 2012. Phys. Rev. B 86:054508
  79. Pollet L, Prokof’ev N. 2012. Phys. Rev. Lett. 109:010401
  80. Gazit S, Podolsky D, Auerbach A. 2013. Phys. Rev. Lett. 110:140401
  81. Chen K, Liu L, Deng Y, Pollet L, Prokof’ev N. 2014. Phys. Rev. Lett. 112:030402
  82. Hasenbusch M, Török T. 1999. J. Phys. Math. Gen. 32:6361–71
  83. Hasenbusch M. 2001. J. Phys. Math. Gen. 34:8221–36
  84. Stöferle T, Moritz H, Schori C, Köhl M, Esslinger T. 2004. Phys. Rev. Lett. 92:130403
  85. Schori C, Stöferle T, Moritz H, Köhl M, Esslinger T. 2004. Phys. Rev. Lett. 93:240402
  86. Bissbort U, Götze S, Li Y, Heinze J, Krauser JS et al. 2011. Phys. Rev. Lett. 106:205303
  87. Bakr WS, Peng A, Tai ME, Ma R, Simon J et al. 2010. Science 329:547–50
  88. Sherson JF, Weitenberg C, Endres M, Cheneau M, Bloch I, Kuhr S. 2010. Nature 467:68–72
  89. Lin YJ, Compton RL, Jimenez-Garcia K, Porto JV, Spielman IB. 2009. Nature 462:628–32
  90. Bruun GM. 2014. arXiv:1403.6876
  91. Banerjee D, Dalmonte M, Müller M, Rico E, Stebler P et al. 2012. Phys. Rev. Lett. 109:175302
  92. Oosawa A, Fujisawa M, Osakabe T, Kakurai K, Tanaka H. 2003. J. Phys. Soc. Jpn. 72:1026–29
  93. Tanaka H, Goto K, Fujisawa M, Ono T, Uwatoko Y. 2003. Phys. B Condens. Matter 697:329–33
  94. Rüegg C, Furrer A, Sheptyakov D, Strässle T, Krämer KW et al. 2004. Phys. Rev. Lett. 93:257201
  95. Oosawa A, Kakurai K, Osakabe T, Nakamura M, Takeda M, Tanaka H. 2004. J. Phys. Soc. Jpn. 73:1446–49
  96. Goto K, Fujisawa M, Ono T, Tanaka H, Uwatoko Y. 2004. J. Phys. Soc. Jpn. 73:3254–57
  97. Matsumoto M, Normand B, Rice TM, Sigrist M. 2004. Phys. Rev. B 69:054423
/content/journals/10.1146/annurev-conmatphys-031214-014350
Loading
/content/journals/10.1146/annurev-conmatphys-031214-014350
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error