1932

Abstract

Past and current plate motions are increasingly well mapped from high-temporal-resolution paleomagnetic and geodetic studies, revealing rapid variations that occur on short timescales relative to the time it takes for the large-scale structure associated with mantle buoyancy to evolve. The rates of change of plate velocities hold key information on the geodynamic, tectonic, and Earth's surface processes that may have caused them. Rapid plate motion changes thus provide us with a unique opportunity to quantify the forcing associated with these processes. Important mechanisms capable of inducing such rapid changes include evolving plate boundary forces, for example, those associated with slab sinking or orogeny along convergent margins, as well as temporal variations in pressure-driven flow within the asthenosphere that link plate velocity variations explicitly to changes in dynamic topography. Here, we focus on () findings from recent kinematic observations and () the quantitative framework that allows their geodynamic interpretation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-060614-105117
2015-05-30
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/earth/43/1/annurev-earth-060614-105117.html?itemId=/content/journals/10.1146/annurev-earth-060614-105117&mimeType=html&fmt=ahah

Literature Cited

  1. Argus DF, Gordon RG, Heflin MB, Ma C, Eanes RJ. et al. 2010. The angular velocities of the plates and the velocity of Earth's centre from space geodesy. Geophys. J. Int. 180:913–60 [Google Scholar]
  2. Artemieva IA. 2006. Global 1°×1° thermal model TC1 for the continental lithosphere: implications for lithosphere secular evolution. Tectonophysics 416:245–77 [Google Scholar]
  3. Austermann J, Iaffaldano G. 2013. The role of the Zagros orogeny in slowing down Arabia–Eurasia convergence since ∼5 Ma. Tectonics 32:351–63 [Google Scholar]
  4. Bird P. 1998. Testing hypotheses on plate-driving mechanisms with global lithosphere models including topography, thermal structure, and faults. J. Geophys. Res. 103:10115–29 [Google Scholar]
  5. Bird P, Baumgardner J. 1984. Fault friction, regional stress, and crust-mantle coupling in Southern California from finite element models. J. Geophys. Res. 89:1932–44 [Google Scholar]
  6. Bird P, Kong X. 1994. Computer simulations of California tectonics confirm very low strength of major faults. Geol. Soc. Am. Bull. 2:159–74 [Google Scholar]
  7. Bird P, Liu Z, Rucker WR. 2008. Stresses that drive the plates from below: definitions, computational path, model optimization, and error analysis. J. Geophys. Res. 113:B11 406: [Google Scholar]
  8. Braun J. 2010. The many surface expressions of mantle dynamics. Nat. Geosci. 3:825–33 [Google Scholar]
  9. Buffett BA. 2006. Plate force due to bending at subduction zones. J. Geophys. Res. 111:B09405 [Google Scholar]
  10. Bull JM, DeMets C, Krishna KS, Sanderson DJ, Merkouriev S. 2010. Reconciling plate kinematic and seismic estimates of lithospheric convergence in the central Indian Ocean. Geology 38:307–10 [Google Scholar]
  11. Bunge H-P, Richards MA, Baumgardner JR. 1996. Effect of depth-dependent viscosity on the planform of mantle convection. Nature 379:436–38 [Google Scholar]
  12. Bunge H-P, Richards MA, Lithgow-Bertelloni C, Baumgardner JR, Grand SP, Romanowicz BA. 1998. Time scales and heterogeneous structure in geodynamic earth models. Science 280:91–95 [Google Scholar]
  13. Busse FH, Richards MA, Lenardic A. 2006. A simple model of high Prandtl and high Rayleigh number convection bounded by thin low-viscosity layers. Geophys. J. Int. 164:160–67 [Google Scholar]
  14. Byerlee J. 1978. Friction of rocks. Pure Appl. Geophys. 116:615–26 [Google Scholar]
  15. Calais E, DeMets C, Nocquet J-M. 2003. Evidence for a post-3.16-Ma change in Nubia–Eurasia–North America plate motions?. Earth Planet. Sci. Lett. 216:81–92 [Google Scholar]
  16. Cande SC, Kent DV. 1995. Revised calibration of the geomagnetic polarity timescale for Late Cretaceous and Cenozoic. J. Geophys. Res. 100:6093–95 [Google Scholar]
  17. Cande SC, LaBrecque JL, Haxby WF. 1988. Plate kinematics of the South Atlantic: Chron C34 to present. J. Geophys. Res. 93:13479–92 [Google Scholar]
  18. Cande SC, Stegman DR. 2011. Indian and African plate motions driven by the push force of the Reunion plume head. Nature 475:47–52 [Google Scholar]
  19. Carena S, Moder C. 2009. The strength of faults in the crust in the western United States. Earth Planet. Sci. Lett. 287:373–84 [Google Scholar]
  20. Carpenter BC, Marine C, Saffer DM. 2011. Weakness of the San Andreas Fault revealed by samples of the active fault zone. Nat. Geosci. 4:251–54 [Google Scholar]
  21. Carrapa B, Huntington K, Clementz M, Quade J, Bywater-Reyes S. et al. 2014. Uplift of the Central Andes of NW Argentina associated with upper crustal shortening, revealed by multiproxy isotopic analyses. Tectonics 33:1039–54 [Google Scholar]
  22. Chase C. 1979. Asthenospheric counterflow—a kinematic model. Geophys. J. R. Astron. Soc. 56:1–18 [Google Scholar]
  23. Cloetingh S, Ziegler P, Bogaard P, Andriessen P, Artemieva I. et al. 2007. TOPO–EUROPE: the geoscience of coupled deep Earth-surface processes. Global Planet. Change 58:1–41–118 [Google Scholar]
  24. Colli L, Fichtner A, Bunge H-P. 2013. Full waveform tomography of the upper mantle in the South Atlantic region: evidence for pressure-driven westward flow in a shallow asthenosphere. Tectonophysics 604:26–40 [Google Scholar]
  25. Colli L, Stotz I, Bianchi MC, Bunge H-P, Smethurst M. et al. 2014. Rapid South Atlantic spreading changes and coeval vertical motion in surrounding continents: evidence for pulsating pressure–driven upper mantle flow. Tectonics 32:1304–21 [Google Scholar]
  26. Conrad CP, Bilek S, Lithgow-Bertelloni C. 2004. Great earthquakes and slab pull: interaction between seismic coupling and plate-slab coupling. Earth Planet. Sci. Lett. 218:109–22 [Google Scholar]
  27. Copley A, Avouac J-P, Royer J-Y. 2010. India-Asia collision and the Cenozoic slowdown of the Indian plate: implications for the forces driving plate motions. J. Geophys. Res. 115:B03410 [Google Scholar]
  28. Czarnota K, Roberts G, White N, Fishwick S. 2014. Spatial and temporal patterns of Australian dynamic topography from River Profile Modeling. J. Geophys. Res. 119:1384–424 [Google Scholar]
  29. Davies GF. 1992. Temporal variations of the Hawaiian plume flux. Earth Planet. Sci. Lett. 113:277–86 [Google Scholar]
  30. Davies GF. 1999. Dynamic Earth: Plates, Plumes and Mantle Convection Cambridge, UK: Cambridge Univ. Press
  31. DeMets C, Gordon RG, Argus DF. 2010. Geologically current plate motions. Geophys. J. Int. 181:1–80 [Google Scholar]
  32. Dixon TH. 1991. An introduction to the Global Positioning System and some geological applications. Rev. Geophys. 29:249–76 [Google Scholar]
  33. Doubrovine P, Tarduno J. 2008. A revised kinematic model for the relative motion between Pacific oceanic plates and North America since the Late Cretaceous. J. Geophys. Res. 113:B12) 101 [Google Scholar]
  34. Duncan R, Richards M. 1991. Hotspots, mantle plumes, flood basalts, and true polar wander. Rev. Geophys. 29:31–50 [Google Scholar]
  35. Dyment J. 1993. Evolution of the Indian triple junction between 65 and 49 Ma (Anomalies 28 to 21). J. Geophys. Res. 98:13863–77 [Google Scholar]
  36. Eagles G, Gohl K, Larter R. 2004. High-resolution animated tectonic reconstruction of the South Pacific and West Antarctic Margin. Geochem. Geophys. Geosyst. 5:Q07002 [Google Scholar]
  37. Faccenna C, Becker TW, Lallemand S, Steinberger B. 2012. On the role of slab pull in the Cenozoic motion of the Pacific plate. Geophys. Res. Lett. 39:L03305 [Google Scholar]
  38. Fichtner A, Kennett BLN, Igel H, Bunge H-P. 2009. Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods. Geophys. J. Int. 179:1703–25 [Google Scholar]
  39. Forsyth D, Uyeda S. 1975. On the relative importance of the driving forces on plate motion. Geophys. J. R. Astron. Soc. 43:163–200 [Google Scholar]
  40. French S, Lekic V, Romanowicz B. 2013. Waveform tomography reveals channeled flow at the base of the oceanic asthenosphere. Science 342:227–30 [Google Scholar]
  41. Ghosh P, Garzione C, Eiler J. 2006. Rapid uplift of the Altiplano revealed through 13C-18O bonds in paleosol carbonates. Science 331:511–15 [Google Scholar]
  42. Goes S, Capitanio FA, Morra G. 2008. Evidence of lower-mantle slab penetration phases in plate motions. Nature 451:981–84 [Google Scholar]
  43. Gordon RG. 1998. The plate tectonic approximation: plate nonrigidity, diffuse plate boundaries, and global plate reconstructions. Annu. Rev. Earth Planet. Sci. 26:615–42 [Google Scholar]
  44. Gordon RG, Stein S. 1992. Global tectonics and space geodesy. Science 256:333–42 [Google Scholar]
  45. Govers R, Wortel M. 2005. Lithosphere tearing at STEP faults: response to edges of subduction zones. Earth Planet. Sci. Lett. 236:505–23 [Google Scholar]
  46. Hartley R, Roberts G, White N, Richardson C. 2011. Transient convective uplift of an ancient buried landscape. Nat. Geosci. 4:562–65 [Google Scholar]
  47. Höink T, Jellinek M, Lenardic A. 2011. Viscous coupling at the lithosphere-asthenosphere boundary. Geochem. Geophys. Geosyst. 12:Q0AK02 [Google Scholar]
  48. Höink T, Lenardic A. 2008. Three–dimensional mantle convection simulations with a low-viscosity asthenosphere and the relationship between heat flow and the horizontal length scale of convection. Geophys. Res. Lett. 35:L10304 [Google Scholar]
  49. Höink T, Lenardic A. 2010. Long wavelength convection, Poiseuille–Couette flow in the low-viscosity asthenosphere and the strength of plate margins. Geophys. J. Int. 180:23–33 [Google Scholar]
  50. Husson L, Ricard Y. 2004. Stress balance above subduction: application to the Andes. Earth Planet. Sci. Lett. 222:1037–50 [Google Scholar]
  51. Husson L, Conrad CP, Faccenna C. 2012. Plate motions, Andean orogeny, and volcanism above the South Atlantic convection cell. Earth Planet. Sci. Lett. 317:126–35 [Google Scholar]
  52. Iaffaldano G. 2012. The strength of large-scale plate boundaries: constraints from the dynamics of the Philippine Sea plate since ∼5 Ma. Earth Planet. Sci. Lett. 357–358:21–30 [Google Scholar]
  53. Iaffaldano G, Bodin T, Sambridge M. 2012. Reconstructing plate-motion changes in the presence of finite-rotations noise. Nat. Commun. 3:1048 [Google Scholar]
  54. Iaffaldano G, Bunge H-P. 2009. Relating rapid plate-motion variations to plate-boundary forces in global coupled models of the mantle/lithosphere system: effects of topography and friction. Tectonophysics 474:393–404 [Google Scholar]
  55. Iaffaldano G, Bunge H-P, Dixon TH. 2006. Feedback between mountain belt growth and plate convergence. Geology 34:893–96 [Google Scholar]
  56. Iaffaldano G, Hawkins R, Bodin T, Sambridge M. 2014a. REDBACK: open–source software for efficient noise-reduction in plate kinematic reconstructions. Geochem. Geophys. Geosyst. 15:1663–70 [Google Scholar]
  57. Iaffaldano G, Hawkins R, Sambridge M. 2014b. Bayesian noise-reduction in Arabia/Somalia and Nubia/Arabia finite rotations since ∼20 Ma: implications for Nubia/Somalia relative motion. Geochem. Geophys. Geosyst. 15:845–54 [Google Scholar]
  58. Iaffaldano G, Husson L, Bunge H-P. 2011. Monsoon speeds up Indian plate motion. Earth Planet. Sci. Lett. 304:503–10 [Google Scholar]
  59. Janssen ME, Stephenson RA, Cloetingh S. 1995. Temporal and spatial correlations between changes in plate motions and the evolution of rifted basins in Africa. Geol. Soc. Am. Bull. 107:111317–32 [Google Scholar]
  60. Japsen P, Chalmers JA, Green PF, Bonow JM. 2012. Elevated, passive continental margins: Not rift shoulders, but expressions of episodic, post-rift burial and exhumation. Glob. Planet. Change 90–91:73–86 [Google Scholar]
  61. Jeanloz R, Thompson AB. 1983. Phase transitions and mantle discontinuities. Rev. Geophys. Space Phys. 21:51–74 [Google Scholar]
  62. Kennett BLN, Engdahl E, Buland R. 1995. Constraints on seismic velocities in the earth from traveltimes. Geophys. J. Int. 122:108–24 [Google Scholar]
  63. Kohlstedt DL, Evans B, Mackwell SJ. 1995. Strength of the lithosphere: constraints imposed by laboratory experiments. J. Geophys. Res. 100:17587–602 [Google Scholar]
  64. Liu Z, Bird P. 2002. Finite element modeling of neotectonics in New Zealand. J. Geophys. Res. 107:2328 [Google Scholar]
  65. Lovell B. 2010. A pulse in the planet: regional control of high-frequency changes in relative sea level by mantle convection. J. Geol. Soc. Lond. 167:637–48 [Google Scholar]
  66. MacGregor D. 2012. Late Cretaceous–Cenozoic sediment and turbidite reservoir supply to South Atlantic margins. Conjugate Divergent Margins W Mohriak, A Danforth, PJ Post, DE Brown, GC Tari, et al., pp. 117–36 London: Geol. Soc. [Google Scholar]
  67. Martinod J, Husson L, Roperch P, Guillaume B, Espurt N. 2010. Horizontal subduction zones, convergence velocity and the building of the Andes. Earth Planet. Sci. Lett. 299:299–309 [Google Scholar]
  68. McClusky S, Reilinger R, Mahmoud S, Sari DB, Tealeb A. 2003. GPS constraints on Africa (Nubia) and Arabia plate motions. Geophys. J. Int. 155:126–38 [Google Scholar]
  69. Merkouriev S, DeMets C. 2008. A high-resolution model for Eurasia–North America plate kinematics since 20 Ma. Geophys. J. Int. 173:1064–83 [Google Scholar]
  70. Merkouriev S, DeMets C. 2014. High-resolution Quaternary and Neogene reconstructions of Eurasia-North America plate motion. Geophys. J. Int. 198:366–84 [Google Scholar]
  71. Mitrovica JX. 1996. Haskell [1935] revisited. J. Geophys. Res. 101:555–70 [Google Scholar]
  72. Molnar P, Stock JM. 2009. Slowing of India's convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics. Tectonics 28:TC3001 [Google Scholar]
  73. Moucha R, Forte AM, Mitrovica JX, Rowley DB, Quere S. et al. 2008. Dynamic topography and long-term sea-level variations: there is no such thing as a stable continental platform. Earth Planet. Sci. Lett. 271:101–8 [Google Scholar]
  74. Müller RD, Royer J-Y, Lawver L. 1993. Revised plate motions relative to the hotspots from combined Atlantic and Indian Ocean hotspot tracks. Geology 21:275–78 [Google Scholar]
  75. Müller RD, Sdrolias M, Gaina C, Roest WR. 2008. Age, spreading rates, and spreading asymmetry of the world's ocean crust. Geochem. Geophys. Geosyst. 9:18–36 [Google Scholar]
  76. Norabuena EO, Dixon TH, Stein S, Harrison CGA. 1999. Decelerating Nazca–South America and Nazca–Pacific plate motions. Geophys. Res. Lett. 26:3405–8 [Google Scholar]
  77. Nürnberg D, Müller RD. 1991. The tectonic evolution of the South Atlantic from Late Jurassic to present. Tectonophysics 191:21–53 [Google Scholar]
  78. Nyblade AA, Robinson SW. 1994. The African superswell. Geophys. Res. Lett. 21:765–68 [Google Scholar]
  79. O'Connor J, Steinberger B, Regelous M, Koppers A, Wijbrans J. et al. 2013. Constraints on past plate and mantle motion from new ages for the Hawaiian–Emperor Seamount Chain. Geochem. Geophys. Geosyst. 14:4564–84 [Google Scholar]
  80. Oncken O, Chong G, Franz G, Giese P, Götze H-J. et al. 2006. The Andes-Active Subduction Orogeny Front. Earth Sci. Ser. Berlin: Springer569
  81. O'Neill C, Müller RD, Steinberger B. 2005. On the uncertainties in hot spot reconstructions and the significance of moving hot spot reference frames. Geochem. Geophys. Geosyst. 6:Q04003 [Google Scholar]
  82. Patriat P, Achache J. 1984. India–Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature 311:615–21 [Google Scholar]
  83. Paulson A, Richards MA. 2009. On the resolution of radial viscosity structure in modelling long-wavelength postglacial rebound data. Geophys. J. Int. 179:1516–26 [Google Scholar]
  84. Phipps Morgan J, Morgan WJ, Zhang Y-S, Smith W. 1995. Observational hints for a plume-fed, suboceanic asthenosphere and its role in mantle convection. J. Geophys. Res. 100:12753–67 [Google Scholar]
  85. Phipps Morgan J, Smith W. 1992. Flattening of the sea-floor depth age curve as a response to asthenospheric flow. Nature 359:524–27 [Google Scholar]
  86. Quinteros J, Sobolev S. 2013. Why has the Nazca plate slowed since the Neogene?. Geology 41:31–34 [Google Scholar]
  87. Reynolds SD, Coblentz DD, Hillis RR. 2002. Tectonic forces controlling the regional intraplate stress field in continental Australia: results from new finite element modeling. J. Geophys. Res. 107:B72131 [Google Scholar]
  88. Ricard Y. 2007. Physics of mantle convection. Treatise on Geophysics 7 Mantle Dynamics31–87 Amsterdam: Elsevier [Google Scholar]
  89. Richards MA, Yang WS, Baumgardner JR, Bunge H-P. 2001. Role of a low-viscosity zone in stabilizing plate tectonics: implications for comparative terrestrial planetology. Geochem. Geophys. Geosyst. 2:1026 [Google Scholar]
  90. Rickers FA, Fichtner A, Trampert J. 2013. The Iceland–Jan Mayen plume system and its impact on mantle dynamics in the North Atlantic region: evidence from full-waveform inversion. Earth Planet. Sci. Lett. 367:39–51 [Google Scholar]
  91. Saria E, Calais E, Altamini Z, Willis P, Farah H. 2013. A new velocity field for Africa from combined GPS and DORIS space geodetic solutions: contribution to the definition of the African reference frame (AFREF). J. Geophys. Res. 118:1677–97 [Google Scholar]
  92. Schaber K, Bunge H-P, Schuberth BSA, Malservisi R, Horbach A. 2009. Stability of the rotation axis in high-resolution mantle circulation models: weak polar wander despite strong core heating. Geochem. Geophys. Geosyst. 10:Q11W04 [Google Scholar]
  93. Sempere T, Folguera A, Gerbault M. 2008. New insights into andean evolution: an introduction to contributions from the 6th ISAG symposium (Barcelona, 2005). Tectonophysics 4591–13
  94. Seton M, Whittaker J, Wessel P, Mueller RD, DeMets C. et al. 2014. Community infrastructure and repository for marine magnetic identifications. Geochem. Geophys. Geosyst. 15:1629–41 [Google Scholar]
  95. Silver PG, Russo RM, Lithgow-Bertelloni C. 1998. Coupling of South American and African plate motion and plate deformation. Science 279:60–63 [Google Scholar]
  96. Somoza R. 1998. Updated Nazca (Farallon)–South America relative motions during the last 40 My: implications for mountain building in the central Andean region. J. South Am. Earth Sci. 11:211–15 [Google Scholar]
  97. Stamps DS, Calais E, Saria E, Hartnady C, Nocquet J-M. et al. 2008. A kinematic model for the East African Rift. Geophys. Res. Lett. 35:L05304 [Google Scholar]
  98. Steinberger B, Torsvik TH. 2008. Absolute plate motions and true polar wander in the absence of hotspot tracks. Nature 452:620–23 [Google Scholar]
  99. Suppe J. 2007. Absolute fault and crustal strength from wedge tapers. Geology 35:1127–30 [Google Scholar]
  100. Tarduno J, Bunge H-P, Sleep N, Hansen U. 2009. The bent Hawaiian–Emperor hotspot track: inheriting the mantle wind. Science 324:50–53 [Google Scholar]
  101. Torsvik TH, Steinberger B, Gurnis M, Gaina C. 2010. Plate tectonics and net lithosphere rotation over the past 150 my. Earth Planet. Sci. Lett. 291:106–12 [Google Scholar]
  102. Turcotte D, Schubert G. 2002. Geodynamics Cambridge, UK: Cambridge Univ. Press
  103. Wallace LM, McCaffrey R, Beavan J, Ellis S. 2005. Rapid microplate rotations and backarc rifting at the transition between collision and subduction. Geology 33:857–60 [Google Scholar]
  104. Warners-Ruckstuhl KN, Govers R, Wortel R. 2012. Lithosphere-mantle coupling and the dynamics of the Eurasian Plate. Geophys. J. Int. 189:1253–76 [Google Scholar]
  105. Wessel P, Kroenke LW. 2008. Pacific absolute plate motion since 145 Ma: an assessment of the fixed hot spot hypothesis. J. Geophys. Res. 113:B06101 [Google Scholar]
  106. Winterbourne J, Crosby A, White N. 2009. Depth, age and dynamic topography of oceanic lithosphere beneath heavily sedimented Atlantic margins. Earth Planet. Sci. Lett. 287:137–51 [Google Scholar]
  107. Winterbourne JN, White N, Crosby A. 2014. Accurate measurements of residual topography from the oceanic realm. Tectonics 33:982–1015 [Google Scholar]
/content/journals/10.1146/annurev-earth-060614-105117
Loading
/content/journals/10.1146/annurev-earth-060614-105117
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error