1932

Abstract

Urbanization is one of the biggest social transformations of modern time, driving and driven by multiple social, economic, and environmental processes. The impacts of urbanization on the environment are profound, multifaceted and are manifested at the local, regional, and global scale. This article reviews recent advances in conceptual and empirical knowledge linking urbanization and the environment, focusing on six core aspects: air pollution, ecosystems, land use, biogeochemical cycles and water pollution, solid waste management, and the climate. We identify several emerging trends and remaining questions in urban environmental research, including () increasing evidence on the amplified or accelerated environmental impacts of urbanization; () varying distribution patterns of impacts along geographical and other socio-economic gradients; () shifting focus from understanding and quantifying the impacts of urbanization toward understanding the processes and underlying mechanisms; () increasing focus on understanding complex interactions and interlinkages among different environmental, social, economic, and cultural processes; and () conceptual advances that call for articulating and using a systems approach in cities. In terms of governing the urban environment, there is an increasing focus on public participation and coproduction of knowledge with stakeholders. Cities are actively experimenting toward sustainability under a plethora of guiding concepts that manifests their aspirational goals, with varying levels of implementation and effectiveness.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-102016-061128
2017-10-17
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/energy/42/1/annurev-environ-102016-061128.html?itemId=/content/journals/10.1146/annurev-environ-102016-061128&mimeType=html&fmt=ahah

Literature Cited

  1. 1. United Nations. 2015. World population prospects: the 2015 revision. Rep. ESA/P/WP.241, Dep. Econ. Soc. Aff., United Nations, Washington DC: https://esa.un.org/unpd/wpp/Publications/Files/Key_Findings_WPP_2015.pdf
  2. Bai X, Shi P, Liu Y. 2.  2014. Society: realizing China's urban dream. Nature 509:158–60 [Google Scholar]
  3. Bai X, Chen J, Shi P. 3.  2012. Landscape urbanization and economic growth in China: positive feedbacks and sustainability dilemmas. Environ. Sci. Technol. 46:132–39 [Google Scholar]
  4. Han J, Meng X, Zhou X, Yi B, Liu M, Xiang W-N. 4.  2017. A long-term analysis of urbanization process, landscape change, and carbon sources and sinks: a case study in China's Yangtze River Delta region. J. Clean. Prod. 141:1040–50 [Google Scholar]
  5. Wang S, Fang C, Guan X, Pang B, Ma H. 5.  2014. Urbanisation, energy consumption, and carbon dioxide emissions in China: a panel data analysis of China's provinces. Appl. Energy 136:738–49 [Google Scholar]
  6. Wang Y, Chen L, Kubota J. 6.  2016. The relationship between urbanization, energy use and carbon emissions: evidence from a panel of Association of Southeast Asian Nations (ASEAN) countries. J. Clean. Prod. 112:Part 21368–74 [Google Scholar]
  7. Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J. 7.  et al. 2008. Global change and the ecology of cities. Science 319:756–60 [Google Scholar]
  8. Bai X, Surveyer A, Elmqvist T, Gatzweiler FW, Güneralp B. 8.  et al. 2016. Defining and advancing a systems approach for sustainable cities. Curr. Opin. Environ. Sustain. 23:69–78 [Google Scholar]
  9. McPhearson T, Pickett STA, Grimm NB, Niemelä J, Alberti M. 9.  et al. 2016. Advancing urban ecology toward a science of cities. BioScience 66:198–212 [Google Scholar]
  10. Zhang X, Wu Y, Gu B. 10.  2015. Urban rivers as hotspots of regional nitrogen pollution. Environ. Pollut. 205:139–44 [Google Scholar]
  11. Zhao W, Zhu X, Sun X, Shu Y, Li Y. 11.  2015. Water quality changes in response to urban expansion: spatially varying relations and determinants. Environ. Sci. Pollut. Res. Int. 22:16997–7011 [Google Scholar]
  12. Loorbach D, Wittmayer JM, Shiroyama H, Fujino J, Mizuguchi S. 12.  2016. Governance of Urban Sustainability Transitions: European and Asian Experiences Tokyo: Springer
  13. Bai X, Roberts B, Chen J. 13.  2010. Urban sustainability experiments in Asia: patterns and pathways. Environ. Sci. Policy 13:312–25 [Google Scholar]
  14. Van der Heijden J. 14.  2014. Governance for Urban Sustainability and Resilience: Responding to Climate Change and the Relevance of the Built Environment Cheltenham, UK: Edward Elgar Publ.
  15. Evans J, Karvonen A, Raven R. 15.  2016. The Experimental City Abingdon, UK: Routledge
  16. de Jong M, Joss S, Schraven D, Zhan C, Weijnen M. 16.  2015. Sustainable–smart–resilient–low carbon–eco–knowledge cities; making sense of a multitude of concepts promoting sustainable urbanization. J. Clean. Prod. 109:25–38 [Google Scholar]
  17. 17. UN Habitat. 2016. Habitat III: The New Urban Agenda http://habitat3.org/the-new-urban-agenda/
  18. McPhearson T, Parnell S, Simon D, Gaffney O, Elmqvist T. 18.  et al. 2016. Scientists must have a say in the future of cities. Nature 538:165 [Google Scholar]
  19. Childers DL, Cadenasso ML, Morgan Grove J, Marshall V, McGrath B, Pickett STA. 19.  2015. An ecology for cities: a transformational nexus of design and ecology to advance climate change resilience and urban sustainability. Sustainability 7:3774–91 [Google Scholar]
  20. Alberti M. 20.  2016. Cities That Think Like Planets: Complexity, Resilience, and Innovation in Hybrid Ecosystems Seattle: Univ. Washington Press
  21. Pickett STA, Cadenasso ML, Childers DL, McDonnell MJ, Zhou W. 21.  2016. Evolution and future of urban ecological science: ecology in, of, and for the city. Ecosyst. Health Sustainability 2:e01229 [Google Scholar]
  22. Grimm NB, Pickett ST, Hale RL, Cadenasso ML. 22.  2017. Does the ecological concept of disturbance have utility in urban social–ecological–technological systems?. Ecosyst. Health Sustain. 3:1e01255 [Google Scholar]
  23. Depietri Y, McPhearson T. 23.  2017. Integrating the grey, green, and blue in cities: nature-based solutions for climate change adaptation and risk reduction. Nature-Based Solutions to Climate Change in Urban Areas: Linkages Between Science, Policy and Practice N Kabisch, A Bonn, H Korn, J Stadler 91–110 Dordrecht, Neth: Springer [Google Scholar]
  24. Bai X. 24.  2016. Eight energy and material flow characteristics of urban ecosystems. Ambio 45:819–30 [Google Scholar]
  25. Liu J, Mooney H, Hull V, Davis SJ, Gaskell J. 25.  et al. 2015. Systems integration for global sustainability. Science 347:1258832 [Google Scholar]
  26. Ramaswami A, Boyer D, Nagpure AS, Fang A, Bogra S. 26.  et al. 2017. An urban systems framework to assess the trans-boundary food-energy-water nexus: implementation in Delhi, India. Environ. Res. Lett. 12:025008 [Google Scholar]
  27. Romero-Lankao P, McPhearson T, Davidson DJ. 27.  2017. The food-energy-water nexus and urban complexity. Nat. Clim. Change 7:233–35 [Google Scholar]
  28. Nagendra H, Sivaram R, Subramanya S. 28.  2014. Citizen action and lake restoration in Bengaluru. Nature Without Borders M Rangarajan, G Shahabuddin, MD Madhusudan 95–106 Telangana, India: Orient BlackSwan [Google Scholar]
  29. Dong S, Han Z. 29.  2011. Study on planning an “Eco-Sponge City” for rainwater utilization. Urban Stud 12:37–41 [Google Scholar]
  30. Zhu T, Melamed M, Parrish D, Gauss M, Klenner LG. 30.  et al. 2012. WMO/IGAC Impacts of Megacities on Air Pollution and Climate Geneva: World Meteorol. Org.
  31. Kelly FJ, Zhu T. 31.  2016. Transport solutions for cleaner air. Science 352:934–36 [Google Scholar]
  32. Baklanov A, Molina LT, Gauss M. 32.  2016. Megacities, air quality and climate. Atmos. Environ. 126:235–49 [Google Scholar]
  33. Zheng M, Yan C, Li X. 33.  2016. PM2.5 source apportionment in China. Issues in Environmental Science and Technology X Querol, RM Harrison, RM Harrison, RE Hester 293–314 London: Royal Soc. Chem. [Google Scholar]
  34. Liu J, Han Y, Tang X, Zhu J, Zhu T. 34.  2016. Estimating adult mortality attributable to PM2.5 exposure in China with assimilated PM2.5 concentrations based on a ground monitoring network. Sci. Total Environ. 568:1253–62 [Google Scholar]
  35. Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A. 35.  2015. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525:367–71 [Google Scholar]
  36. Liu J, Mauzerall DL, Chen Q, Zhang Q, Song Y. 36.  et al. 2016. Air pollutant emissions from Chinese households: a major and underappreciated ambient pollution source. PNAS 113:7756–61 [Google Scholar]
  37. Parrish DD, Zhu T. 37.  2009. Clean air for megacities. Science 326:674–75 [Google Scholar]
  38. Han L, Zhou W, Pickett STA, Li W, Li L. 38.  2016. An optimum city size? The scaling relationship for urban population and fine particulate (PM2.5) concentration. Environ. Pollut. 208:96–101 [Google Scholar]
  39. Huang RJ, Zhang Y, Bozzetti C, Ho KF, Cao JJ. 39.  et al. 2014. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 514:218–22 [Google Scholar]
  40. Guo S, Hu M, Zamora ML, Peng J, Shang D. 40.  et al. 2014. Elucidating severe urban haze formation in China. PNAS 111:17373–78 [Google Scholar]
  41. Zhu T, Shang J, Zhao D. 41.  2011. The roles of heterogeneous chemical processes in the formation of an air pollution complex and gray haze. Sci. China Chem. 54:145–53 [Google Scholar]
  42. Cheng Y, Zheng G, Wei C, Mu Q, Zheng B. 42.  et al. 2016. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Sci. Adv. 2:e1601530 [Google Scholar]
  43. Yu M, Carmichael GR, Zhu T, Cheng Y. 43.  2012. Sensitivity of predicted pollutant levels to urbanization in China. Atmos. Environ. 60:544–54 [Google Scholar]
  44. Lamsal LN, Martin RV, Parrish DD, Krotkov NA. 44.  2013. Scaling relationship for NO2 pollution and urban population size: a satellite perspective. Environ. Sci. Technol. 47:7855–61 [Google Scholar]
  45. Larkin A, Van Donkelaar A, Geddes JA, Martin RV, Hystad P. 45.  2016. Relationships between changes in urban characteristics and air quality in East Asia from 2000 to 2010. Environ. Sci. Technol. 50:9142–49 [Google Scholar]
  46. Sarzynski A. 46.  2012. Bigger is not always better: a comparative analysis of cities and their air pollution impact. Urban Stud 49:3121–38 [Google Scholar]
  47. Li GL, Bai XM, Yu S, Zhang H, Zhu YG. 47.  2012. Urban phosphorus metabolism through food consumption: the case of China. J. Ind. Ecol. 16:588–99 [Google Scholar]
  48. Askarizadeh A, Rippy MA, Fletcher TD, Feldman DL, Peng J. 48.  et al. 2015. From rain tanks to catchments: use of low-impact development to address hydrologic symptoms of the urban stream syndrome. Environ. Sci. Technol. 49:11264–80 [Google Scholar]
  49. Yang YY, Toor GS. 49.  2016. δ15N and δ18O reveal the sources of nitrate-nitrogen in urban residential stormwater runoff. Environ. Sci. Technol. 50:2881–89 [Google Scholar]
  50. Sivirichi GM, Kaushal SS, Mayer PM, Welty C, Belt KT. 50.  et al. 2011. Longitudinal variability in streamwater chemistry and carbon and nitrogen fluxes in restored and degraded urban stream networks. J. Environ. Monit. 13:288–303 [Google Scholar]
  51. Zhao HT, Li XY, Wang XM. 51.  2011. Heavy metal contents of road-deposited sediment along the urban-rural gradient around Beijing and its potential contribution to runoff pollution. Environ. Sci. Technol. 45:7120–27 [Google Scholar]
  52. Yu G, Liu Y, Shen Y, Li G. 52.  2011. Enrichment and potential ecological risk assessment of heavy metals in surface sediment from urban sections along the Grand Canal of China. Environ. Chem. 30:1906–11 [Google Scholar]
  53. Hong YW, Yu S, Yu GB, Liu Y, Li GL, Wang M. 53.  2012. Impacts of urbanization on surface sediment quality: evidence from polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) contaminations in the Grand Canal of China. Environ. Sci. Pollut. Res. 19:1352–63 [Google Scholar]
  54. Yu S, Yu GB, Liu Y, Li GL, Feng S. 54.  et al. 2012. Urbanization impairs surface water quality: eutrophication and metal stress in the grand canal of China. River Res. Appl. 28:1135–48 [Google Scholar]
  55. Li HB, Yu S, Li GL, Deng H, Luo XS. 55.  2011. Contamination and source differentiation of Pb in park soils along an urban-rural gradient in Shanghai. Environ. Pollut. 159:3536–44 [Google Scholar]
  56. Li HB, Yu S, Li GL, Liu Y, Yu GB. 56.  et al. 2012. Urbanization increased metal levels in lake surface sediment and catchment topsoil of waterscape parks. Sci. Total Environ. 432:202–9 [Google Scholar]
  57. Benotti MJ, Brownawell BJ. 57.  2007. Distributions of pharmaceuticals in an urban estuary during both dry- and wet-weather conditions. Environ. Sci. Technol. 41:5795–802 [Google Scholar]
  58. Bonvin F, Rutler R, Chevre N, Halder J, Kohn T. 58.  2011. Spatial and temporal presence of a wastewater-derived micropollutant plume in Lake Geneva. Environ. Sci. Technol. 45:4702–9 [Google Scholar]
  59. Litton RM, Ahn JH, Sercu B, Holden PA, Sedlak DL, Grant SB. 59.  2010. Evaluation of chemical, molecular, and traditional markers of fecal contamination in an effluent dominated urban stream. Environ. Sci. Technol. 44:7369–75 [Google Scholar]
  60. Eichmiller JJ, Hicks RE, Sadowsky MJ. 60.  2013. Distribution of genetic markers of fecal pollution on a freshwater sandy shoreline in proximity to wastewater effluent. Environ. Sci. Technol. 47:3395–402 [Google Scholar]
  61. Su JQ, Wei B, Ou-Yang WY, Huang FY, Zhao Y. 61.  et al. 2015. Antibiotic resistome and its association with bacterial communities during sewage sludge composting. Environ. Sci. Technol. 49:7356–63 [Google Scholar]
  62. Ferro G, Polo-Lopez MI, Martinez-Piernas AB, Fernandez-Ibanez P, Aguera A, Rizzo L. 62.  2015. Cross-contamination of residual emerging contaminants and antibiotic resistant bacteria in lettuce crops and soil irrigated with wastewater treated by sunlight/H2O2. Environ. Sci. Technol. 49:11096–104 [Google Scholar]
  63. Khan S, Cao Q, Zheng YM, Huang YZ, Zhu YG. 63.  2008. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ. Pollut. 152:686–92 [Google Scholar]
  64. Wang YC, Qiao M, Liu YX, Arp HP, Zhu YG. 64.  2011. Comparison of polycyclic aromatic hydrocarbon uptake pathways and risk assessment of vegetables from waste-water irrigated areas in northern China. J. Environ. Monit. 13:433–39 [Google Scholar]
  65. Guo GX, Deng H, Qiao M, Yao HY, Zhu YG. 65.  2013. Effect of long-term wastewater irrigation on potential denitrification and denitrifying communities in soils at the watershed scale. Environ. Sci. Technol. 47:3105–13 [Google Scholar]
  66. Chen Q, An X, Li H, Su J, Ma Y, Zhu YG. 66.  2016. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil. Environ. Int. 92–93:1–10 [Google Scholar]
  67. Schneider A, Friedl MA, Potere D. 67.  2010. Mapping global urban areas using MODIS 500-m data: new methods and datasets based on “urban ecoregions.”. Remote Sensing Environ 114:1733–46 [Google Scholar]
  68. Aronson MFJ, La Sorte FA, Nilon CH, Katti M, Goddard MA. 68.  et al. 2014. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc. R. Soc. B 281:20133330 [Google Scholar]
  69. Wang J, Feng J, Yan Z, Hu Y, Jia G. 69.  2012. Nested high-resolution modeling of the impact of urbanization on regional climate in three vast urban agglomerations in China. J. Geophys. Res.: Atmos. 117:D21103 [Google Scholar]
  70. Shi P, Bai X, Kong F, Fang J, Gong D. 70.  et al. Urbanization and air quality as major drivers of altered spatiotemporal patterns of heavy rainfall in China. Landsc. Ecol. 32:1723–38 [Google Scholar]
  71. Meyfroidt P, Lambin EF, Erb KH, Hertel TW. 71.  2013. Globalization of land use: distant drivers of land change and geographic displacement of land use. Curr. Opin. Environ. Sustain. 5:438–44 [Google Scholar]
  72. Cumbers A, MacKinnon D. 72.  2004. Introduction: clusters in urban and regional development. Urban Stud 41:959–69 [Google Scholar]
  73. Wang Y, Yeung YM, Ng WF. 73.  2004. Lanzhou-Xining-Yinchuan urban corridor and China's Western Development. Acta Geogr. Sinica 59:213–22 [Google Scholar]
  74. Seto KC, Güneralp B, Hutyra LR. 74.  2012. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. PNAS 109:16083–88 [Google Scholar]
  75. Li X, Li W, Middel A, Harlan SL, Brazel AJ, Turner BL. 75.  2016. Remote sensing of the surface urban heat island and land architecture in Phoenix, Arizona: combined effects of land composition and configuration and cadastral-demographic-economic factors. Remote Sensing Environ 174:233–43 [Google Scholar]
  76. Beninde J, Veith M, Hochkirch A. 76.  2015. Biodiversity in cities needs space: a meta-analysis of factors determining intra-urban biodiversity variation. Ecol. Lett. 18:581–92 [Google Scholar]
  77. Ramalho CE, Hobbs RJ. 77.  2012. Time for a change: dynamic urban ecology. Trends Ecol. Evol. 27:179–88 [Google Scholar]
  78. Boone C, Redman C, Blanco H, Haase D, Koch J. 78.  et al. 2014. Reconceptualizing Land for Sustainable Urbanity Cambridge, MA: MIT Press
  79. Pallagst K, Wiechmann T, Martinez-Fernandez C. 79.  2014. Shrinking Cities: International Perspectives and Policy Implications Rutledge Advances in Geography New York: Routledge https://www.amazon.com/Shrinking-Cities-International-Perspectives-Implications/dp/041580485X
  80. Irwin EG, Bell KP, Bockstael NE, Newburn DA, Partridge MD, Wu J. 80.  2009. The economics of urban-rural space. Annu. Rev. Resour. Econ. 1:435–59 [Google Scholar]
  81. Liu J, Hull V, Moran E, Nagendra H, Swaffield SR, Turner B. 81.  2014. Applications of the telecoupling framework to land-change science. Rethinking Global Land Use in an Urban Era Cambridge, MA: MIT Press [Google Scholar]
  82. Nagendra H, Munroe DK, Southworth J. 82.  2004. From pattern to process: landscape fragmentation and the analysis of land use/land cover change. Agric. Ecosyst. Environ. 101:111–15 [Google Scholar]
  83. Seto KC, Reenberg A, Boone CG, Fragkias M, Haase D. 83.  et al. 2012. Urban land teleconnections and sustainability. PNAS 109:7687–92 [Google Scholar]
  84. Solecki W, Marcotullio P. 84.  2013. Urbanization, biodiversity and ecosystem services: challenges and opportunities. Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities: A Global Assessment T Elmqvist, J Goodness, PJ Marcotullio, S Parnell, M Sendstad, et al. 485–504 Dordrecht, Neth.: Springer [Google Scholar]
  85. Jabareen Y. 85.  2013. Planning the resilient city: concepts and strategies for coping with climate change and environmental risk. Cities 31:220–29 [Google Scholar]
  86. Watson V. 86.  2014. African urban fantasies: Dreams or nightmares?. Environ. Urban. 26:215–31 [Google Scholar]
  87. Mundoli S, Unnikrishnan H, Nagendra H. 87.  2017. The “Sustainable” in smart cities: ignoring the importance of urban ecosystems. Decision 44:103–20 [Google Scholar]
  88. Unnikrishnan H, Nagendra H. 88.  2015. Privatizing the commons: impact on ecosystem services in Bangalore's lakes. Urban Ecosyst 18:613–32 [Google Scholar]
  89. Bettencourt L, West G. 89.  2010. A unified theory of urban living. Nature 467:912–13 [Google Scholar]
  90. McPhearson T, Karki M, Herzog C, Santiago Fink H, Abbadie L. 90.  et al. 2017. Urban ecosystems and biodiversity. Climate Change and Cities: Second Assessment Report of the Urban Climate Change Research Network C Rosenzweig, W Solecki, P Romero-Lankao, S Mehrotra, S Dhakal, S Ali Ibrahim 259–320 Cambridge, UK: Cambridge Univ. Press In press [Google Scholar]
  91. Müller F, de Groot R, Willemen L. 91.  2010. Ecosystem services at the landscape scale: the need for integrative approaches. Landscape Online 23:1–11 [Google Scholar]
  92. Elmqvist T, Goodness J, Marcotullio PJ, Parnell S, Sendstad M. 92.  et al. 2013. Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities: A Global Assessment Dordrecht, Neth: Springer
  93. Deng X, Bai X. 93.  2014. Sustainable urbanization in western China. Environ.: Sci. Policy Sustain. Dev. 56:12–24 [Google Scholar]
  94. Grimm NB, Cook EM, Hale RL, Iwaniec DM. 94.  2016. A broader framing of ecosystems services in cities: benefits and challenges of built, natural, or hybrid system function. The Routledge Handbook of Urbanization and Global Environmental Change KC Seto, WD Solecki, CA Griffith 203–12 London: Routledge [Google Scholar]
  95. While A, Whitehead M. 95.  2013. Cities, urbanisation and climate change. Urban Stud 50:1325–31 [Google Scholar]
  96. Rosenzweig C, Solecki W, Romero-Lankao P, Mehrotra S, Dhakal S, Ali Ibrahim S. 96. , eds. 2017. Climate Change and Cities: Second Assessment Report of the Urban Climate Change Research Network Cambridge Univ. Press In press
  97. Gill SE, Handley JF, Ennos AR, Pauleit S. 97.  2007. Adapting cities for climate change: the role of the green infrastructure. Built Environ 33:115–33 [Google Scholar]
  98. Wilby RL, Perry GLW. 98.  2006. Climate change, biodiversity and the urban environment: a critical review based on London, UK. Progr. Phys. Geogr. 30:173–98 [Google Scholar]
  99. Hunt A, Watkiss P. 99.  2011. Climate change impacts and adaptation in cities: a review of the literature. Clim. Change 104:13–49 [Google Scholar]
  100. Parmesan C. 100.  2006. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37:637–69 [Google Scholar]
  101. Diamond SE, Cayton, Wepprich T, Clinton N, Jenkins RR, Dubbeling M. 101.  2013. Regional Development Dialogue, Series 34: Urban and Peri-urban Agriculture as a Means to Advance Disaster Risk Reduction and Climate Change. Disaster Risk Reduction and Resilience Building in Cities: Focussing on the Urban Poor. Nagoya, Jpn.: UN Cent. Reg. Dev. [Google Scholar]
  102. Attiwill PM. 102.  1994. The disturbance of forest ecosystems: the ecological basis for conservative management. For. Ecol. Manag. 63:247–300 [Google Scholar]
  103. Swetnam TW, Betancourt JL. 103.  2010. Mesoscale disturbance and ecological responses to decadal climatic variability in the American Southwest. Tree Rings and Natural Hazards M Stoffel, M Bollshweiler, DR Butler, BH Luckman 329–59 Dordrecht, Neth.: Springer [Google Scholar]
  104. Alberti M. 104.  2005. The effects of urban patterns on ecosystem function. Int. Reg. Sci. Rev. 28:168–92 [Google Scholar]
  105. Pearson RG, Dawson TP. 105.  2003. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful?. Glob. Ecol. Biogeogr. 12:361–71 [Google Scholar]
  106. Gilman SE, Urban MC, Tewksbury J, Gilchrist GW, Holt RD. 106.  2010. A framework for community interactions under climate change. Trends Ecol. Evol. 25:325–31 [Google Scholar]
  107. Gillner S, Bräuning A, Roloff A. 107.  2014. Dendrochronological analysis of urban trees: climatic response and impact of drought on frequently used tree species. Trees Struct. Funct. 28:1079–93 [Google Scholar]
  108. Nagendra H. 108.  2016. Nature in the City: Bengaluru in the Past, Present and Future New Delhi: Oxford Univ. Press
  109. Renaud F, Sudmeier-Rieux K, Estrella M. 109. , eds. 2013. The Role of Ecosystems in Disaster Reduction Tokyo: UN Univ. Press
  110. Gómez-Baggethun E, Gren Å, Barton D, Langemeyer J, McPhearson T. 110.  et al. 2013. Urban ecosystem services. Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities: A Global Assessment T Elmqvist, M Fragkias, J Goodness, B Güneralp, PJ Marcotullio, et al. 175–251 Dordrecht, Neth.: Springer [Google Scholar]
  111. Jones HP, Hole DG, Zavaleta ES. 111.  2012. Harnessing nature to help people adapt to climate change. Nat. Clim. Change 2:504–9 [Google Scholar]
  112. Foster J, Lowe A, Winkelman S. 112.  2011. The Value of Green Infrastructure for Urban Climate Adaptation Washington, DC: Cent. Clean Air Policy
  113. Wong NH, Yu C. 113.  2005. Study of green areas and urban heat island in a tropical city. Habitat Int 29:547–58 [Google Scholar]
  114. Chow WTL, Roth M. 114.  2006. Temporal dynamics of the urban heat island of Singapore. Int. J. Climatol. 26:2243–60 [Google Scholar]
  115. Vailshery LS, Jaganmohan M, Nagendra H. 115.  2013. Effect of street trees on microclimate and air pollution in a tropical city. Urban For. Urban Green. 12:408–15 [Google Scholar]
  116. Dowling J, Blumberg L, Hallstein E. 116.  2014. Reducing Climate Risks with Natural Infrastructure San Francisco: Nat. Conserv.
  117. 117. World Bank. 2012. What a waste: a global review of solid waste management Urb. Dev. Ser. Pap. World Bank Washington, DC: http://siteresources.worldbank.org/INTURBANDEVELOPMENT/Resources/336387-1334852610766/What_a_Waste2012_Final.pdf
  118. Gu B, Jiang S, Wang H, Wang Z, Jia R. 118.  et al. 2017. Characterization, quantification and management of China's municipal solid waste in spatiotemporal distributions: a review. Waste Manag 61:67–77 [Google Scholar]
  119. 119. UNEP, UNITAR. 2013. Guidelines for National Solid Waste Management Strategies: Moving from challenges to opportunities, UNEP, Vienna. http://cwm.unitar.org/national-profiles/publications/cw/wm/UNEP_UNITAR_NWMS_English.pdf
  120. Strasser S. 120.  2000. Waste and Want: A Social History of Trash New York: Holt Paperbacks
  121. Gandy M. 121.  1994. Recycling and the Politics of Urban Waste London: Earthscan
  122. Linzner R, Salhofer S. 122.  2014. Municipal solid waste recycling and the significance of informal sector in urban China. Waste Manag. Res. 32:896–907 [Google Scholar]
  123. Suthar S, Rayal P, Ahada CP. 123.  2016. Role of different stakeholders in trading of reusable/recyclable urban solid waste materials: a case study. Sustain. Cities Soc. 22:104–15 [Google Scholar]
  124. Davoudi S. 124.  2000. Planning for waste management: changing discourses and institutional relationships. Prog. Plann. 53:165–216 [Google Scholar]
  125. Medina M. 125.  2011. Solid wastes, poverty, and the environment in developing country cities: challenges and opportunities. Urbanization and Development: Multidisciplinary Perspectives Oxford: Oxford Univ. Press [Google Scholar]
  126. Wilson DC. 126.  2007. Development drivers for waste management. Waste Manag. Res. 25:198–207 [Google Scholar]
  127. Wilson DC. 127. United Nations Environment Programme, International Solid Waste Association (ISWA), eds. 2015. Global Waste Management Outlook Vienna: ISWA
  128. Yu Y, Zhang W. 128.  2016. Greenhouse gas emissions from solid waste in Beijing: the rising trend and the mitigation effects by management improvements. Waste Manag. Res. 34:368–77 [Google Scholar]
  129. 129. Intergovernmental Panel on Climate Change (IPCC). 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Geneva: IPCC http://www.ipcc.ch/report/ar5/wg1/ [Google Scholar]
  130. McDonough W, Braungart M. 130.  2013. The upcycle: beyond sustainability—designing for abundance. Int. J. Sustain. High. Educ. 14:4–12 [Google Scholar]
  131. 131. Ellen MacArthur Foundation. 2012. Towards a Circular Economy: An Economic and Business Rationale for an Accelerated Transition Isle of Wight, UK: Ellen MacArthur Found.
  132. Lorek S, Fuchs D. 132.  2013. Strong sustainable consumption governance—Precondition for a degrowth path?. J. Clean. Prod. 38:36–43 [Google Scholar]
  133. Mbiba B. 133.  2014. Urban solid waste characteristics and household appetite for separation at source in Eastern and Southern Africa. Habitat Int 43:152–62 [Google Scholar]
  134. Geng Y, Tsuyoshi F, Chen X. 134.  2010. Evaluation of innovative municipal solid waste management through urban symbiosis: a case study of Kawasaki. J. Clean. Prod. 18:993–1000 [Google Scholar]
  135. Ceschin F. 135.  2013. Critical factors for implementing and diffusing sustainable product-service systems: insights from innovation studies and companies' experiences. J. Clean. Prod. 45:74–88 [Google Scholar]
  136. Calcott P, Walls M. 136.  2005. Waste, recycling, and “Design for Environment”: roles for markets and policy instruments. Resour. Energy Econ. 27:287–305 [Google Scholar]
  137. 137. OECD. 2014. The State of Play on Extended Producer Responsibility (EPR): Opportunities and Challenges Tokyo.: https://www.oecd.org/environment/waste/Global%20Forum%20Tokyo%20Issues%20Paper%2030-5-2014.pdf
  138. Gould KA, Pellow DN, Schnaiberg A. 138.  2008. The Treadmill of Production: Injustice and Unsustainability in the Global Economy Boulder: Paradigm Publ.
  139. Zotos G, Karagiannidis A, Zampetoglou S, Malamakis A, Antonopoulos IS. 139.  et al. 2009. Developing a holistic strategy for integrated waste management within municipal planning: challenges, policies, solutions and perspectives for Hellenic municipalities in the zero-waste, low-cost direction. Waste Manag 29:1686–92 [Google Scholar]
  140. Zaman AU, Lehmann S. 140.  2013. The zero waste index: a performance measurement tool for waste management systems in a “zero waste city.”. J. Clean. Prod. 50:123–32 [Google Scholar]
  141. Mills G, Cleugh H, Emmanuel R, Endlicher W, Erell E. 141.  et al. 2010. Climate information for improved planning and management of mega cities (Needs Perspective). Proc. Procedia Environ. Sci. 1:228–46 [Google Scholar]
  142. Wang M, Zhang X, Yan X. 142.  2013. Modeling the climatic effects of urbanization in the Beijing–Tianjin–Hebei metropolitan area. Theor. Appl. Climatol. 113:377–85 [Google Scholar]
  143. Arnfield AJ. 143.  2003. Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 23:1–26 [Google Scholar]
  144. Grimmond CSB, Oke TR. 144.  1999. Aerodynamic properties of urban areas derived from analysis of surface form. J. Appl. Meteorol. 38:1262–92 [Google Scholar]
  145. Cleugh H, Grimmond S. 145.  2012. Urban climates and global climate change. The Future of the World's Climate A Henderson-Sellers, K McGuffie 47–76 Boston: Elsevier. , 2nd ed.. [Google Scholar]
  146. Stanhill G, Cohen S. 146.  2009. Is solar dimming global or urban? Evidence from measurements in Israel between 1954 and 2007. J. Geophys. Res. Atmos. 114:D00D17 [Google Scholar]
  147. Jin M, Dickinson RE, Zhang DL. 147.  2005. The footprint of urban areas on global climate as characterized by MODIS. J. Clim. 18:1551–65 [Google Scholar]
  148. Sailor DJ. 148.  2011. A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment. Int. J. Climatol. 31:189–99 [Google Scholar]
  149. Grimmond CSB, Oke TR. 149.  2002. Turbulent heat fluxes in urban areas: observations and a local-scale urban meteorological parameterization scheme (LUMPS). J. Appl. Meteorol. 41:792–810 [Google Scholar]
  150. Roth M. 150.  2007. Review of urban climate research in (sub)tropical regions. Int. J. Climatol. 27:1859–73 [Google Scholar]
  151. Bowler DE, Buyung-Ali L, Knight TM, Pullin AS. 151.  2010. Urban greening to cool towns and cities: a systematic review of the empirical evidence. Landscape Urban Plann 97:147–55 [Google Scholar]
  152. Crawford B, Grimmond CSB, Christen A. 152.  2011. Five years of carbon dioxide fluxes measurements in a highly vegetated suburban area. Atmos. Environ. 45:896–905 [Google Scholar]
  153. Velasco E, Roth M. 153.  2010. Cities as net sources of CO2: review of atmospheric CO2 exchange in urban environments measured by eddy covariance technique. Geogr. Compass 4:1238–59 [Google Scholar]
  154. Middel A, Häb K, Brazel AJ, Martin CA, Guhathakurta S. 154.  2014. Impact of urban form and design on mid-afternoon microclimate in Phoenix Local Climate Zones. Landscape Urban Plann 122:16–28 [Google Scholar]
  155. Harman IN, Barlow JF, Belcher SE. 155.  2004. Scalar fluxes from urban street canyons. Part II: Model. Boundary-Layer Meteorol 113:387–409 [Google Scholar]
  156. Oke TR. 156.  1982. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 108:1–24 [Google Scholar]
  157. Souch C, Grimmond S. 157.  2006. Applied climatology: urban climate. Progr. Phys. Geogr. 30:270–9 [Google Scholar]
  158. Grimmond CSB. 158.  2006. Progress in measuring and observing the urban atmosphere. Theor. Appl. Climatol. 84:3–22 [Google Scholar]
  159. Stone B, Hess JJ, Frumkin H. 159.  2010. Urban form and extreme heat events: are sprawling cities more vulnerable to climate change than compact cities. Environ. Health Perspect. 118:1425–28 [Google Scholar]
  160. Hidalgo J, Masson V, Baklanov A, Pigeon G, Gimeno L. 160.  2008. Advances in urban climate modeling. Ann. N. Y. Acad. Sci. 1146:354–74 [Google Scholar]
  161. Baik JJ, Kim YH, Chun HY. 161.  2001. Dry and moist convection forced by an urban heat island. J. Appl. Meteorol. 40:1462–75 [Google Scholar]
  162. Rozoff CM, Cotton WR, Adegoke JO. 162.  2003. Simulation of St. Louis, Missouri, land use impacts on thunderstorms. J. Appl. Meteorol. 42:716–38 [Google Scholar]
  163. Bornstein R, Lin Q. 163.  2000. Urban heat islands and summertime convective thunderstorms in Atlanta: three case studies. Atmos. Environ. 34:507–16 [Google Scholar]
  164. Ramanathan V, Carmichael G. 164.  2008. Global and regional climate changes due to black carbon. Nat. Geosci. 1:221–27 [Google Scholar]
  165. Shepherd JM. 165.  2005. A review of current investigations of urban-induced rainfall and recommendations for the future. Earth Interact 9:121–27 [Google Scholar]
  166. Shastri H, Paul S, Ghosh S, Karmakar S. 166.  2015. Impacts of urbanization on Indian summer monsoon rainfall extremes. J. Geophys. Res.: Atmos. 120:496–516 [Google Scholar]
  167. Mitchell VG, Cleugh HA, Grimmond CSB, Xu J. 167.  2008. Linking urban water balance and energy balance models to analyse urban design options. Hydrol. Process. 22:2891–900 [Google Scholar]
  168. Bai X. 168.  2003. The process and mechanism of urban environmental change: an evolutionary view. Int. J. Environ. Pollut. 19:528–41 [Google Scholar]
  169. Glaeser E. 169.  2011. Cities, productivity, and quality of life. Science 333:592–94 [Google Scholar]
  170. Gleeson B, Spiller M. 170.  2012. Metropolitan governance in the urban age: trends and questions. Curr. Opin. Environ. Sustainability 4:393–7 [Google Scholar]
  171. Bai X. 171.  2007. Integrating global environmental concerns into urban management: the scale and readiness arguments. J. Ind. Ecol. 11:15–29 [Google Scholar]
  172. Bai X, McAllister RRJ, Beaty RM, Taylor B. 172.  2010. Urban policy and governance in a global environment: complex systems, scale mismatches and public participation. Curr. Opin. Environ. Sustain. 2:129–35 [Google Scholar]
  173. Glaeser EL, Kahn ME. 173.  2010. The greenness of cities: carbon dioxide emissions and urban development. J. Urban Econ. 67:404–18 [Google Scholar]
  174. Larondelle N, Hamstead ZA, Kremer P, Haase D, McPhearson T. 174.  2014. Applying a novel urban structure classification to compare the relationships of urban structure and surface temperature in Berlin and New York City. Appl. Geogr. 53:427–37 [Google Scholar]
  175. Pollock K. 175.  2016. Policy: urban physics. Nature 531:S64–S66 [Google Scholar]
  176. Säynäjoki E-S, Heinonen J, Junnila S. 176.  2014. The power of urban planning on environmental sustainability: a focus group study in Finland. Sustainability 6:6622–43 [Google Scholar]
  177. Frantzeskaki N, Kabisch N. 177.  2016. Designing a knowledge co-production operating space for urban environmental governance—lessons from Rotterdam, Netherlands and Berlin, Germany. Environ. Sci. Policy 62:90–98 [Google Scholar]
  178. Trencher G, Bai X, Evans J, McCormick K, Yarime M. 178.  2014. University partnerships for co-designing and co-producing urban sustainability. Glob. Environ. Change 28:153–65 [Google Scholar]
  179. Birkmann J, Garschagen M, Kraas F, Quang N. 179.  2010. Adaptive urban governance: new challenges for the second generation of urban adaptation strategies to climate change. Sustain. Sci. 5:185–206 [Google Scholar]
/content/journals/10.1146/annurev-environ-102016-061128
Loading
/content/journals/10.1146/annurev-environ-102016-061128
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error