1932

Abstract

Noninvasive prenatal screening (NIPS) has emerged as a highly accurate method of screening for fetal Down syndrome, with a detection rate and specificity approaching 100%. Challenging the widespread use of this technology are cost and the paradigm shift in counseling that accompanies any emerging technology. The expense of the test is expected to decrease with increased utilization, and well beyond the current NIPS technology, its components (fetal genome measurements, sequencing technology, and bioinformatics) will be utilized alone or in combinations to interrogate the fetal genome. The end goal is simple: to offer patients information early in pregnancy about fetal genomes without incurring procedural risks. This will allow patients an opportunity to make informed reproductive and pregnancy management decisions based on precise fetal genomic information.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-090413-025341
2014-08-31
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/genom/15/1/annurev-genom-090413-025341.html?itemId=/content/journals/10.1146/annurev-genom-090413-025341&mimeType=html&fmt=ahah

Literature Cited

  1. Adinolfi M, Sherlock J. 1.  1997. First trimester prenatal diagnosis using transcervical cells: an evaluation. Hum. Reprod. Update 3:383–92 [Google Scholar]
  2. Alamillo CM, Krantz D, Evans M, Fiddler M, Pergament E. 2.  2013. Nearly a third of abnormalities found after first-trimester screening are different than expected: 10-year experience from a single center. Prenat. Diagn. 33:251–56 [Google Scholar]
  3. 3. Am. Coll. Obstet. Gynecol. Comm. Genet 2012. ACOG Committee Opinion No. 545: noninvasive prenatal testing for fetal aneuploidy. Obstet. Gynecol. 120:1532–34 [Google Scholar]
  4. 4. Am. Coll. Obstet. Gynecol. Comm. Pract. Bull 2007. ACOG Practice Bulletin No. 77: screening for fetal chromosomal abnormalities. Obstet. Gynecol. 109:217–27 [Google Scholar]
  5. 5. Am. Coll. Obstet. Gynecol. Comm. Pract. Bull 2007. ACOG Practice Bulletin No. 88, December 2007: invasive prenatal testing for aneuploidy. Obstet. Gynecol. 110:1459–67 [Google Scholar]
  6. Ashoor G, Syngelaki A, Poon LC, Rezende JC, Nicolaides KH. 6.  2013. Fetal fraction in maternal plasma cell-free DNA at 11–13 weeks' gestation: relation to maternal and fetal characteristics. Ultrasound Obstet. Gynecol. 41:26–32 [Google Scholar]
  7. Ashoor G, Syngelaki A, Wagner M, Birdir C, Nicolaides KH. 7.  2012. Chromosome-selective sequencing of maternal plasma cell-free DNA for first-trimester detection of trisomy 21 and trisomy 18. Am. J. Obstet. Gynecol. 206:322–25 [Google Scholar]
  8. Avent ND, Madgett TE, Maddocks DG, Soothill PW. 8.  2009. Cell-free fetal DNA in the maternal serum and plasma: current and evolving applications. Curr. Opin. Obstet. Gynecol. 21:175–79 [Google Scholar]
  9. Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ. 9.  et al. 2011. Exome sequencing as a tool for Mendelian disease gene discovery. Nat. Rev. Genet. 12:745–55 [Google Scholar]
  10. Bangsgaard L, Tabor A. 10.  2013. Do pregnant women and their partners make an informed choice about first trimester risk assessment for Down syndrome, and are they satisfied with the choice?. Prenat. Diagn. 33:146–52 [Google Scholar]
  11. Benn PA, Borrell A, Chiu R, Cuckle H, Dugoff L. 11.  et al. 2013. Position statement from the Aneuploidy Screening Committee on behalf of the Board of the International Society for Prenatal Diagnosis. Prenat. Diagn. 33:622–29 [Google Scholar]
  12. Benn PA, Borrell A, Cuckle H, Dugoff L, Gross S. 12.  et al. 2012. Prenatal detection of Down syndrome using massively parallel sequencing (MPS): a rapid response statement from a committee on behalf of the Board of the International Society for Prenatal Diagnosis, 24 October 2011. Prenat. Diagn. 32:1–2 [Google Scholar]
  13. Benn PA, Chapman AR. 13.  2010. Ethical challenges in providing noninvasive prenatal diagnosis. Curr. Opin. Obstet. Gynecol. 22:128–34 [Google Scholar]
  14. Bianchi DW. 14.  2012. From prenatal genomic diagnosis to fetal personalized medicine: progress and challenges. Nat. Med. 18:1041–51 [Google Scholar]
  15. Bianchi DW, Avent ND, Costa JM, van der Schoot CE. 15.  2005. Noninvasive prenatal diagnosis of fetal Rhesus D: ready for prime(r) time. Obstet. Gynecol. 106:841–44 [Google Scholar]
  16. Bianchi DW, Flint AF, Pizzimenti MF, Knoll JH, Latt SA. 16.  1990. Isolation of fetal DNA from nucleated erythrocytes in maternal blood. Proc. Natl. Acad. Sci. USA 87:3279–83 [Google Scholar]
  17. Bianchi DW, Platt LD, Goldberg JD, Abuhamad AZ, Sehnert AJ, Rava RP. 17.  2012. Genome-wide fetal aneuploidy detection by maternal plasma DNA sequencing. Obstet. Gynecol. 119:890–901 [Google Scholar]
  18. Bianchi DW, Simpson JL, Jackson LG, Elias S, Holzgreve W. 18.  et al. 2002. Fetal gender and aneuploidy detection using fetal cells in maternal blood: analysis of NIFTY I data. Prenat. Diagn. 22:609–15 [Google Scholar]
  19. Bianchi DW, Zickwolf GK, Weil GJ, Sylvester S, DeMaria MA. 19.  1996. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc. Natl. Acad. Sci. USA 93:705–8 [Google Scholar]
  20. Brar H, Wang E, Struble C, Musci TJ, Norton ME. 20.  2013. The fetal fraction of cell-free DNA in maternal plasma is not affected by a priori risk of fetal trisomy. J. Matern. Fetal Neonatal Med. 26:143–45 [Google Scholar]
  21. Canick JA, Kloza EM, Lambert-Messerlian GM, Haddow JE, Ehrich M. 21.  et al. 2012. DNA sequencing of maternal plasma to identify Down syndrome and other trisomies in multiple gestations. Prenat. Diagn. 32:730–34 [Google Scholar]
  22. Canick JA, Palomaki GE, Kloza EM, Lambert-Messerlian GM, Haddow JE. 22.  2013. The impact of maternal plasma DNA fetal fraction on next generation sequencing tests for common fetal aneuploidies. Prenat. Diagn. 33:667–74 [Google Scholar]
  23. Caughey AB, Hopkins LM, Norton ME. 23.  2006. Chorionic villus sampling compared with amniocentesis and the difference in the rate of pregnancy loss. Obstet. Gynecol. 108:612–16 [Google Scholar]
  24. Chan KC, Zhang J, Hui AB, Wong N, Lau TK. 24.  et al. 2004. Size distributions of maternal and fetal DNA in maternal plasma. Clin. Chem. 50:88–92 [Google Scholar]
  25. Chim SS, Tong YK, Chiu RW, Lau TK, Leung TN. 25.  et al. 2005. Detection of the placental epigenetic signature of the maspin gene in maternal plasma. Proc. Natl. Acad. Sci. USA 102:14753–58 [Google Scholar]
  26. Chitty LS, Khalil A, Barrett AN, Pajkrt E, Griffin DR, Cole TJ. 26.  2013. Safe, accurate, prenatal diagnosis of thanatophoric dysplasia using ultrasound and free fetal DNA. Prenat. Diagn. 33:416–23 [Google Scholar]
  27. Chiu RW, Akolekar R, Zheng YW, Leung TY, Sun H. 27.  et al. 2011. Non-invasive prenatal assessment of trisomy 21 by multiplexed maternal plasma DNA sequencing: large scale validity study. BMJ 342:c7401 [Google Scholar]
  28. Chiu RW, Cantor CR, Lo YM. 28.  2009. Non-invasive prenatal diagnosis by single molecule counting technologies. Trends Genet. 25:324–31 [Google Scholar]
  29. Chiu RW, Chan KC, Gao Y, Lau VY, Zheng W. 29.  et al. 2008. Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. Proc. Natl. Acad. Sci. USA 105:20458–63 [Google Scholar]
  30. Choi H, Lau TK, Jiang FM, Chan MK, Zhang HY. 30.  et al. 2013. Fetal aneuploidy screening by maternal plasma DNA sequencing: “false positive” due to confined placental mosaicism. Prenat. Diagn. 33:198–200 [Google Scholar]
  31. Christensen CM. 31.  1997. The Innovator's Dilemma: When New Technologies Cause Great Firms to Fail Boston, MA: Harvard Bus. Sch. Press
  32. Cioni R, Bussani C, Scarselli B, Bucciantini S, Marchionni M, Scarselli G. 32.  2005. Comparison of two techniques for transcervical cell sampling performed in the same study population. Prenat. Diagn. 25:198–202 [Google Scholar]
  33. Collins FS, Hamburg MA. 33.  2013. First FDA authorization for next-generation sequencer. N. Engl. J. Med. 369:2369–71 [Google Scholar]
  34. Costa JM, Benachi A, Gautier E. 34.  2002. New strategy for prenatal diagnosis of X-linked disorders. N. Engl. J. Med. 346:1502 [Google Scholar]
  35. Cuckle H, Benn P. 35.  2010. Multi-marker maternal serum screening for chromosomal abnormalities. Genetic Disorders and the Fetus: Diagnosis, Prevention and Treatment A Milunsky, JM Milunsky 771–818 Chichester, UK: Wiley-Blackwell, 6th ed.. [Google Scholar]
  36. Dan S, Chen F, Choy KW, Jiang F, Lin J. 36.  et al. 2012. Prenatal detection of aneuploidy and imbalanced chromosomal arrangements by massively parallel sequencing. PLoS ONE 7:e27835 [Google Scholar]
  37. Dan S, Wang W, Ren J, Li Y, Hu H. 37.  et al. 2012. Clinical application of massively parallel sequencing-based prenatal noninvasive fetal trisomy test for trisomies 21 and 18 in 11,105 pregnancies with mixed risk factors. Prenat. Diagn. 32:1225–32 [Google Scholar]
  38. Daniels G, Finning K, Martin P, Massey E. 38.  2009. Noninvasive prenatal diagnosis of fetal blood group phenotypes: current practice and future prospects. Prenat. Diagn. 29:101–7 [Google Scholar]
  39. Darnovsky MD, Stern AM. 39.  2013. The bleak new world of prenatal genetics. Wall Street Journal June 12. http://online.wsj.com/news/articles/SB10001424127887323844804578533334085530690
  40. Devers PL, Cronister A, Ormond KE, Facio F, Brasington CK, Flodman P. 40.  2013. Noninvasive prenatal testing/noninvasive prenatal diagnosis: the position of the National Society of Genetic Counselors. J. Genet. Couns. 22:291–95 [Google Scholar]
  41. Eddleman KA, Malone FD, Sullivan L, Dukes K, Berkowitz RL. 41.  et al. 2006. Pregnancy loss rates after midtrimester amniocentesis. Obstet. Gynecol. 108:1067–72 [Google Scholar]
  42. Ehrich M, Deciu C, Zwiefelhofer T, Tynan JA, Cagasan L. 42.  et al. 2011. Noninvasive detection of fetal trisomy 21 by sequencing of DNA in maternal blood: a study in a clinical setting. Am. J. Obstet. Gynecol. 204:205.e1–11 [Google Scholar]
  43. Elias S. 43.  2010. Amniocentesis and fetal blood sampling. Genetic Disorders and the Fetus: Diagnosis, Prevention and Treatment A Milunsky, JM Milunsky 63–93 Chichester, UK: Wiley-Blackwell, 6th ed.. [Google Scholar]
  44. Ergin T, Baltaci V, Zeyneloglu HB, Duran EH, Ergeneli MH, Batioglu S. 44.  2001. Non-invasive early prenatal diagnosis using fluorescent in situ hybridization on transcervical cells: comparison of two different methods for retrieval. Eur. J. Obstet. Gynecol. Reprod. Biol. 95:37–41 [Google Scholar]
  45. Faas BH, de Ligt J, Janssen I, Eggink AJ, Wijnberger LD. 45.  et al. 2012. Non-invasive prenatal diagnosis of fetal aneuploidies using massively parallel sequencing-by-ligation and evidence that cell-free fetal DNA in the maternal plasma originates from cytotrophoblastic cells. Expert Opin. Biol. Ther. 12:Suppl. 1S19–26 [Google Scholar]
  46. Fairbrother G, Johnson S, Musci TJ, Song K. 46.  2013. Clinical experience of noninvasive prenatal testing with cell-free DNA for fetal trisomies 21, 18, and 13, in a general screening population. Prenat. Diagn. 33:580–83 [Google Scholar]
  47. Fan HC, Blumenfeld YJ, Chitkara U, Hudgins L, Quake SR. 47.  2008. Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proc. Natl. Acad. Sci. USA 105:16266–71 [Google Scholar]
  48. Fan HC, Gu W, Wang J, Blumenfeld YJ, El-Sayed YY, Quake SR. 48.  2012. Non-invasive prenatal measurement of the fetal genome. Nature 487:320–24 [Google Scholar]
  49. Fan HC, Quake SR. 49.  2010. Sensitivity of noninvasive prenatal detection of fetal aneuploidy from maternal plasma using shotgun sequencing is limited only by counting statistics. PLoS ONE 5:e10439 [Google Scholar]
  50. Forabosco A, Percesepe A, Santucci S. 50.  2009. Incidence of non-age-dependent chromosomal abnormalities: a population-based study on 88965 amniocenteses. Eur. J. Hum. Genet. 17:897–903 [Google Scholar]
  51. Gao Y, Stejskal D, Jiang F, Wang W. 51.  2014. False-negative trisomy 18 non-invasive prenatal test result due to 48,XXX,+18 placental mosaicism. Ultrasound Obstet. Gynecol. 43:477–78 [Google Scholar]
  52. Garfield SS, Armstrong SO. 52.  2012. Clinical and cost consequences of incorporating a novel noninvasive prenatal test into the diagnostic pathway for fetal trisomies. J. Manag. Care Med. 15:34–41 [Google Scholar]
  53. Gil MM, Quezada MS, Bregant B, Syngelaki A, Nicolaides KH. 53.  2014. Cell-free DNA analysis for trisomy risk assessment in first-trimester twin pregnancies. Fetal Diagn. Ther. 35:151–68 [Google Scholar]
  54. Goodspeed TA, Allyse M, Sayres LC, Norton ME, Cho MK. 54.  2012. Translating cell-free fetal DNA technology: structural lessons from non-invasive RhD blood typing. Trends Biotechnol. 31:7–9 [Google Scholar]
  55. Grande M, Ordoñez E, Cirigliano V, Cid J, Grau E. 55.  et al. 2013. Clinical application of midtrimester non-invasive fetal RHD genotyping and identification of RHD variants in a mixed-ethnic population. Prenat. Diagn. 33:173–78 [Google Scholar]
  56. Grati FR, Barlocco A, Grimi B, Milani S, Frascoli G. 56.  et al. 2010. Chromosome abnormalities investigated by non-invasive prenatal testing account for approximately 50% of fetal unbalances associated with relevant clinical phenotypes. Am. J. Med. Genet. A 152A:1434–42 [Google Scholar]
  57. Gregg AR, Gross SJ, Best RG, Monaghan KG, Bajaj K. 57.  et al. 2013. ACMG statement on noninvasive prenatal screening for fetal aneuploidy. Genet. Med. 15:395–98 [Google Scholar]
  58. Guetta E, Simchen MJ, Mammon-Daviko K, Gordon D, Aviram-Goldring A. 58.  et al. 2004. Analysis of fetal blood cells in the maternal circulation: challenges, ongoing efforts, and potential solutions. Stem Cells Dev. 13:93–99 [Google Scholar]
  59. Hahn S, Sant R, Holzgreve W. 59.  1998. Fetal cells in maternal blood: current and future perspectives. Mol. Hum. Reprod. 4:515–21 [Google Scholar]
  60. Hahn S, Zhong XY, Holzgreve W. 60.  2008. Recent progress in non-invasive prenatal diagnosis. Semin. Fetal Neonatal Med. 13:57–62 [Google Scholar]
  61. Hall AL, Drendel HM, Verbrugge JL, Reese AM, Schumacher KL. 61.  et al. 2013. Positive cell-free fetal DNA testing for trisomy 13 reveals confined placental mosaicism. Genet. Med. 15:729–32 [Google Scholar]
  62. Hui L, Bianchi DW. 62.  2013. Recent advances in the prenatal interrogation of the human fetal genome. Trends Genet. 29:84–91 [Google Scholar]
  63. Kitzman JO, Snyder MW, Ventura M, Lewis AP, Qiu R. 63.  et al. 2012. Noninvasive whole-genome sequencing of a human fetus. Sci. Transl. Med. 4:137ra76 [Google Scholar]
  64. Lau TK, Chen F, Pan X, Pooh RK, Jiang F. 64.  et al. 2012. Noninvasive prenatal diagnosis of common fetal chromosomal aneuploidies by maternal plasma DNA sequencing. J. Matern. Fetal Neonatal Med. 25:1370–74 [Google Scholar]
  65. Lau TK, Jiang FM, Chan MK, Zhang H, Lo PS, Wang W. 65.  2013. Non-invasive prenatal screening of fetal Down syndrome by maternal plasma DNA sequencing in twin pregnancies. J. Matern. Fetal Neonatal Med. 26:434–37 [Google Scholar]
  66. Lau TK, Jiang FM, Stevenson RJ, Lo TK, Chan LW. 66.  et al. 2013. Secondary findings from non-invasive prenatal testing for common fetal aneuploidies by whole genome sequencing as a clinical service. Prenat. Diagn. 33:602–8 [Google Scholar]
  67. Liang D, Lv W, Wang H, Xu L, Liu J. 67.  et al. 2013. Non-invasive prenatal testing of fetal whole chromosome aneuploidy by massively parallel sequencing. Prenat. Diagn. 33:409–15 [Google Scholar]
  68. Lo YM, Corbetta N, Chamberlain PF, Rai V, Sargent IL. 68.  et al. 1997. Presence of fetal DNA in maternal plasma and serum. Lancet 350:485–87 [Google Scholar]
  69. Lo YM, Hjelm NM, Fidler C, Sargent IL, Murphy MF. 69.  et al. 1998. Prenatal diagnosis of fetal RhD status by molecular analysis of maternal plasma. N. Engl. J. Med. 339:1734–38 [Google Scholar]
  70. Lo YM, Lun FM, Chan KC, Tsui NB, Chong KC. 70.  et al. 2007. Digital PCR for the molecular detection of fetal chromosomal aneuploidy. Proc. Natl. Acad. Sci. USA 104:13116–21 [Google Scholar]
  71. Lo YM, Tsui NB, Chiu RW, Lau TK, Leung TN. 71.  et al. 2007. Plasma placental RNA allelic ratio permits noninvasive prenatal chromosomal aneuploidy detection. Nat. Med. 13:218–23 [Google Scholar]
  72. Lun FM, Chiu RW, Chan KC, Leung TY, Lau TK, Lo YM. 72.  2008. Microfluidics digital PCR reveals a higher than expected fraction of fetal DNA in maternal plasma. Clin. Chem. 54:1664–72 [Google Scholar]
  73. Malone FD, Canick JA, Ball RH, Nyberg DA, Comstock CH. 73.  et al. 2005. First-trimester or second-trimester screening, or both, for Down's syndrome. N. Engl. J. Med. 353:2001–11 [Google Scholar]
  74. Mennuti MT, Cherry AM, Morrissette JJ, Dugoff L. 74.  2013. Is it time to sound an alarm about false-positive cell-free DNA testing for fetal aneuploidy?. Am. J. Obstet. Gynecol. 209:415–19 [Google Scholar]
  75. Merkatz IR, Nitowsky HM, Macri JN, Johnson WE. 75.  1984. An association between low maternal serum α-fetoprotein and fetal chromosomal abnormalities. Am. J. Obstet. Gynecol. 148:886–94 [Google Scholar]
  76. Miltenyi S, Müller W, Weichel W, Radbruch A. 76.  1990. High gradient magnetic cell separation with MACS. Cytometry 11:231–38 [Google Scholar]
  77. Moise KJ Jr, Boring NH, O'Shaughnessy R, Simpson LL, Wolfe HM. 77.  et al. 2013. Circulating cell-free fetal DNA for the detection of RHD status and sex using reflex fetal identifiers. Prenat. Diagn. 33:95–101 [Google Scholar]
  78. Morain S, Greene MF, Mello MM. 78.  2013. A new era in noninvasive prenatal testing. N. Engl. J. Med. 369:499–501 [Google Scholar]
  79. 79. Natl. Inst. Health 2013. New NIH awards focus on nanopore technology for DNA sequencing. News Release, Sept. 6, Natl. Inst. Health, Bethesda, MD. http://www.nih.gov/news/health/sep2013/nhgri-06a.htm
  80. Nicolaides KH, Syngelaki A, Ashoor G, Birdir C, Touzet G. 80.  2012. Noninvasive prenatal testing for fetal trisomies in a routinely screened first-trimester population. Am. J. Obstet. Gynecol. 207:374–76 [Google Scholar]
  81. Nicolaides KH, Syngelaki A, Gil M, Atanasova V, Markova D. 81.  2013. Validation of targeted sequencing of single-nucleotide polymorphisms for non-invasive prenatal detection of aneuploidy of chromosomes 13, 18, 21, X, and Y. Prenat. Diagn. 33:575–79 [Google Scholar]
  82. Nicolaides KH, Syngelaki A, Gil MM, Quezada MS, Zinevich Y. 82.  2014. Prenatal detection of fetal triploidy from cell-free DNA testing in maternal blood. Fetal Diagn. Ther. 35:207–12 [Google Scholar]
  83. Norton ME, Brar H, Weiss J, Karimi A, Laurent LC. 83.  et al. 2012. Non-Invasive Chromosomal Evaluation (NICE) Study: results of a multicenter prospective cohort study for detection of fetal trisomy 21 and trisomy 18. Am. J. Obstet. Gynecol. 207:137–38 [Google Scholar]
  84. Norton ME, Rose NC, Benn P. 84.  2013. Noninvasive prenatal testing for fetal aneuploidy: clinical assessment and a plea for restraint. Obstet. Gynecol. 121:847–50 [Google Scholar]
  85. Ohno M, Caughey A. 85.  2013. The role of noninvasive prenatal testing as a diagnostic versus a screening tool—a cost-effectiveness analysis. Prenat. Diagn. 33:630–35 [Google Scholar]
  86. Osborne CM, Hardisty E, Devers P, Kaiser-Rogers K, Hayden MA. 86.  et al. 2013. Discordant noninvasive prenatal testing results in a patient subsequently diagnosed with metastatic disease. Prenat. Diagn. 33:609–11 [Google Scholar]
  87. Palomaki GE, Deciu C, Kloza EM, Lambert-Messerlian GM, Haddow JE. 87.  et al. 2012. DNA sequencing of maternal plasma reliably identifies trisomy 18 and trisomy 13 as well as Down syndrome: an international collaborative study. Genet. Med. 14:296–305 [Google Scholar]
  88. Palomaki GE, Haddow JE. 88.  1987. Maternal serum α-fetoprotein, age, and Down syndrome risk. Am. J. Obstet. Gynecol. 156:460–63 [Google Scholar]
  89. Palomaki GE, Kloza EM, Lambert-Messerlian GM, Haddow JE, Neveux LM. 89.  et al. 2011. DNA sequencing of maternal plasma to detect Down syndrome: an international clinical validation study. Genet. Med. 13:913–20 [Google Scholar]
  90. Pan M, Li FT, Li Y, Jiang FM, Li DZ. 90.  et al. 2013. Discordant results between fetal karyotyping and non-invasive prenatal testing by maternal plasma sequencing in a case of uniparental disomy 21 due to trisomic rescue. Prenat. Diagn. 33:598–601 [Google Scholar]
  91. Papageorgiou EA, Patsalis PC. 91.  2012. Non-invasive prenatal diagnosis of aneuploidies: new technologies and clinical applications. Genome Med. 4:46 [Google Scholar]
  92. Poon LL, Leung TN, Lau TK, Chow KC, Lo YM. 92.  2002. Differential DNA methylation between fetus and mother as a strategy for detecting fetal DNA in maternal plasma. Clin. Chem. 48:35–41 [Google Scholar]
  93. Rava RP, Srinivasan A, Sehnert AJ, Bianchi DW. 93.  2014. Circulating fetal cell-free DNA fractions differ in autosomal aneuploidies and monosomy X. Clin. Chem. 60:243–50 [Google Scholar]
  94. Samango-Sprouse C, Banjevic M, Ryan A, Sigurjonsson S, Zimmermann B. 94.  et al. 2013. SNP-based non-invasive prenatal testing detects sex chromosome aneuploidies with high accuracy. Prenat. Diagn. 33:643–49 [Google Scholar]
  95. Schaffer A. 95.  2012. Nanopore sequencing. MIT Technol. Rev. May/June. http://www2.technologyreview.com/article/427677/nanopore-sequencing
  96. Schindler AM, Martin-du-Pan R. 96.  1972. Prenatal diagnosis of fetal lymphocytes in the maternal blood. Obstet. Gynecol. 40:340–46 [Google Scholar]
  97. Sehnert AJ, Rhees B, Comstock D, de Feo E, Heilek G. 97.  et al. 2011. Optimal detection of fetal chromosomal abnormalities by massively parallel DNA sequencing of cell-free fetal DNA from maternal blood. Clin. Chem. 57:1042–49 [Google Scholar]
  98. Simpson JL. 98.  2005. Choosing the best prenatal screening protocol. N. Engl. J. Med. 353:2068–70 [Google Scholar]
  99. Simpson JL, Elias S. 99.  2003. Genetics in Obstetrics and Gynecology Philadelphia: Saunders, 3rd ed..
  100. Song K, Musci TJ, Caughey AB. 100.  2013. Clinical utility and cost of non-invasive prenatal testing with cfDNA analysis in high-risk women based on a US population. J. Matern. Fetal Neonatal Med. 26:1180–85 [Google Scholar]
  101. Song Y, Liu C, Qi H, Zhang Y, Bian X, Liu J. 101.  2013. Noninvasive prenatal testing of fetal aneuploidies by massively parallel sequencing in a prospective Chinese population. Prenat. Diagn. 33:700–6 [Google Scholar]
  102. Sparks AB, Struble CA, Wang ET, Song K, Oliphant A. 102.  2012. Noninvasive prenatal detection and selective analysis of cell-free DNA obtained from maternal blood: evaluation for trisomy 21 and trisomy 18. Am. J. Obstet. Gynecol. 206:319 [Google Scholar]
  103. Sparks AB, Wang ET, Struble CA, Barrett W, Stokowski R. 103.  et al. 2012. Selective analysis of cell-free DNA in maternal blood for evaluation of fetal trisomy. Prenat. Diagn. 32:3–9 [Google Scholar]
  104. Srinivasan A, Bianchi DW, Huang H, Sehnert AJ, Rava RP. 104.  2013. Noninvasive detection of fetal subchromosome abnormalities via deep sequencing of maternal plasma. Am. J. Hum. Genet. 92:167–76 [Google Scholar]
  105. Srinivasan P, Westover MB, Bianchi MT. 105.  2012. Propagation of uncertainty in Bayesian diagnostic test interpretation. South. Med. J. 105:452–59 [Google Scholar]
  106. Swennenhuis JF, Reumers J, Thys K, Aerssens J, Terstappen LW. 106.  2013. Efficiency of whole genome amplification of single circulating tumor cells enriched by CellSearch and sorted by FACS. Genome Med. 5:106 [Google Scholar]
  107. van den Heuvel A, Chitty LS, Dormandy E, Newson A, Deans Z. 107.  et al. 2010. Will the introduction of non-invasive prenatal diagnostic testing erode informed choices? An experimental study of health care professionals. Patient Educ. Couns. 78:24–28 [Google Scholar]
  108. Wald NJ, Rodeck C, Hackshaw AK, Walters J, Chitty LS, Mackinson AM. 108.  2003. First and second trimester antenatal screening for Down's syndrome: the results of the Serum, Urine and Ultrasound Screening Study (SURUSS). Health Technol. Assess. 7:111–77 [Google Scholar]
  109. Walknowska J, Conte FA, Grumbach MM. 109.  1969. Practical and theoretical implications of fetal-maternal lymphocyte transfer. Lancet 293:1119–22 [Google Scholar]
  110. Wang E, Batey A, Struble C, Musci T, Song K, Oliphant A. 110.  2013. Gestational age and maternal weight effects on fetal cell-free DNA in maternal plasma. Prenat. Diagn. 33:662–66 [Google Scholar]
  111. Wapner RJ, Martin CL, Levy B, Ballif BC, Eng CM. 111.  et al. 2012. Chromosomal microarray versus karyotyping for prenatal diagnosis. N. Engl. J. Med. 367:2175–84 [Google Scholar]
  112. White HE, Dent CL, Hall VJ, Crolla JA, Chitty LS. 112.  2012. Evaluation of a novel assay for detection of the fetal marker RASSF1A: facilitating improved diagnostic reliability of noninvasive prenatal diagnosis. PLoS ONE 7:e45073 [Google Scholar]
  113. Wilson KL, Czerwinski JL, Hoskovec JM, Noblin SJ, Sullivan CM. 113.  et al. 2013. NSGC practice guideline: prenatal screening and diagnostic testing options for chromosome aneuploidy. J. Genet. Couns. 22:4–15 [Google Scholar]
  114. Woyke T, Tighe D, Mavromatis K, Clum A, Copeland A. 114.  et al. 2010. One bacterial cell, one complete genome. PLoS ONE 5:e10314 [Google Scholar]
  115. Wright A, Zhou Y, Weier JF, Caceres E, Kapidzic M. 115.  et al. 2004. Trisomy 21 is associated with variable defects in cytotrophoblast differentiation along the invasive pathway. Am. J. Med. Genet. A 130A:354–64 [Google Scholar]
  116. Wright CF, Burton H. 116.  2009. The use of cell-free fetal nucleic acids in maternal blood for non-invasive prenatal diagnosis. Hum. Reprod. Update. 15:139–51 [Google Scholar]
  117. Zimmermann B, Hill M, Gemelos G, Demko Z, Banjevic M. 117.  et al. 2012. Noninvasive prenatal aneuploidy testing of chromosomes 13, 18, 21, X, and Y, using targeted sequencing of polymorphic loci. Prenat. Diagn. 32:1233–41 [Google Scholar]
/content/journals/10.1146/annurev-genom-090413-025341
Loading
/content/journals/10.1146/annurev-genom-090413-025341
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error