1932

Abstract

The immune system is capable of recognizing tumors and eliminates many early malignant cells. However, tumors evolve to evade immune attack, and the tumor microenvironment is immunosuppressive. Immune responses are regulated by a number of immunological checkpoints that promote protective immunity and maintain tolerance. T cell coinhibitory pathways restrict the strength and duration of immune responses, thereby limiting immune-mediated tissue damage, controlling resolution of inflammation, and maintaining tolerance to prevent autoimmunity. Tumors exploit these coinhibitory pathways to evade immune eradication. Blockade of the PD-1 and CTLA-4 checkpoints is proving to be an effective and durable cancer immunotherapy in a subset of patients with a variety of tumor types, and additional combinations are further improving response rates. In this review we discuss the immunoregulatory functions of coinhibitory pathways and their translation to effective immunotherapies for cancer.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-032414-112049
2016-05-20
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/immunol/34/1/annurev-immunol-032414-112049.html?itemId=/content/journals/10.1146/annurev-immunol-032414-112049&mimeType=html&fmt=ahah

Literature Cited

  1. Leach DR, Krummel MF, Allison JP. 1.  1996. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271:1734–36 [Google Scholar]
  2. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA. 2.  et al. 2010. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363:711–23 [Google Scholar]
  3. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL. 3.  et al. 2012. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366:2455–65 [Google Scholar]
  4. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC. 4.  et al. 2012. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366:2443–54 [Google Scholar]
  5. Curran MA, Montalvo W, Yagita H, Allison JP. 5.  2010. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. PNAS 107:4275–80 [Google Scholar]
  6. Korman A, Chen B, Wang C, Wu L, Cardarelli P, Selby M. 6.  2007. Activity of Anti-PD-1 in murine tumor models: role of “host” PD-L1 and synergistic effect of anti-PD-1 and anti-CTLA-4. J. Immunol. 178:Suppl.S82 [Google Scholar]
  7. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA. 7.  et al. 2013. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 369:122–33 [Google Scholar]
  8. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE. 8.  et al. 2001. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1107–11 [Google Scholar]
  9. Smyth MJ, Thia KY, Street SE, MacGregor D, Godfrey DI, Trapani JA. 9.  2000. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J. Exp. Med. 192:755–60 [Google Scholar]
  10. Smyth MJ, Thia KY, Street SE, Cretney E, Trapani JA. 10.  et al. 2000. Differential tumor surveillance by natural killer (NK) and NKT cells. J. Exp. Med. 191:661–68 [Google Scholar]
  11. Dvorak HF. 11.  2015. Tumors: wounds that do not heal—redux. Cancer Immunol. Res. 3:1–11 [Google Scholar]
  12. Schumacher TN, Schreiber RD. 12.  2015. Neoantigens in cancer immunotherapy. Science 348:69–74 [Google Scholar]
  13. Kreiter S, Vormehr M, van de Roemer N, Diken M, Lower M. 13.  et al. 2015. Erratum: Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 523:370 [Google Scholar]
  14. Kreiter S, Vormehr M, van de Roemer N, Diken M, Lower M. 14.  et al. 2015. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520:692–96 [Google Scholar]
  15. Boon T, Cerottini JC, Van den Eynde B, van der Bruggen P, Van Pel A. 15.  1994. Tumor antigens recognized by T lymphocytes. Annu. Rev. Immunol. 12:337–65 [Google Scholar]
  16. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B. 16.  et al. 2006. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–64 [Google Scholar]
  17. Naito Y, Saito K, Shiiba K, Ohuchi A, Saigenji K. 17.  et al. 1998. CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res. 58:3491–94 [Google Scholar]
  18. Kalialis LV, Drzewiecki KT, Klyver H. 18.  2009. Spontaneous regression of metastases from melanoma: review of the literature. Melanoma Res. 19:275–82 [Google Scholar]
  19. Joseph CG, Darrah E, Shah AA, Skora AD, Casciola-Rosen LA. 19.  et al. 2014. Association of the autoimmune disease scleroderma with an immunologic response to cancer. Science 343:152–57 [Google Scholar]
  20. McCann J. 20.  1999. Can skin cancers be minimized or prevented in organ transplant patients?. J. Natl. Cancer Inst. 91:911–13 [Google Scholar]
  21. Postow MA, Chesney J, Pavlick AC, Robert C, Grossmann K. 21.  et al. 2015. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N. Engl. J. Med. 372:2006–17 [Google Scholar]
  22. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM. 22.  et al. 2014. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371:1507–17 [Google Scholar]
  23. Schreiber RD, Old LJ, Smyth MJ. 23.  2011. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331:1565–70 [Google Scholar]
  24. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. 24.  2002. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 3:991–98 [Google Scholar]
  25. Brown SD, Warren RL, Gibb EA, Martin SD, Spinelli JJ. 25.  et al. 2014. Neo-antigens predicted by tumor genome meta-analysis correlate with increased patient survival. Genome Res. 24:743–50 [Google Scholar]
  26. Rutledge WC, Kong J, Gao J, Gutman DA, Cooper LA. 26.  et al. 2013. Tumor-infiltrating lymphocytes in glioblastoma are associated with specific genomic alterations and related to transcriptional class. Clin. Cancer Res. 19:4951–60 [Google Scholar]
  27. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. 27.  2015. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160:48–61 [Google Scholar]
  28. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH. 28.  1995. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3:541–47 [Google Scholar]
  29. Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A. 29.  et al. 1995. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270:985–88 [Google Scholar]
  30. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M. 30.  et al. 2008. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322:271–75 [Google Scholar]
  31. Sage PT, Francisco LM, Carman CV, Sharpe AH. 31.  2013. The receptor PD-1 controls follicular regulatory T cells in the lymph nodes and blood. Nat. Immunol. 14:152–61 [Google Scholar]
  32. Keir ME, Liang SC, Guleria I, Latchman YE, Qipo A. 32.  et al. 2006. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J. Exp. Med. 203:883–95 [Google Scholar]
  33. Grohmann U, Orabona C, Fallarino F, Vacca C, Calcinaro F. 33.  et al. 2002. CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat. Immunol. 3:1097–101 [Google Scholar]
  34. Yu X, Harden K, Gonzalez LC, Francesco M, Chiang E. 34.  et al. 2009. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat. Immunol. 10:48–57 [Google Scholar]
  35. Grosso JF, Jure-Kunkel MN. 35.  2013. CTLA-4 blockade in tumor models: an overview of preclinical and translational research. Cancer Immun. 13:5 [Google Scholar]
  36. Sharma P, Allison JP. 36.  2015. The future of immune checkpoint therapy. Science 348:56–61 [Google Scholar]
  37. Azuma M, Ito D, Yagita H, Okumura K, Phillips JH. 37.  et al. 1993. B70 antigen is a second ligand for CTLA-4 and CD28. Nature 366:76–79 [Google Scholar]
  38. Freeman GJ, Gribben JG, Boussiotis VA, Ng JW, Restivo VA Jr. 38.  et al. 1993. Cloning of B7-2: a CTLA-4 counter-receptor that costimulates human T cell proliferation. Science 262:909–11 [Google Scholar]
  39. Collins AV, Brodie DW, Gilbert RJ, Iaboni A, Manso-Sancho R. 39.  et al. 2002. The interaction properties of costimulatory molecules revisited. Immunity 17:201–10 [Google Scholar]
  40. Alegre ML, Noel PJ, Eisfelder BJ, Chuang E, Clark MR. 40.  et al. 1996. Regulation of surface and intracellular expression of CTLA4 on mouse T cells. J. Immunol. 157:4762–70 [Google Scholar]
  41. Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J. 41.  et al. 2000. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 192:303–10 [Google Scholar]
  42. Bour-Jordan H, Esensten JH, Martinez-Llordella M, Penaranda C, Stumpf M, Bluestone JA. 42.  2011. Intrinsic and extrinsic control of peripheral T-cell tolerance by costimulatory molecules of the CD28/ B7 family. Immunol. Rev. 241:180–205 [Google Scholar]
  43. Ueda H, Howson JM, Esposito L, Heward J, Snook H. 43.  et al. 2003. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423:506–11 [Google Scholar]
  44. Kuehn HS, Ouyang W, Lo B, Deenick EK, Niemela JE. 44.  et al. 2014. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science 345:1623–27 [Google Scholar]
  45. Schubert D, Bode C, Kenefeck R, Hou TZ, Wing JB. 45.  et al. 2014. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat. Med. 20:1410–16 [Google Scholar]
  46. Lo B, Zhang K, Lu W, Zheng L, Zhang Q. 46.  et al. 2015. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science 349:436–40 [Google Scholar]
  47. Kong KF, Fu G, Zhang Y, Yokosuka T, Casas J. 47.  et al. 2014. Protein kinase C-η controls CTLA-4–mediated regulatory T cell function. Nat. Immunol. 15:465–72 [Google Scholar]
  48. Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C. 48.  et al. 2011. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332:600–3 [Google Scholar]
  49. Selby MJ, Engelhardt JJ, Quigley M, Henning KA, Chen T. 49.  et al. 2013. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol. Res. 1:32–42 [Google Scholar]
  50. Robert C, Thomas L, Bondarenko I, O’Day S, Weber J. 50.  et al. 2011. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 364:2517–26 [Google Scholar]
  51. Ribas A, Camacho LH, Lopez-Berestein G, Pavlov D, Bulanhagui CA. 51.  et al. 2005. Antitumor activity in melanoma and anti-self responses in a phase I trial with the anti-cytotoxic T lymphocyte-associated antigen 4 monoclonal antibody CP-675,206. J. Clin. Oncol. 23:8968–77 [Google Scholar]
  52. Camacho LH, Antonia S, Sosman J, Kirkwood JM, Gajewski TF. 52.  et al. 2009. Phase I/II trial of tremelimumab in patients with metastatic melanoma. J. Clin. Oncol. 27:1075–81 [Google Scholar]
  53. Ribas A, Kefford R, Marshall MA, Punt CJ, Haanen JB. 53.  et al. 2013. Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J. Clin. Oncol. 31:616–22 [Google Scholar]
  54. Strome SE, Sausville EA, Mann D. 54.  2007. A mechanistic perspective of monoclonal antibodies in cancer therapy beyond target-related effects. Oncologist 12:1084–95 [Google Scholar]
  55. Yang JC, Hughes M, Kammula U, Royal R, Sherry RM. 55.  et al. 2007. Ipilimumab (anti-CTLA4 antibody) causes regression of metastatic renal cell cancer associated with enteritis and hypophysitis. J. Immunother. 30:825–30 [Google Scholar]
  56. Small EJ, Tchekmedyian NS, Rini BI, Fong L, Lowy I, Allison JP. 56.  2007. A pilot trial of CTLA-4 blockade with human anti-CTLA-4 in patients with hormone-refractory prostate cancer. Clin. Cancer Res. 13:1810–15 [Google Scholar]
  57. Kwon ED, Drake CG, Scher HI, Fizazi K, Bossi A. 57.  et al. 2014. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 15:700–12 [Google Scholar]
  58. Lynch TJ, Bondarenko I, Luft A, Serwatowski P, Barlesi F. 58.  et al. 2012. Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J. Clin. Oncol. 30:2046–54 [Google Scholar]
  59. Hodi FS, Butler M, Oble DA, Seiden MV, Haluska FG. 59.  et al. 2008. Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. PNAS 105:3005–10 [Google Scholar]
  60. Sangro B, Gomez-Martin C, de la Mata M, Inarrairaegui M, Garralda E. 60.  et al. 2013. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J. Hepatol. 59:81–88 [Google Scholar]
  61. Chung KY, Gore I, Fong L, Venook A, Beck SB. 61.  et al. 2010. Phase II study of the anti-cytotoxic T-lymphocyte-associated antigen 4 monoclonal antibody, tremelimumab, in patients with refractory metastatic colorectal cancer. J. Clin. Oncol. 28:3485–90 [Google Scholar]
  62. Calabro L, Morra A, Fonsatti E, Cutaia O, Amato G. 62.  et al. 2013. Tremelimumab for patients with chemotherapy-resistant advanced malignant mesothelioma: an open-label, single-arm, phase 2 trial. Lancet Oncol. 14:1104–11 [Google Scholar]
  63. Iwama S, De Remigis A, Callahan MK, Slovin SF, Wolchok JD, Caturegli P. 63.  2014. Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci. Transl. Med. 6:230ra45 [Google Scholar]
  64. Pennock GK, Waterfield W, Wolchok JD. 64.  2012. Patient responses to ipilimumab, a novel immunopotentiator for metastatic melanoma: How different are these from conventional treatment responses?. Am. J. Clin. Oncol. 35:606–11 [Google Scholar]
  65. Wolchok JD, Hoos A, O’Day S, Weber JS, Hamid O. 65.  et al. 2009. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin. Cancer Res. 15:7412–20 [Google Scholar]
  66. Nishino M, Giobbie-Hurder A, Gargano M, Suda M, Ramaiya NH, Hodi FS. 66.  2013. Developing a common language for tumor response to immunotherapy: immune-related response criteria using unidimensional measurements. Clin. Cancer Res. 19:3936–43 [Google Scholar]
  67. Schadendorf D, Hodi FS, Robert C, Weber JS, Margolin K. 67.  et al. 2015. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J. Clin. Oncol. 33:1889–94 [Google Scholar]
  68. Okazaki T, Chikuma S, Iwai Y, Fagarasan S, Honjo T. 68.  2013. A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat. Immunol. 14:1212–18 [Google Scholar]
  69. Nishimura H, Agata Y, Kawasaki A, Sato M, Imamura S. 69.  et al. 1996. Developmentally regulated expression of the PD-1 protein on the surface of double-negative (CD4CD8) thymocytes. Int. Immunol. 8:773–80 [Google Scholar]
  70. Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JL. 70.  2004. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J. Immunol. 173:945–54 [Google Scholar]
  71. Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP. 71.  et al. 2006. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439:682–87 [Google Scholar]
  72. Oestreich KJ, Yoon H, Ahmed R, Boss JM. 72.  2008. NFATc1 regulates PD-1 expression upon T cell activation. J. Immunol. 181:4832–39 [Google Scholar]
  73. Mathieu M, Cotta-Grand N, Daudelin JF, Thebault P, Labrecque N. 73.  2013. Notch signaling regulates PD-1 expression during CD8+ T-cell activation. Immunol. Cell Biol. 91:82–88 [Google Scholar]
  74. Terawaki S, Chikuma S, Shibayama S, Hayashi T, Yoshida T. 74.  et al. 2011. IFN-alpha directly promotes programmed cell death-1 transcription and limits the duration of T cell-mediated immunity. J. Immunol. 186:2772–79 [Google Scholar]
  75. Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ. 75.  et al. 2009. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat. Immunol. 10:29–37 [Google Scholar]
  76. Terme M, Ullrich E, Aymeric L, Meinhardt K, Desbois M. 76.  et al. 2011. IL-18 induces PD-1-dependent immunosuppression in cancer. Cancer Res. 71:5393–99 [Google Scholar]
  77. Bellucci R, Martin A, Bommarito D, Wang K, Hansen SH. 77.  et al. 2015. Interferon-gamma-induced activation of JAK1 and JAK2 suppresses tumor cell susceptibility to NK cells through upregulation of PD-L1 expression. Oncoimmunology 4:e1008824 [Google Scholar]
  78. Velu V, Titanji K, Zhu B, Husain S, Pladevega A. 78.  et al. 2009. Enhancing SIV-specific immunity in vivo by PD-1 blockade. Nature 458:206–10 [Google Scholar]
  79. Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ. 79.  et al. 2009. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J. Exp. Med. 206:3015–29 [Google Scholar]
  80. Polanczyk MJ, Hopke C, Vandenbark AA, Offner H. 80.  2006. Estrogen-mediated immunomodulation involves reduced activation of effector T cells, potentiation of Treg cells, and enhanced expression of the PD-1 costimulatory pathway. J. Neurosci. Res. 84:370–78 [Google Scholar]
  81. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T. 81.  et al. 2000. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192:1027–34 [Google Scholar]
  82. Dong H, Zhu G, Tamada K, Chen L. 82.  1999. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat. Med. 5:1365–69 [Google Scholar]
  83. Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M. 83.  et al. 2001. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol. 2:261–68 [Google Scholar]
  84. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. 84.  2008. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 26:677–704 [Google Scholar]
  85. Taube JM, Anders RA, Young GD, Xu H, Sharma R. 85.  et al. 2012. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci. Transl. Med. 4:127ra37 [Google Scholar]
  86. Taube JM, Young GD, McMiller TL, Chen S, Salas JT. 86.  et al. 2015. Differential expression of immune-regulatory genes associated with PD-L1 display in melanoma: implications for PD-1 pathway blockade. Clin. Cancer Res. 21:3969–76 [Google Scholar]
  87. Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ. 87.  2007. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity 27:111–22 [Google Scholar]
  88. Park JJ, Omiya R, Matsumura Y, Sakoda Y, Kuramasu A. 88.  et al. 2010. B7-H1/CD80 interaction is required for the induction and maintenance of peripheral T-cell tolerance. Blood 116:1291–98 [Google Scholar]
  89. Xiao Y, Yu S, Zhu B, Bedoret D, Bu X. 89.  et al. 2014. RGMb is a novel binding partner for PD-L2 and its engagement with PD-L2 promotes respiratory tolerance. J. Exp. Med. 211:943–59 [Google Scholar]
  90. Ishida Y, Agata Y, Shibahara K, Honjo T. 90.  1992. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 11:3887–95 [Google Scholar]
  91. Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I. 91.  et al. 2005. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell. Biol. 25:9543–53 [Google Scholar]
  92. Kao C, Oestreich KJ, Paley MA, Crawford A, Angelosanto JM. 92.  et al. 2011. Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection. Nat. Immunol. 12:663–71 [Google Scholar]
  93. Quigley M, Pereyra F, Nilsson B, Porichis F, Fonseca C. 93.  et al. 2010. Transcriptional analysis of HIV-specific CD8+ T cells shows that PD-1 inhibits T cell function by upregulating BATF. Nat. Med. 16:1147–51 [Google Scholar]
  94. Gibbons RM, Liu X, Pulko V, Harrington SM, Krco CJ. 94.  et al. 2012. B7-H1 limits the entry of effector CD8+ T cells to the memory pool by upregulating Bim. Oncoimmunology 1:1061–73 [Google Scholar]
  95. Honda T, Egen JG, Lammermann T, Kastenmuller W, Torabi-Parizi P, Germain RN. 95.  2014. Tuning of antigen sensitivity by T cell receptor-dependent negative feedback controls T cell effector function in inflamed tissues. Immunity 40:235–47 [Google Scholar]
  96. Zinselmeyer BH, Heydari S, Sacristan C, Nayak D, Cammer M. 96.  et al. 2013. PD-1 promotes immune exhaustion by inducing antiviral T cell motility paralysis. J. Exp. Med. 210:757–74 [Google Scholar]
  97. Fife BT, Pauken KE, Eagar TN, Obu T, Wu J. 97.  et al. 2009. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat. Immunol. 10:1185–92 [Google Scholar]
  98. Patsoukis N, Bardhan K, Chatterjee P, Sari D, Liu B. 98.  et al. 2015. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat. Commun. 6:6692 [Google Scholar]
  99. Keir ME, Latchman YE, Freeman GJ, Sharpe AH. 99.  2005. Programmed death-1 (PD-1):PD-ligand 1 interactions inhibit TCR-mediated positive selection of thymocytes. J. Immunol. 175:7372–79 [Google Scholar]
  100. Akbay EA, Koyama S, Carretero J, Altabef A, Tchaicha JH. 100.  et al. 2013. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov. 3:1355–63 [Google Scholar]
  101. Chang CH, Qiu J, O’Sullivan D, Buck MD, Noguchi T. 101.  et al. 2015. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162:1229–41 [Google Scholar]
  102. Gubin MM, Zhang X, Schuster H, Caron E, Ward JP. 102.  et al. 2014. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515:577–81 [Google Scholar]
  103. Naidoo J, Page DB, Li BT, Connell LC, Schindler K. 103.  et al. 2015. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann. Oncol. 26:2375–91
  104. Lipson EJ, Sharfman WH, Drake CG, Wollner I, Taube JM. 104.  et al. 2013. Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody. Clin. Cancer Res. 19:462–68 [Google Scholar]
  105. Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J. 105.  et al. 2010. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol. 28:3167–75 [Google Scholar]
  106. Topalian SL, Drake CG, Pardoll DM. 106.  2015. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27:450–61 [Google Scholar]
  107. Ribas A, Puzanov I, Dummer R, Schadendorf D, Hamid O. 107.  et al. 2015. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol. 16:908–18 [Google Scholar]
  108. Robert C, Schachter J, Long GV, Arance A, Grob JJ. 108.  et al. 2015. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med. 372:2521–32 [Google Scholar]
  109. Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ. 109.  et al. 2013. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N. Engl. J. Med. 369:134–44 [Google Scholar]
  110. Robert C, Long GV, Brady B, Dutriaux C, Maio M. 110.  et al. 2015. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 372:320–30 [Google Scholar]
  111. Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE. 111.  et al. 2015. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med. 373:123–35 [Google Scholar]
  112. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V. 112.  et al. 2015. Cancer immunology: mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348:124–28 [Google Scholar]
  113. Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ. 113.  et al. 2015. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373:1803–13 [Google Scholar]
  114. Berger R, Rotem-Yehudar R, Slama G, Landes S, Kneller A. 114.  et al. 2008. Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin. Cancer Res. 14:3044–51 [Google Scholar]
  115. Green MR, Monti S, Rodig SJ, Juszczynski P, Currie T. 115.  et al. 2010. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 116:3268–77 [Google Scholar]
  116. Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC. 116.  et al. 2015. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N. Engl. J. Med. 372:311–19 [Google Scholar]
  117. Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y. 117.  et al. 2014. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515:558–62 [Google Scholar]
  118. Ott PA, Hodi FS. 118.  2013. The B7-H1/PD-1 pathway in cancers associated with infections and inflammation: opportunities for therapeutic intervention. Chin. Clin. Oncol. 2:7 [Google Scholar]
  119. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H. 119.  et al. 2015. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372:2509–20 [Google Scholar]
  120. Romano E, Kusio-Kobialka M, Foukas PG, Baumgaertner P, Meyer C. 120.  et al. 2015. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. PNAS 112:6140–45 [Google Scholar]
  121. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL. 121.  et al. 2015. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N. Engl. J. Med. 373:23–34 [Google Scholar]
  122. Beatty GL, Torigian DA, Chiorean EG, Saboury B, Brothers A. 122.  et al. 2013. A phase I study of an agonist CD40 monoclonal antibody (CP-870,893) in combination with gemcitabine in patients with advanced pancreatic ductal adenocarcinoma.. Clin. Cancer Res. 19:6286–95 [Google Scholar]
  123. Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC. 123.  2010. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J. Exp. Med. 207:2187–94 [Google Scholar]
  124. Baixeras E, Huard B, Miossec C, Jitsukawa S, Martin M. 124.  et al. 1992. Characterization of the lymphocyte activation gene 3-encoded protein: a new ligand for human leukocyte antigen class II antigens. J. Exp. Med. 176:327–37 [Google Scholar]
  125. Huard B, Gaulard P, Faure F, Hercend T, Triebel F. 125.  1994. Cellular expression and tissue distribution of the human LAG-3-encoded protein, an MHC class II ligand. Immunogenetics 39:213–17 [Google Scholar]
  126. Workman CJ, Cauley LS, Kim IJ, Blackman MA, Woodland DL, Vignali DA. 126.  2004. Lymphocyte activation gene-3 (CD223) regulates the size of the expanding T cell population following antigen activation in vivo. J. Immunol. 172:5450–55 [Google Scholar]
  127. Goldberg MV, Drake CG. 127.  2011. LAG-3 in cancer immunotherapy. Curr. Top. Microbiol. Immunol. 344:269–78 [Google Scholar]
  128. Workman CJ, Dugger KJ, Vignali DA. 128.  2002. Cutting edge: molecular analysis of the negative regulatory function of lymphocyte activation gene-3. J. Immunol. 169:5392–95 [Google Scholar]
  129. Grosso JF, Kelleher CC, Harris TJ, Maris CH, Hipkiss EL. 129.  et al. 2007. LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems. J. Clin. Investig. 117:3383–92 [Google Scholar]
  130. Huang CT, Workman CJ, Flies D, Pan X, Marson AL. 130.  et al. 2004. Role of LAG-3 in regulatory T cells. Immunity 21:503–13 [Google Scholar]
  131. Liang B, Workman C, Lee J, Chew C, Dale BM. 131.  et al. 2008. Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. J. Immunol. 180:5916–26 [Google Scholar]
  132. Bettini M, Szymczak-Workman AL, Forbes K, Castellaw AH, Selby M. 132.  et al. 2011. Cutting edge: accelerated autoimmune diabetes in the absence of LAG-3. J. Immunol. 187:3493–98 [Google Scholar]
  133. Durham NM, Nirschl CJ, Jackson CM, Elias J, Kochel CM. 133.  et al. 2014. Lymphocyte Activation Gene 3 (LAG-3) modulates the ability of CD4 T-cells to be suppressed in vivo. PLOS ONE 9:e109080 [Google Scholar]
  134. Okazaki T, Okazaki IM, Wang J, Sugiura D, Nakaki F. 134.  et al. 2011. PD-1 and LAG-3 inhibitory co-receptors act synergistically to prevent autoimmunity in mice. J. Exp. Med. 208:395–407 [Google Scholar]
  135. Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M. 135.  et al. 2012. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 72:917–27 [Google Scholar]
  136. Matsuzaki J, Gnjatic S, Mhawech-Fauceglia P, Beck A, Miller A. 136.  et al. 2010. Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. PNAS 107:7875–80 [Google Scholar]
  137. Legat A, Maby-El Hajjami H, Baumgaertner P, Cagnon L, Abed Maillard S,. 137.  et al. 2016. Vaccination with LAG-3Ig (IMP321) and peptides induces specific CD4 and CD8 T-cell responses in metastatic melanoma patients—report of a phase I/IIa clinical trial. Clin. Cancer Res. 221330–40
  138. Boles KS, Vermi W, Facchetti F, Fuchs A, Wilson TJ. 138.  et al. 2009. A novel molecular interaction for the adhesion of follicular CD4 T cells to follicular DC. Eur. J. Immunol. 39:695–703 [Google Scholar]
  139. Levin SD, Taft DW, Brandt CS, Bucher C, Howard ED. 139.  et al. 2011. Vstm3 is a member of the CD28 family and an important modulator of T-cell function. Eur. J. Immunol. 41:902–15 [Google Scholar]
  140. Stengel KF, Harden-Bowles K, Yu X, Rouge L, Yin J. 140.  et al. 2012. Structure of TIGIT immunoreceptor bound to poliovirus receptor reveals a cell-cell adhesion and signaling mechanism that requires cis-trans receptor clustering. PNAS 109:5399–404 [Google Scholar]
  141. Martinet L, Smyth MJ. 141.  2015. Balancing natural killer cell activation through paired receptors. Nat. Rev. Immunol. 15:243–54 [Google Scholar]
  142. Joller N, Hafler JP, Brynedal B, Kassam N, Spoerl S. 142.  et al. 2011. Cutting edge: TIGIT has T cell-intrinsic inhibitory functions. J. Immunol. 186:1338–42 [Google Scholar]
  143. Johnston RJ, Comps-Agrar L, Hackney J, Yu X, Huseni M. 143.  et al. 2014. The immunoreceptor TIGIT regulates antitumor and antiviral CD8+ T cell effector function. Cancer Cell 26:923–37 [Google Scholar]
  144. Joller N, Lozano E, Burkett PR, Patel B, Xiao S. 144.  et al. 2014. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity 40:569–81 [Google Scholar]
  145. Chauvin J-M, Pagliano O, Fourcade J, Sun Z, Wang H. 145.  TIGIT and PD-1 impair tumor antigen-specific CD8+ T cells in melanoma patients. J. Clin. Investig. 125:2046–58 [Google Scholar]
  146. Wang L, Rubinstein R, Lines JL, Wasiuk A, Ahonen C. 146.  et al. 2011. VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses. J. Exp. Med. 208:577–92 [Google Scholar]
  147. Flies DB, Wang S, Xu H, Chen L. 147.  2011. Cutting edge: A monoclonal antibody specific for the programmed death-1 homolog prevents graft-versus-host disease in mouse models. J. Immunol. 187:1537–41 [Google Scholar]
  148. Lines JL, Pantazi E, Mak J, Sempere LF, Wang L. 148.  et al. 2014. VISTA is an immune checkpoint molecule for human T cells. Cancer Res. 74:1924–32 [Google Scholar]
  149. Aloia L, Parisi S, Fusco L, Pastore L, Russo T. 149.  2010. Differentiation of embryonic stem cells 1 (Dies1) is a component of bone morphogenetic protein 4 (BMP4) signaling pathway required for proper differentiation of mouse embryonic stem cells. J. Biol. Chem. 285:7776–83 [Google Scholar]
  150. Yoon KW, Byun S, Kwon E, Hwang SY, Chu K. 150.  et al. 2015. Control of signaling-mediated clearance of apoptotic cells by the tumor suppressor p53. Science 349:1261669 [Google Scholar]
  151. Wang L, Le Mercier I, Putra J, Chen W, Liu J. 151.  et al. 2014. Disruption of the immune-checkpoint VISTA gene imparts a proinflammatory phenotype with predisposition to the development of autoimmunity. PNAS 111:14846–51 [Google Scholar]
  152. Liu J, Yuan Y, Chen W, Putra J, Suriawinata AA. 152.  et al. 2015. Immune-checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T-cell responses. PNAS 112:6682–87 [Google Scholar]
  153. Le Mercier I, Chen W, Lines JL, Day M, Li J. 153.  et al. 2014. VISTA regulates the development of protective antitumor immunity. Cancer Res. 74:1933–44 [Google Scholar]
  154. McIntire JJ, Umetsu SE, Akbari O, Potter M, Kuchroo VK. 154.  et al. 2001. Identification of Tapr (an airway hyperreactivity regulatory locus) and the linked Tim gene family. Nat. Immunol. 2:1109–16 [Google Scholar]
  155. Freeman GJ, Casasnovas JM, Umetsu DT, DeKruyff RH. 155.  2010. TIM genes: a family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Immunol. Rev. 235:172–89 [Google Scholar]
  156. Monney L, Sabatos CA, Gaglia JL, Ryu A, Waldner H. 156.  et al. 2002. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 415:536–41 [Google Scholar]
  157. Jin HT, Anderson AC, Tan WG, West EE, Ha SJ. 157.  et al. 2010. Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. PNAS 107:14733–38 [Google Scholar]
  158. Guo Z, Cheng D, Xia Z, Luan M, Wu L. 158.  et al. 2013. Combined TIM-3 blockade and CD137 activation affords the long-term protection in a murine model of ovarian cancer. J. Transl. Med. 11:215 [Google Scholar]
  159. Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J. 159.  et al. 2005. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat. Immunol. 6:1245–52 [Google Scholar]
  160. Huang YH, Zhu C, Kondo Y, Anderson AC, Gandhi A. 160.  et al. 2015. CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature 517:386–90 [Google Scholar]
  161. Gleason MK, Lenvik TR, McCullar V, Felices M, O’Brien MS. 161.  et al. 2012. Tim-3 is an inducible human natural killer cell receptor that enhances interferon gamma production in response to galectin-9. Blood 119:3064–72 [Google Scholar]
  162. DeKruyff RH, Bu X, Ballesteros A, Santiago C, Chim YL. 162.  et al. 2010. T cell/transmembrane, Ig, and mucin-3 allelic variants differentially recognize phosphatidylserine and mediate phagocytosis of apoptotic cells. J. Immunol. 184:1918–30 [Google Scholar]
  163. Sakuishi K, Jayaraman P, Behar SM, Anderson AC, Kuchroo VK. 163.  2011. Emerging Tim-3 functions in antimicrobial and tumor immunity. Trends Immunol. 32:345–49 [Google Scholar]
  164. Madireddi S, Eun SY, Lee SW, Nemcovicova I, Mehta AK. 164.  et al. 2014. Galectin-9 controls the therapeutic activity of 4-1BB-targeting antibodies. J. Exp. Med. 211:1433–48 [Google Scholar]
  165. Kikushige Y, Shima T, Takayanagi S, Urata S, Miyamoto T. 165.  et al. 2010. TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells. Cell Stem Cell 7:708–17 [Google Scholar]
  166. Dorfman DM, Hornick JL, Shahsafaei A, Freeman GJ. 166.  2010. The phosphatidylserine receptors, T cell immunoglobulin mucin proteins 3 and 4, are markers of histiocytic sarcoma and other histiocytic and dendritic cell neoplasms. Hum. Pathol. 41:1486–94 [Google Scholar]
  167. Kikushige Y, Miyamoto T, Yuda J, Jabbarzadeh-Tabrizi S, Shima T. 167.  et al. 2015. A TIM-3/Gal-9 autocrine stimulatory loop drives self-renewal of human myeloid leukemia stem cells and leukemic progression. Cell Stem Cell 17:341–52 [Google Scholar]
  168. Chen DS, Mellman I. 168.  2013. Oncology meets immunology: the cancer-immunity cycle. Immunity 39:1–10 [Google Scholar]
  169. Ji RR, Chasalow SD, Wang L, Hamid O, Schmidt H. 169.  et al. 2012. An immune-active tumor microenvironment favors clinical response to ipilimumab. Cancer Immunol. Immunother. 61:1019–31 [Google Scholar]
  170. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ. 170.  et al. 2014. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568–71 [Google Scholar]
  171. Taube JM, Klein A, Brahmer JR, Xu H, Pan X. 171.  et al. 2014. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin. Cancer Res. 20:5064–74 [Google Scholar]
  172. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM. 172.  et al. 2014. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371:2189–99 [Google Scholar]
  173. Gameiro SR, Jammeh ML, Wattenberg MM, Tsang KY, Ferrone S, Hodge JW. 173.  2014. Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing. Oncotarget 5:403–16 [Google Scholar]
  174. Demaria S, Kawashima N, Yang AM, Devitt ML, Babb JS. 174.  et al. 2005. Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin. Cancer Res. 11:728–34 [Google Scholar]
  175. Deng L, Liang H, Burnette B, Beckett M, Darga T. 175.  et al. 2014. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J. Clin. Investig. 124:687–95 [Google Scholar]
  176. Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J. 176.  et al. 2012. Immunologic correlates of the abscopal effect in a patient with melanoma. N. Engl. J. Med. 366:925–31 [Google Scholar]
  177. Golden EB, Demaria S, Schiff PB, Chachoua A, Formenti SC. 177.  2013. An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer. Cancer Immunol. Res. 1:365–72 [Google Scholar]
  178. Slovin SF, Higano CS, Hamid O, Tejwani S, Harzstark A. 178.  et al. 2013. Ipilimumab alone or in combination with radiotherapy in metastatic castration-resistant prostate cancer: results from an open-label, multicenter phase I/II study. Ann. Oncol. 24:1813–21 [Google Scholar]
  179. Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G. 179.  2013. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 39:74–88 [Google Scholar]
  180. Reck M, Bondarenko I, Luft A, Serwatowski P, Barlesi F. 180.  et al. 2013. Ipilimumab in combination with paclitaxel and carboplatin as first-line therapy in extensive-disease-small-cell lung cancer: results from a randomized, double-blind, multicenter phase 2 trial. Ann. Oncol. 24:75–83 [Google Scholar]
  181. Vanneman M, Dranoff G. 181.  2012. Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer 12:237–51 [Google Scholar]
  182. Balachandran VP, Cavnar MJ, Zeng S, Bamboat ZM, Ocuin LM. 182.  et al. 2011. Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido. Nat. Med. 17:1094–100 [Google Scholar]
  183. Knight DA, Ngiow SF, Li M, Parmenter T, Mok S. 183.  et al. 2013. Host immunity contributes to the anti-melanoma activity of BRAF inhibitors. J. Clin. Investig. 123:1371–81 [Google Scholar]
  184. Callahan MK, Masters G, Pratilas CA, Ariyan C, Katz J. 184.  et al. 2014. Paradoxical activation of T cells via augmented ERK signaling mediated by a RAF inhibitor. Cancer Immunol. Res. 2:70–79 [Google Scholar]
  185. Ribas A, Hodi FS, Callahan M, Konto C, Wolchok J. 185.  2013. Hepatotoxicity with combination of vemurafenib and ipilimumab. N. Engl. J. Med. 368:1365–66 [Google Scholar]
  186. Harding JJ, Pulitzer M, Chapman PB. 186.  2012. Vemurafenib sensitivity skin reaction after ipilimumab. N. Engl. J. Med. 366:866–68 [Google Scholar]
  187. Johnson DB, Wallender EK, Cohen DN, Likhari SS, Zwerner JP. 187.  et al. 2013. Severe cutaneous and neurologic toxicity in melanoma patients during vemurafenib administration following anti-PD-1 therapy. Cancer Immunol. Res. 1:373–77 [Google Scholar]
  188. Rini BI, Stein M, Shannon P, Eddy S, Tyler A. 188.  et al. 2011. Phase 1 dose-escalation trial of tremelimumab plus sunitinib in patients with metastatic renal cell carcinoma. Cancer 117:758–67 [Google Scholar]
  189. Amin A, Plimack ER, Infante J, Ernstoff MS, Rini BI. 189.  et al. 2014. Nivolumab (anti-PD-1; BMS-936558, ONO-4538) in combination with sunitinib or pazopanib in patients (pts) with metastatic renal cell carcinoma (mRCC). J. Clin. Oncol. 32:15 Suppl.5010 [Google Scholar]
  190. Vonderheide RH, LoRusso PM, Khalil M, Gartner EM, Khaira D. 190.  et al. 2010. Tremelimumab in combination with exemestane in patients with advanced breast cancer and treatment-associated modulation of inducible costimulator expression on patient T cells. Clin. Cancer Res. 16:3485–94 [Google Scholar]
  191. McNeel DG, Smith HA, Eickhoff JC, Lang JM, Staab MJ. 191.  et al. 2012. Phase I trial of tremelimumab in combination with short-term androgen deprivation in patients with PSA-recurrent prostate cancer. Cancer Immunol. Immunother. 61:1137–47 [Google Scholar]
  192. Kaufmann JK, Chiocca EA. 192.  2013. Oncolytic virotherapy for gliomas: steps toward the future. CNS Oncol. 2:389–92 [Google Scholar]
  193. Kaufman HL, Bines SD. 193.  2010. OPTIM trial: a Phase III trial of an oncolytic herpes virus encoding GM-CSF for unresectable stage III or IV melanoma. Future Oncol. 6:941–49 [Google Scholar]
  194. Aguilar LK, Shirley LA, Chung VM, Marsh CL, Walker J. 194.  et al. 2015. Gene-mediated cytotoxic immunotherapy as adjuvant to surgery or chemoradiation for pancreatic adenocarcinoma. Cancer Immunol. Immunother. 64:727–36 [Google Scholar]
  195. Chiocca EA, Aguilar LK, Bell SD, Kaur B, Hardcastle J. 195.  et al. 2011. Phase IB study of gene-mediated cytotoxic immunotherapy adjuvant to up-front surgery and intensive timing radiation for malignant glioma. J. Clin. Oncol. 29:3611–19 [Google Scholar]
  196. Guo ZS, Liu Z, Bartlett DL. 196.  2014. Oncolytic immunotherapy: Dying the right way is a key to eliciting potent antitumor immunity. Front. Oncol. 4:74 [Google Scholar]
  197. Andtbacka RHI, Collichio FA, Amatruda T, Senzer NN, Chesney J. 197.  et al. 2013. OPTiM: A randomized phase III trial of talimogene laherparepvec (T-VEC) versus subcutaneous (SC) granulocyte-macrophage colony-stimulating factor (GM-CSF) for the treatment (tx) of unresected stage IIIB/C and IV melanoma. J. Clin. Oncol. 31:Suppl.LBA9008 [Google Scholar]
  198. Zamarin D, Holmgaard RB, Subudhi SK, Park JS, Mansour M. 198.  et al. 2014. Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci. Transl. Med. 6:226ra32 [Google Scholar]
  199. Puzanov I, Milhem MM, Andtbacka RHI, Minor DR, Hamid O, Li A. 199.  et al. 2014. Primary analysis of a phase 1b multicenter trial to evaluate safety and efficacy of talimogene laherparepvec (T-VEC) and ipilimumab (ipi) in previously untreated, unresected stage IIIB-IV melanoma. J. Clin. Oncol. 32:15 Suppl.9029 [Google Scholar]
  200. Woo SR, Corrales L, Gajewski TF. 200.  2015. The STING pathway and the T cell-inflamed tumor microenvironment. Trends Immunol. 36:250–56 [Google Scholar]
  201. Woo SR, Fuertes MB, Corrales L, Spranger S, Furdyna MJ. 201.  et al. 2014. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41:830–42 [Google Scholar]
  202. Corrales L, Glickman LH, McWhirter SM, Kanne DB, Sivick KE. 202.  et al. 2015. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 11:1018–30 [Google Scholar]
  203. Deng L, Liang H, Xu M, Yang X, Burnette B. 203.  et al. 2014. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41:843–52 [Google Scholar]
  204. Fu J, Kanne DB, Leong M, Glickman LH, McWhirter SM. 204.  et al. 2015. STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci. Transl. Med. 7:283ra52 [Google Scholar]
  205. Millward M, Underhill C, Lobb S, McBurnie J, Meech SJ. 205.  et al. 2013. Phase I study of tremelimumab (CP-675 206) plus PF-3512676 (CPG 7909) in patients with melanoma or advanced solid tumours. Br. J. Cancer 108:1998–2004 [Google Scholar]
  206. Tarhini AA, Cherian J, Moschos SJ, Tawbi HA, Shuai Y. 206.  et al. 2012. Safety and efficacy of combination immunotherapy with interferon alfa-2b and tremelimumab in patients with stage IV melanoma. J. Clin. Oncol. 30:322–28 [Google Scholar]
  207. Hurwitz AA, Yu TF, Leach DR, Allison JP. 207.  1998. CTLA-4 blockade synergizes with tumor-derived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma. PNAS 95:10067–71 [Google Scholar]
  208. van Elsas A, Hurwitz AA, Allison JP. 208.  1999. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J. Exp. Med. 190:355–66 [Google Scholar]
  209. Santegoets SJ, Stam AG, Lougheed SM, Gall H, Scholten PE. 209.  et al. 2013. T cell profiling reveals high CD4+CTLA-4+ T cell frequency as dominant predictor for survival after prostate GVAX/ipilimumab treatment. Cancer Immunol. Immunother. 62:245–56 [Google Scholar]
  210. Le DT, Lutz E, Uram JN, Sugar EA, Onners B. 210.  et al. 2013. Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer. J. Immunother. 36:382–89 [Google Scholar]
  211. van den Eertwegh AJ, Versluis J, van den Berg HP, Santegoets SJ, van Moorselaar RJ. 211.  et al. 2012. Combined immunotherapy with granulocyte-macrophage colony-stimulating factor-transduced allogeneic prostate cancer cells and ipilimumab in patients with metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial. Lancet Oncol. 13:509–17 [Google Scholar]
  212. Hodi FS, Lee S, McDermott DF, Rao UN, Butterfield LH. 212.  et al. 2014. Ipilimumab plus sargramostim versus ipilimumab alone for treatment of metastatic melanoma: a randomized clinical trial. JAMA 312:1744–53 [Google Scholar]
  213. Luke JJ, Donahue H, Nishino M, Giobbie-Hurder A, Davis M. 213.  et al. 2015. Single institution experience of ipilimumab 3 mg/kg with sargramostim (GM-CSF) in metastatic melanoma. Cancer Immunol. Res. 3:986--91
  214. Met O, Wang M, Pedersen AE, Nissen MH, Buus S, Claesson MH. 214.  2006. The effect of a therapeutic dendritic cell-based cancer vaccination depends on the blockage of CTLA-4 signaling. Cancer Lett. 231:247–56 [Google Scholar]
  215. Son CH, Bae JH, Shin DY, Lee HR, Choi YJ. 215.  et al. 2014. CTLA-4 blockade enhances antitumor immunity of intratumoral injection of immature dendritic cells into irradiated tumor in a mouse colon cancer model. J. Immunother. 37:1–7 [Google Scholar]
  216. Sabbatini P, Tsuji T, Ferran L, Ritter E, Sedrak C. 216.  et al. 2012. Phase I trial of overlapping long peptides from a tumor self-antigen and poly-ICLC shows rapid induction of integrated immune response in ovarian cancer patients. Clin. Cancer Res. 18:6497–508 [Google Scholar]
  217. Kenter GG, Welters MJ, Valentijn AR, Lowik MJ, Berends-van der Meer DM. 217.  et al. 2009. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N. Engl. J. Med. 361:1838–47 [Google Scholar]
  218. Sanderson K, Scotland R, Lee P, Liu D, Groshen S. 218.  et al. 2005. Autoimmunity in a phase I trial of a fully human anti-cytotoxic T-lymphocyte antigen-4 monoclonal antibody with multiple melanoma peptides and Montanide ISA 51 for patients with resected stages III and IV melanoma. J. Clin. Oncol. 23:741–50 [Google Scholar]
  219. Hacohen N, Fritsch EF, Carter TA, Lander ES, Wu CJ. 219.  2013. Getting personal with neoantigen-based therapeutic cancer vaccines. Cancer Immunol. Res. 1:11–15 [Google Scholar]
  220. Vonderheide RH, Burg JM, Mick R, Trosko JA, Li D. 220.  et al. 2013. Phase I study of the CD40 agonist antibody CP-870,893 combined with carboplatin and paclitaxel in patients with advanced solid tumors. Oncoimmunology 2:e23033 [Google Scholar]
  221. Vonderheide RH, Flaherty KT, Khalil M, Stumacher MS, Bajor DL. 221.  et al. 2007. Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody. J. Clin. Oncol. 25:876–83 [Google Scholar]
  222. de Vos S, Forero-Torres A, Ansell SM, Kahl B, Cheson BD. 222.  et al. 2014. A phase II study of dacetuzumab (SGN-40) in patients with relapsed diffuse large B-cell lymphoma (DLBCL) and correlative analyses of patient-specific factors. J. Hematol. Oncol. 7:44 [Google Scholar]
  223. Zippelius A, Schreiner J, Herzig P, Muller P. 223.  2015. Induced PD-L1 expression mediates acquired resistance to agonistic anti-CD40 treatment. Cancer Immunol. Res. 3:236–44 [Google Scholar]
  224. Curti BD, Kovacsovics-Bankowski M, Morris N, Walker E, Chisholm L. 224.  et al. 2013. OX40 is a potent immune-stimulating target in late-stage cancer patients. Cancer Res. 73:7189–98 [Google Scholar]
  225. Sznol M, Hodi FS, Margolin K, McDermott DF, Ernstoff MS, Kirkwood JM. 225.  et al. 2008. Phase I study of BMS-663513, a fully human anti-CD137 agonist monoclonal antibody, in patients (pts) with advanced cancer (CA). J. Clin. Oncol. 26:15 Suppl.3007 [Google Scholar]
  226. Segal NH, Gopal AK, Bhatia S, Kohrt HE, Levy R. 226.  et al. 2014. A phase 1 study of PF-05082566 (anti-4-1BB) in patients with advanced cancer. J. Clin. Oncol. 32:15 Suppl.3007 [Google Scholar]
  227. Ascierto PA, Simeone E, Sznol M, Fu YX, Melero I. 227.  2010. Clinical experiences with anti-CD137 and anti-PD1 therapeutic antibodies. Semin Oncol. 37:508–16 [Google Scholar]
  228. Curran MA, Kim M, Montalvo W, Al-Shamkhani A, Allison JP. 228.  2011. Combination CTLA-4 blockade and 4-1BB activation enhances tumor rejection by increasing T-cell infiltration, proliferation, and cytokine production. PLOS ONE 6:e19499 [Google Scholar]
  229. Guo Z, Wang X, Cheng D, Xia Z, Luan M, Zhang S. 229.  2014. PD-1 blockade and OX40 triggering synergistically protects against tumor growth in a murine model of ovarian cancer. PLOS ONE 9:e89350 [Google Scholar]
  230. Wei H, Zhao L, Li W, Fan K, Qian W. 230.  et al. 2013. Combinatorial PD-1 blockade and CD137 activation has therapeutic efficacy in murine cancer models and synergizes with cisplatin. PLOS ONE 8:e84927 [Google Scholar]
  231. Motz GT, Coukos G. 231.  2013. Deciphering and reversing tumor immune suppression. Immunity 39:61–73 [Google Scholar]
  232. Molon B, Ugel S, Del Pozzo F, Soldani C, Zilio S. 232.  et al. 2011. Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J. Exp. Med. 208:1949–62 [Google Scholar]
  233. Bouzin C, Brouet A, De Vriese J, Dewever J, Feron O. 233.  2007. Effects of vascular endothelial growth factor on the lymphocyte-endothelium interactions: identification of caveolin-1 and nitric oxide as control points of endothelial cell anergy. J. Immunol. 178:1505–11 [Google Scholar]
  234. Hodi FS, Lawrence D, Lezcano C, Wu X, Zhou J. 234.  et al. 2014. Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunol. Res. 2:632–42 [Google Scholar]
  235. Prendergast GC, Smith C, Thomas S, Mandik-Nayak L, Laury-Kleintop L. 235.  et al. 2014. Indoleamine 2,3-dioxygenase pathways of pathogenic inflammation and immune escape in cancer. Cancer Immunol. Immunother. 63:721–35 [Google Scholar]
  236. Munn DH, Mellor AL. 236.  2013. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol. 34:137–43 [Google Scholar]
  237. Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR. 237.  et al. 2006. Tryptophan catabolism generates autoimmune-preventive regulatory T cells. Transpl. Immunol. 17:58–60 [Google Scholar]
  238. Holmgaard RB, Zamarin D, Munn DH, Wolchok JD, Allison JP. 238.  2013. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J. Exp. Med. 210:1389–402 [Google Scholar]
  239. Soliman HH, Jackson E, Neuger T, Dees EC, Harvey RD. 239.  et al. 2014. A first in man phase I trial of the oral immunomodulator, indoximod, combined with docetaxel in patients with metastatic solid tumors. Oncotarget 5:8136–46 [Google Scholar]
  240. Gibney GT, Hamid O, Gangadhar TC, Lutzky J, Olszanski AJ. 240.  et al. 2014. Preliminary results from a phase 1/2 study of INCB024360 combined with ipilimumab (ipi) in patients (pts) with melanoma. J. Clin. Oncol. 32:5 Suppl.3010 [Google Scholar]
  241. Facciabene A, Motz GT, Coukos G. 241.  2012. T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res. 72:2162–71 [Google Scholar]
  242. Gabrilovich DI, Nagaraj S. 242.  2009. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9:162–74 [Google Scholar]
  243. Zhu Y, Knolhoff BL, Meyer MA, Nywening TM, West BL. 243.  et al. 2014. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 74:5057–69 [Google Scholar]
  244. Sutmuller RP, van Duivenvoorde LM, van Elsas A, Schumacher TN, Wildenberg ME. 244.  et al. 2001. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25+ regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J. Exp. Med. 194:823–32 [Google Scholar]
  245. Ogura M, Ishida T, Hatake K, Taniwaki M, Ando K. 245.  et al. 2014. Multicenter phase II study of mogamulizumab (KW-0761), a defucosylated anti-CC chemokine receptor 4 antibody, in patients with relapsed peripheral T-cell lymphoma and cutaneous T-cell lymphoma. J. Clin. Oncol. 32:1157–63 [Google Scholar]
  246. Robbins PF, Kassim SH, Tran TL, Crystal JS, Morgan RA. 246.  et al. 2015. A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clin. Cancer Res. 21:1019–27 [Google Scholar]
/content/journals/10.1146/annurev-immunol-032414-112049
Loading
/content/journals/10.1146/annurev-immunol-032414-112049
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error