1932

Abstract

Each of us fortunate enough to have had a career in experimental science has a tale to tell, often one with surprising twists and turns, full of lessons that can help guide those embarking on a similar journey. At the very least, a well-written recounting of a career can be entertaining. I offer my memory's version of my career in immunology and hope the readers will find it of value or at least of interest.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-032713-120247
2014-03-21
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/immunol/32/1/annurev-immunol-032713-120247.html?itemId=/content/journals/10.1146/annurev-immunol-032713-120247&mimeType=html&fmt=ahah

Literature Cited

  1. Cohen AS, Paul WE. 1.  1963. Relationship of gamma globulin to the fibrils of secondary human amyloid. Nature 197:193–94 [Google Scholar]
  2. Paul WE, Cohen AS. 2.  1963. Electron microscopic studies of amyloid fibrils with ferritin-conjugated antibody. Am. J. Pathol. 43:721–30 [Google Scholar]
  3. Li MC, Hertz R, Bergenstal DM. 3.  1958. Therapy of choriocarcinoma and related trophoblastic tumors with folic acid and purine antagonists. N. Engl. J. Med. 259:66–67 [Google Scholar]
  4. Odell WD, Wilber JF, Paul WE. 4.  1965. Radioimmunoassay of thyrotropin in human serum. J. Clin. Endocrinol. Metab. 25:1179–88 [Google Scholar]
  5. Paul WE, Odell WD. 5.  1964. Radiation inactivation of the immunological and biological activities of human chorionic gonadotropin. Nature 203:979–80 [Google Scholar]
  6. Paul WE, Ross GT. 6.  1964. Immunologic cross-reaction between human chorionic gonadotropin and human pituitary gonadotropin. Endocrinology 75:352–58 [Google Scholar]
  7. Paul WE, Kastin AJ, Odell WD. 7.  1965. The effect of ionizing radiation on melanocyte-stimulating and steroidogenic activities of corticotropin. Biochim. Biophys. Acta 100:263–69 [Google Scholar]
  8. Goldstein JL, Brown MS. 8.  2012. History of science. A golden era of Nobel laureates. Science 338:1033–34 [Google Scholar]
  9. Germain RN, Paul WE. 9.  2011. Baruj Benacerraf (1920–2011). Nature 477:34 [Google Scholar]
  10. Dutton RW, Eady JD. 10.  1964. An in vitro system for the study of the mechanism of antigenic stimulation in the secondary response. Immunology 7:40–53 [Google Scholar]
  11. Paul WE, Siskind GW, Benacerraf B. 11.  1966. Studies on the effect of the carrier molecule on anti-hapten antibody synthesis. II. Carrier specificity of anti-2,4-dinitrophenyl-poly-L-lysine antibodies. J. Exp. Med. 123:689–705 [Google Scholar]
  12. Paul WE, Siskind GW, Benacerraf B. 12.  1968. Specificity of cellular immune responses. Antigen concentration dependence of stimulation of DNA synthesis in vitro by specifically sensitized cells, as an expression of the binding characteristics of cellular antibody. J. Exp. Med. 127:25–42 [Google Scholar]
  13. Mitchison NA. 13.  1971. The carrier effect in the secondary response to hapten-protein conjugates. I. Measurement of the effect with transferred cells and objections to the local environment hypothesis. Eur. J. Immunol. 1:10–17 [Google Scholar]
  14. Katz DH, Paul WE, Goidl EA, Benacerraf B. 14.  1970. Carrier function in anti-hapten antibody responses. I. Enhancement of primary and secondary anti-hapten antibody responses by carrier preimmunization. J. Exp. Med. 132:261–82 [Google Scholar]
  15. Paul WE, Katz DH, Goidl EA, Benacerraf B. 15.  1970. Carrier function in anti-hapten immune responses. II. Specific properties of carrier cells capable of enhancing anti-hapten antibody responses. J. Exp. Med. 132:283–99 [Google Scholar]
  16. Davie JM, Paul WE. 16.  1971. Receptors on immunocompetent cells. II. Specificity and nature of receptors on 2,4-dinitrophenyl guinea pig albumin-125I binding lymphocytes of normal guinea pigs. J. Exp. Med. 134:495–516 [Google Scholar]
  17. Shevach EM, Paul WE, Green I. 17.  1972. Histocompatibility-linked immune response gene function in guinea pigs: specific inhibition of antigen-induced lymphocyte proliferation by alloantisera. J. Exp. Med. 136:1207–21 [Google Scholar]
  18. Rosenthal AS, Shevach EM. 18.  1973. Function of macrophages in antigen recognition by guinea pig T lymphocytes. I. Requirement for histocompatible macrophages and lymphocytes. J. Exp. Med. 138:1194–1212 [Google Scholar]
  19. Shevach EM, Rosenthal AS. 19.  1973. Function of macrophages in antigen recognition by guinea pig T lymphocytes. II. Role of the macrophage in regulation of genetic control of the immune response. J. Exp. Med. 138:1213–29 [Google Scholar]
  20. Schwartz RH, Paul WE. 20.  1976. T lymphocyte-enriched murine peritoneal exudate cells. II. Genetic control of antigen-induced T lymphocyte proliferation. J. Exp. Med. 143:529–40 [Google Scholar]
  21. Glimcher LH, Sharrow SO, Paul WE. 21.  1983. Serologic and functional characterization of a panel of antigen-presenting cell lines expressing mutant I-A class II molecules. J. Exp. Med. 158:1573–88 [Google Scholar]
  22. van Boxel JA, Paul WE, Terry WD, Green I. 22.  1972. IgD-bearing human lymphocytes. J. Immunol. 109:648–51 [Google Scholar]
  23. Sieckmann DG, Asofsky R, Mosier DE, Zitron I, Paul WE. 23.  1978. Activation of mouse lymphocytes by anti-immunoglobulin. I. Parameters of the proliferative response. J. Exp. Med. 147:814–29 [Google Scholar]
  24. Sieckmann DG, Scher I, Asofsky R, Mosier DE, Paul WE. 24.  1978. Activation of mouse lymphocytes by anti-immunoglobulin. II. Requirement for a mature subset of B lymphocytes. J. Exp. Med. 148:1628–43 [Google Scholar]
  25. Sharon R, McMaster PRB, Kask AM, Owens JD, Paul WE. 25.  1975. DNP-Lys-Ficoll: a T-independent antigen which elicits both IgM and IgG anti-DNP antibody secreting cells. J. Immunol. 114:1585–89 [Google Scholar]
  26. DeFranco AL, Raveche ES, Asofsky R, Paul WE. 26.  1982. Frequency of B lymphocytes responsive to anti-immunoglobulin. J. Exp. Med. 155:1523–36 [Google Scholar]
  27. Howard M, Farrar J, Hilfiker M, Johnson B, Takatsu K. 27.  et al. 1982. Identification of a T-cell derived B-cell growth factor distinct from interleukin 2. J. Exp. Med. 155:914–23 [Google Scholar]
  28. Ohara J, Coligan J, Zoon K, Maloy WL, Paul WE. 28.  1987. High efficiency purification and chemical characterization of B cell stimulatory factor-1/interleukin-4. J. Immunol. 139:1127–34 [Google Scholar]
  29. Isakson PC, Puré E, Vitetta ES, Krammer PH. 29.  1982. T cell-derived B cell differentiation factor(s). Effect on the isotype switch of murine B cells. J. Exp. Med. 155:734–48 [Google Scholar]
  30. Vitetta ES, Ohara J, Myers C, Layton J, Krammer PH, Paul WE. 30.  1985. Serologic, biochemical and functional identity of B cell stimulatory factor-1 and B cell differentiation factor for IgG1. J. Exp. Med. 162:1726–31 [Google Scholar]
  31. Coffman RL, Ohara J, Bond MW, Carty J, Zlotnik A, Paul WE. 31.  1986. B cell stimulatory factor-1 enhances the IgE response of lipopolysaccharide-activated B cells. J. Immunol. 136:4538–41 [Google Scholar]
  32. Davis MM, Cohen DI, Nielsen EA, DeFranco AL, Paul WE. 32.  1982. The isolation of B and T cell–specific genes. B and T Cell Tumors: Biological and Clinical Aspects. UCLA Symposia on Molecular and Cellular Biology, Vol. XXIV, ed. E Vitetta, CF Fox 215–20 New York: Academic [Google Scholar]
  33. Hedrick SM, Cohen DI, Nielsen EA, Davis MM. 33.  1984. Isolation of cDNA clones encoding T cell-specific membrane-associated proteins. Nature 308:149–53 [Google Scholar]
  34. Hedrick SM, Nielsen EA, Kavaler J, Cohen DI, Davis MM. 34.  1984. Sequence relationships between putative T-cell receptor polypeptides and immunoglobulins. Nature 308:153–58 [Google Scholar]
  35. Snapper CM, Paul WE. 35.  1987. Interferon gamma and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science 236:944–47 [Google Scholar]
  36. Finkelman FD, Kotana I, Urban J, Snapper C, Ohara J, Paul WE. 36.  1986. Suppression of in vivo polyclonal IgE responses by monoclonal antibody to the lymphokine BSF-1. Proc. Natl. Acad. Sci. USA 83:9675–78 [Google Scholar]
  37. Brown MA, Pierce JH, Watson CJ, Falco J, Ihle JN, Paul WE. 37.  1987. B cell stimulatory factor-1/interleukin-4 mRNA is expressed by normal and transformed mast cells. Cell 50:809–18 [Google Scholar]
  38. Plaut M, Pierce JH, Watson CJ, Hanley-Hyde J, Nordan RP, Paul WE. 38.  1989. Mast cell lines produce lymphokines in response to cross linkage of FcεRI or to calcium ionophores. Nature 339:64–67 [Google Scholar]
  39. Seder RA, Paul WE, Dvorak AM, Sharkis SJ, Kagey-Sobotka A. 39.  et al. 1991. Mouse splenic and bone marrow cell populations that express high affinity Fcε receptors and produce IL-4 are highly enriched in basophils. Proc. Natl. Acad. Sci. USA 88:2835–39 [Google Scholar]
  40. LeGros G, Ben-Sasson SZ, Seder R, Finkelman FD, Paul WE. 40.  1990. Generation of IL-4-producing cells in vivo and vitro. IL-2 and IL-4 are required for in vitro generation of IL-4-producing cells. J. Exp. Med. 172:921–29 [Google Scholar]
  41. Swain SL, Weinberg AD, English M, Huston G. 41.  1990. IL-4 directs the development of Th2-like helper effectors. J. Immunol. 145:3796–806 [Google Scholar]
  42. Seder RA, Paul WE, Davis MM, Fazekas de St. 42. Groth B 1992. The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice. J. Exp. Med. 176:1091–98 [Google Scholar]
  43. Hsieh CS, Heimberger AB, Gold JS, O'Garra A, Murphy KM. 43.  1992. Differential regulation of T helper phenotype development by interleukins 4 and 10 in an αβ T-cell-receptor transgenic system. Proc. Natl. Acad. Sci. USA 89:6065–69 [Google Scholar]
  44. Seder RA, Gazzinelli R, Sher A, Paul WE. 44.  1993. Interleukin 12 acts directly on CD4+ T cells to enhance priming for interferon γ production and diminishes interleukin 4 inhibition of such priming. Proc. Natl. Acad. Sci. USA 90:10188–92 [Google Scholar]
  45. Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O'Garra A, Murphy KM. 45.  1993. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260:547–49 [Google Scholar]
  46. Yamane H, Paul WE. 46.  2013. Early signaling events that underlie fate decisions of naive CD4+ T cells toward distinct T-helper cell subsets. Immunol. Rev. 252:12–23 [Google Scholar]
  47. Paul WE, Seder RA. 47.  1994. Lymphocyte responses and cytokines. Cell 76:241–51 [Google Scholar]
  48. Dustin ML. 48.  2009. Modular design of immunological synapses and kinapses. Cold Spring Harb. Perspect. Biol.a002873
  49. Paul WE. 49.  1981. Clinical investigation—On the threshold of a golden era?. J. Clin. Investig. 68:823–26 [Google Scholar]
  50. Paul WE. 50.  1984. Fundamental Immunology New York: Raven Press809
  51. Paul WE. 51.  2012. Fundamental Immunology Philadelphia: Lippincott, Williams & Wilkins, 7th.1283
  52. Paul WE, Fathman CG, Metzger H. 52.  1983. Annual Review of Immunology 1 Palo Alto, CA: Annual Reviews666
  53. Mofenson L, Balsley J, Simonds RJ, Rogers MF, Moseley RR. 53.  1994. Recommendations of the U.S. Public Health Service Task Force on the use of zidovudine to reduce perinatal transmission of human immunodeficiency virus. Morb. Mortal. Wkly. Rep. 43:1–15 [Google Scholar]
  54. Yoshimoto T, Paul WE. 54.  1994. CD4pos, NK1.1pos T cells promptly produce interleukin 4 in response to in vivo challenge with anti-CD3. J. Exp. Med. 179:1285–95 [Google Scholar]
  55. Keegan AD, Nelms K, White M, Wang L-M, Pierce JH, Paul WE. 55.  1994. An IL-4 receptor region containing an insulin receptor motif is important for IL-4-mediated IRS-1 phosphorylation and cell growth. Cell 76:811–20 [Google Scholar]
  56. Ryan JJ, McReynolds LJ, Keegan A, Wang L-H, Garfein E. 56.  et al. 1996. Growth and gene expression are predominantly controlled by distinct regions of the human IL-4 receptor. Immunity 4:123–32 [Google Scholar]
  57. Yamane H, Paul WE. 57.  2005. Independent roles for IL-2 and GATA-3 in stimulating naive CD4+ T cells to generate a Th2-inducing cytokine environment. J. Exp. Med. 202:793–804 [Google Scholar]
  58. Zhu J, Yamane H, Paul WE. 58.  2010. Differentiation of effector CD4 populations. Annu. Rev. Immunol. 28:445–89 [Google Scholar]
  59. Yagi R, Zhu J, Paul WE. 59.  2011. An updated view on transcription factor GATA3-mediated regulation of Th1 and Th2 cell differentiation. Int. Immunol 23:415–20 [Google Scholar]
  60. Guo L, Hu-Li J, Paul WE. 60.  2004. Probabilistic regulation of IL-4 production in Th2 cells: accessibility at the Il4 locus. Immunity 20:193–203 [Google Scholar]
  61. Min B, McHugh R, Sempowski GD, Mackall C, Foucras G, Paul WE. 61.  2003. Neonates support lymphopenia-induced proliferation. Immunity 18:131–40 [Google Scholar]
  62. Milner JD, Ward J, Keane-Myers A, Paul WE. 62.  2007. Specificity-based lymphocyte competition in “homeostatic” and antigen-driven proliferation. Proc. Natl. Acad. Sci. USA 104:576–81 [Google Scholar]
  63. Ben-Sasson SZ, Hu-Li J, Quiel J, Cauchetaux S, Ratner M. 63.  et al. 2009. IL-1 acts directly on CD4 T cells to enhance their antigen-driven expansion and differentiation. Proc. Natl. Acad. Sci. USA 106:7119–24 [Google Scholar]
  64. Guo L, Wei G, Zhu J, Liao W, Leonard W. 64.  et al. 2009. IL-1 family members and STAT activators induce cytokine production by Th2, Th17 and Th1 cells. Proc. Natl. Acad. Sci. USA 106:13463–68 [Google Scholar]
  65. Grossman Z, Paul WE. 65.  1992. Adaptive cellular interactions in the immune system: the tunable activation threshold and the significance of subthreshold responses. Proc. Natl. Acad. Sci. USA 89:10365–69 [Google Scholar]
/content/journals/10.1146/annurev-immunol-032713-120247
Loading
/content/journals/10.1146/annurev-immunol-032713-120247
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error