1932

Abstract

I became a microbiologist in post-WWII Japan, working with Toshio Fukasawa on galactose metabolism in . We characterized mutants defective in UDP-galactose 4-epimerase, which produced a defective lipopolysaccharide, and this opened doors for me to study lipopolysaccharide biosynthesis, which I pursued in the United States, in the laboratory of Herman Kalckar. After I moved to Berkeley, California, in 1969, I became interested in the function of bacterial outer membranes, a line of work that led to the discovery and characterization of porins as well as the studies on the mycobacterial cell wall. In the early 1990s, it became clear that the outer membrane permeability barrier and the activity of periplasmic β-lactamase are not enough to explain the resistance of some strains to β-lactam antibiotics, and the search for the missing factor led to the discovery of RND family multidrug efflux pumps, subjects that continue to fascinate me to this day.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-090110-102920
2011-05-31
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/65/1/annurev-micro-090110-102920.html?itemId=/content/journals/10.1146/annurev-micro-090110-102920&mimeType=html&fmt=ahah

Literature Cited

  1. Aires JR, Nikaido H. 1.  2005. Aminoglycosides are captured from both periplasm and cytoplasm by the AcrD multidrug transporter of Escherichia coli. J. Bacteriol. 187:1923–27 [Google Scholar]
  2. Ames GFL, Spudich EN, Nikaido H. 2.  1974. Protein composition of the outer membrane of Salmonella typhimurium: effect of lipopolysaccharide mutations. J. Bacteriol. 117:406–16 [Google Scholar]
  3. Bangham A, De Gier J, Greville JD. 3.  1967. Osmotic properties and water permeability of phospholipid liquid crystals. Chem. Phys. Lipids 1:225–46 [Google Scholar]
  4. Bavoil P, Nikaido H, von Meyenburg K. 4.  1977. Pleiotropic transport mutants of Escherichia coli lack porin, a major outer membrane protein. Mol. Gen. Genet. 158:23–33 [Google Scholar]
  5. Bladen HA, Mergenhagen SE. 5.  1964. Ultrastructure of Veillonella and morphological correlation of an outer membrane with particles associated with endotoxic activity. J. Bacteriol. 88:1482–92 [Google Scholar]
  6. Chambers HF, Moreau D, Yajko D, Miick C, Sganga C. 6.  et al. 1995. Can tuberculosis be treated with penicillins?. Antimicrob. Agents Chemother. 39:2620–24 [Google Scholar]
  7. Cowan SW, Schirmer T, Rummel G, Steiert M, Ghosh R. 7.  et al. 1992. Crystal structures explain functional properties of two E. coli porins. Nature 358:727–33 [Google Scholar]
  8. Davidson AL, Nikaido H. 8.  1990. Overexpression, solubilization, and reconstitution of the maltose transport system from Escherichia coli. J. Biol. Chem. 265:4254–60 [Google Scholar]
  9. Davidson AL, Shuman H, Nikaido H. 9.  1992. Mechanism of maltose transport in Escherichia coli: transmembrane signaling by periplasmic binding proteins. Proc. Natl. Acad. Sci. USA 89:2360–69 [Google Scholar]
  10. Dean DA, Davidson AL, Nikaido H. 10.  1989. Maltose transport in membrane vesicles of Escherichia coli is linked to ATP hydrolysis. Proc. Natl. Acad. Sci. USA 86:9134–38 [Google Scholar]
  11. Decad GM, Nikaido H. 11.  1976. Outer membrane of gram-negative bacteria. XII. Molecular-sieving function of cell wall. J. Bacteriol. 128:325–36 [Google Scholar]
  12. Elkins CA, Nikaido H. 12.  2002. Substrate specificity of the RND-type multidrug efflux pumps AcrB and AcrD of Escherichia coli is determined predominantly by two large periplasmic loops. J. Bacteriol. 184:6490–98 [Google Scholar]
  13. Fukasawa T, Nikaido H. 13.  1959. Formation of “protoplasts” in mutant strains of Salmonella induced by galactose. Nature 183:1131–32 [Google Scholar]
  14. Gilson E, Higgins CF, Hofnung M, Ames GF-L, Nikaido H. 14.  1982. Extensive homology between membrane-associated components of histidine and maltose transport systems of Salmonella typhimurium and Escherichia coli. J. Biol. Chem. 257:9915–18 [Google Scholar]
  15. Jarlier V, Nikaido H. 15.  1990. Permeability barrier toward hydrophilic solutes in Mycobacterium chelonei. J. Bacteriol. 172:1418–23 [Google Scholar]
  16. Jarlier V, Nikaido H. 16.  1994. Mycobacterial cell wall: structure and role in natural resistance to antibiotics. FEMS Microbiol. Lett. 123:11–18 [Google Scholar]
  17. Kamio Y, Nikaido H. 17.  1976. Outer membrane of Salmonella typhimurium: accessibility of phospholipid head groups to phospholipase C and cyanogen-bromide-activated dextran in the external medium. Biochemistry 15:2561–70 [Google Scholar]
  18. Lee SJ, Trostel A, Le P, Harinarayanan R, Fitzgerald PC, Adhya S. 18.  2009. Cellular stress created by intermediary metabolite imbalances. Proc. Natl. Acad. Sci. USA 106:19515–20 [Google Scholar]
  19. Li XZ, Livermore DM, Nikaido H. 19.  1994. Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: resistance to tetracycline, chloramphenicol, and norfloxacin. Antimicrob. Agents Chemother. 38:1732–41 [Google Scholar]
  20. Li XZ, Ma D, Livermore DM, Nikaido H. 20.  1994. Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: active efflux as a contributing factor to β-lactam resistance. Antimicrob. Agents Chemother. 38:1742–52 [Google Scholar]
  21. Li X-Z, Nikaido H, Poole K. 21.  1995. The role of MexA-MexB-OprM in antibiotic efflux in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 39:1948–53 [Google Scholar]
  22. Lim SP, Nikaido H. 22.  2010. Kinetic parameters of efflux of penicillins by the multidrug efflux transporter AcrAB-TolC of Escherichia coli. Antimicrob. Agents Chemother. 54:1800–6 [Google Scholar]
  23. Liu J, Barry CE III, Besra GS, Nikaido H. 23.  1996. Mycolic acid structure determines the fluidity of the mycobacterial cell wall. J. Biol. Chem. 271:29545–51 [Google Scholar]
  24. Livermore DM, Davy KWM. 24.  1991. Invalidity for Pseudomonas aeruginosa of an accepted model of bacterial permeability to β-lactam antibiotics. Antimicrob. Agents Chemother. 35:916–21 [Google Scholar]
  25. Luckey M, Nikaido H. 25.  1980. Specificity of diffusion channels produced by λ phage receptor protein of Escherichia coli. Proc. Natl. Acad. Sci. USA167–71
  26. Ma D, Cook DN, Alberti M, Pon NG, Nikaido H. 26.  et al. 1993. Molecular cloning and characterization of acrA and acrE genes of Escherichia coli. J. Bacteriol. 175:6299–13 [Google Scholar]
  27. McNeil MR, Brennan PJ. 27.  1991. Structure, function and biogenesis of the cell envelope of mycobacteria in relation to bacterial physiology, pathogenesis and drug resistance; some thoughts and possibilities arising from recent structural information. Res. Microbiol. 142:451–63 [Google Scholar]
  28. Minnikin DE.28.  1982. Lipids: complex lipids, their chemistry, biosynthesis, and roles. The Biology of the Mycobacteria C Ratledge, J Stanford 95–184 New York: Academic [Google Scholar]
  29. Miura T, Mizushima S. 29.  1968. Separation by density gradient centrifugation of two types of membranes from spheroplast membrane of Escherichia coli K12. Biochim. Biophys. Acta 150:159–61 [Google Scholar]
  30. Murakami S, Nakashima R, Yamashita E, Yamaguchi A. 30.  2002. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419:587–93 [Google Scholar]
  31. Nagano K, Nikaido H. 31.  2009. Kinetic behavior of the major multidrug efflux pump AcrB of Escherichia coli. Proc. Natl. Acad. Sci. USA 106:5854–58 [Google Scholar]
  32. Naide Y, Nikaido H, Mäkelä PH, Wilkinson RG, Stocker BAD. 32.  1965. Semirough strains of Salmonella. Proc. Natl. Acad. Sci. USA 53:147–53 [Google Scholar]
  33. Nakae T.33.  1976. Outer membrane of Salmonella. Isolation of protein complex that produces transmembrane channels. J. Biol. Chem. 251:2176–78 [Google Scholar]
  34. Nikaido H.34.  1962. Studies on the biosynthesis of cell wall polysaccharides in mutant strains of Salmonella. I. Proc. Natl. Acad. Sci. USA 48:1337–41 [Google Scholar]
  35. Nikaido H.35.  1962. Studies on the biosynthesis of cell wall polysaccharides in mutant strains of Salmonella. II. Proc. Natl. Acad. Sci. USA 48:1542–48 [Google Scholar]
  36. Nikaido H.36.  1962. Phospholipid as a possible component of carrier system in β-galactoside permease of Escherichia coli. Biochem. Biophys. Res. Commun. 9:486–92 [Google Scholar]
  37. Nikaido H.37.  1976. Outer membrane of Salmonella typhimurium. Transmembrane diffusion of some hydrophobic substances. Biochim. Biophys. Acta 433:118–32 [Google Scholar]
  38. Nikaido H.38.  1989. Outer membrane barrier as a mechanism of antimicrobial resistance. Antimicrob. Agents Chemother. 33:1831–36 [Google Scholar]
  39. Nikaido H, Jokura K. 39.  1961. Isolation of cytidine diphosphate 3,6-dideoxyhexoses from Salmonella. Biochem. Biophys. Res. Commun. 6:304–9 [Google Scholar]
  40. Nikaido H, Kim SH, Rosenberg EY. 40.  1993. Physical organization of lipids in the cell wall of Mycobacterium chelonae. Mol. Microbiol. 8:1025–30 [Google Scholar]
  41. Nikaido H, Nakae T. 41.  1973. Permeability of model membranes containing phospholipid and lipopolysaccharides: some preliminary results. J. Infect. Dis. 128:S32–34 [Google Scholar]
  42. Nikaido H, Normark S. 42.  1987. Sensitivity of Escherichia coli to various β-lactams is determined by the interplay of outer membrane permeability and degradation by periplasmic β-lactamases: a quantitative predictive study. Mol. Microbiol. 1:29–36 [Google Scholar]
  43. Nikaido H, Rosenberg EY. 43.  1981. Effect of solute size on diffusion rates through the transmembrane pores of the outer membrane of Escherichia coli. J. Gen. Physiol. 77:121–35 [Google Scholar]
  44. Nikaido H, Rosenberg EY. 44.  1983. Porin channels in Escherichia coli: studies with liposomes reconstituted from purified proteins. J. Bacteriol. 153:241–52 [Google Scholar]
  45. Osborn MJ, Gander JE, Parisi E, Carson J. 45.  1972. Mechanism of assembly of the outer membrane of Salmonella typhimurium. Isolation and characterization of cytoplasmic and outer membrane. J. Biol. Chem. 247:3962–72 [Google Scholar]
  46. Plésiat P, Nikaido H. 46.  1992. Outer membranes of gram-negative bacteria are permeable to steroid probes. Mol. Microbiol. 6:1323–33 [Google Scholar]
  47. Poole K, Krebes K, McNally C, Neshat S. 47.  1993. Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J. Bacteriol. 175:7363–72 [Google Scholar]
  48. Robbie JP, Wilson TH. 48.  1969. Transmembrane effects of β-galactosides on thiomethyl-β-galactoside transport of Escherichia coli. Biochim. Biophys. Acta 173:234–44 [Google Scholar]
  49. Smit J, Kamio Y, Nikaido H. 49.  1975. Outer membrane of Salmonella typhimurium: chemical analysis and freeze-fracture studies with lipopolysaccharide mutants. J. Bacteriol. 124:942–58 [Google Scholar]
  50. Takatsuka Y, Chen C, Nikaido H. 50.  2010. Mechanism of recognition of compounds of diverse structures by the multidrug efflux pump AcrB of Escherichia coli. Proc. Natl. Acad. Sci. USA 107:6559–65 [Google Scholar]
  51. Takatsuka Y, Nikaido H. 51.  2007. Site-directed disulfide cross-linking shows that cleft flexibility in the periplasmic domain is needed for the multidrug efflux pump AcrB of Escherichia coli. J. Bacteriol. 189:8677–84 [Google Scholar]
  52. Takatsuka Y, Nikaido H. 52.  2009. Covalently linked trimer of AcrB multidrug efflux pump provides support for the functional rotating mechanism. J. Bacteriol. 191:1729–37 [Google Scholar]
  53. Tarlov AR, Kennedy EP. 53.  1965. The β-galactoside permease system and the metabolism of phospholipids in Escherichia coli. J. Biol. Chem. 240:49–53 [Google Scholar]
  54. Thanassi DG, Suh GS, Nikaido H. 54.  1995. Role of outer membrane barrier in efflux-mediated tetracycline resistance of Escherichia coli. J. Bacteriol. 177:998–1007 [Google Scholar]
  55. von Meyenburg K. 55.  1971. Transport-limited growth rates in a mutant of Escherichia coli. J. Bacteriol 107:878–88 [Google Scholar]
  56. Weiner IM, Higuchi T, Rothfield L, Saltmarsh-Andrew M, Osborn MJ, Horecker BL. 56.  1965. Biosynthesis of bacterial lipopolysaccharide. V. Lipid-linked intermediates in the biosynthesis of the O-antigen groups of Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 54:228–35 [Google Scholar]
  57. Wright A, Dankert M, Robbins PW. 57.  1965. Evidence for an intermediate stage in the biosynthesis of the salmonella O-antigen. Proc. Natl. Acad. Sci. USA 54:235–41 [Google Scholar]
  58. Yoshimura F, Zalman LS, Nikaido H. 58.  1983. Purification and properties of Pseudomonas aeruginosa porin. J. Biol. Chem. 258:2308–14 [Google Scholar]
  59. Yu EW, Aires JR, McDermott G, Nikaido H. 59.  2005. A periplasmic drug-binding site of the AcrB multidrug efflux pump: a crystallographic and site-directed mutagenesis study. J. Bacteriol. 187:6804–15 [Google Scholar]
  60. Zgurskaya HI, Nikaido H. 60.  1999. Bypassing the periplasm: reconstitution of AcrAB multidrug efflux pump of Escherichia coli. Proc. Natl. Acad. Sci. USA 96:7190–95 [Google Scholar]
/content/journals/10.1146/annurev-micro-090110-102920
Loading
/content/journals/10.1146/annurev-micro-090110-102920
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error