1932

Abstract

Yeasts are the main driving force behind several industrial food fermentation processes, including the production of beer, wine, sake, bread, and chocolate. Historically, these processes developed from uncontrolled, spontaneous fermentation reactions that rely on a complex mixture of microbes present in the environment. Because such spontaneous processes are generally inconsistent and inefficient and often lead to the formation of off-flavors, most of today's industrial production utilizes defined starter cultures, often consisting of a specific domesticated strain of , , or . Although this practice greatly improved process consistency, efficiency, and overall quality, it also limited the sensorial complexity of the end product. In this review, we discuss how yeasts were domesticated to become the main workhorse of food fermentations, and we investigate the potential and selection of nonconventional yeasts that are often found in spontaneous fermentations, such as , , and spp.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-091213-113025
2014-09-08
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/68/1/annurev-micro-091213-113025.html?itemId=/content/journals/10.1146/annurev-micro-091213-113025&mimeType=html&fmt=ahah

Literature Cited

  1. Alba-Lois L, Segal-Kischinevzky M. 1.  2010. Yeast fermentation and the making of beer and wine. Nat. Educ. 3:17 [Google Scholar]
  2. Anfang N, Brajkovich M, Goddard MR. 2.  2009. Co-fermentation with Pichia kluyveri increases varietal thiol concentrations in Sauvignon Blanc. Aust. J. Grape Wine Res. 15:1–8 [Google Scholar]
  3. Ardhana MM, Fleet GH. 3.  2003. The microbial ecology of cocoa bean fermentations in Indonesia. Int. J. Food Microbiol. 86:87–99 [Google Scholar]
  4. Arévalo Villena M, Úbeda Iranzo JF, Cordero Otero RR, Briones Pérez AI. 4.  2005. Optimization of a rapid method for studying the cellular location of β-glucosidase activity in wine yeasts. J. Appl. Microbiol. 99:558–64 [Google Scholar]
  5. Barnett JA. 5.  1998. A history of research on yeasts 1: Work by chemists and biologists 1789–1850. Yeast 14:1439–51 [Google Scholar]
  6. Barnett JA. 6.  2000. A history of research on yeasts 2: Louis Pasteur and his contemporaries, 1850–1880. Yeast 16:755–71 [Google Scholar]
  7. Barnett JA. 7.  2003. Beginnings of microbiology and biochemistry: the contribution of yeast research. Microbiology 149:557–67 [Google Scholar]
  8. Barnett JA, Lichtenthaler FW. 8.  2001. A history of research on yeasts 3: Emil Fischer, Eduard Buchner and their contemporaries, 1880–1900. Yeast 18:363–88 [Google Scholar]
  9. Barrajón N, Arévalo-Villena M, Úbeda J, Briones A. 9.  2011. Enological properties in wild and commercial Saccharomyces cerevisiae yeasts: relationship with competition during alcoholic fermentation. World J. Microbiol. Biotechnol. 27:2703–10 [Google Scholar]
  10. Bevan EA, Makower M. 10.  1963. The physiological basis of the killer character in yeast. Proc. XIth Int. Congr. Genet 1202–3 [Google Scholar]
  11. Bokulich NA, Bamforth CW, Mills DA. 11.  2012. Brewhouse-resident microbiota are responsible for multi-stage fermentation of American coolship ale. PLoS ONE 7:e35507 [Google Scholar]
  12. Bokulich NA, Joseph CML, Allen G, Benson AK, Mills DA. 12.  2012. Next-generation sequencing reveals significant bacterial diversity of botrytized wine. PLoS ONE 7:e36357 [Google Scholar]
  13. Bokulich NA, Ohta M, Richardson PM, Mills DA. 13.  2013. Monitoring seasonal changes in winery-resident microbiota. PLoS ONE 8:e66437 [Google Scholar]
  14. Borneman AR, Desany BA, Riches D, Affourtit JP, Forgan AH. 14.  et al. 2011. Whole-genome comparison reveals novel genetic elements that characterize the genome of industrial strains of Saccharomyces cerevisiae. PLoS Genet. 7:e1001287 [Google Scholar]
  15. Brown CA, Murray AW, Verstrepen KJ. 15.  2010. Rapid expansion and functional divergence of subtelomeric gene families in yeasts. Curr. Biol. 20:895–903 [Google Scholar]
  16. Camu N, De Winter T, Verbrugghe K, Cleenwerck I, Vandamme P. 16.  et al. 2007. Dynamics and biodiversity of populations of lactic acid bacteria and acetic acid bacteria involved in spontaneous heap fermentation of cocoa beans in Ghana. Appl. Environ. Microbiol. 73:1809–24 [Google Scholar]
  17. Charron MJ, Read E, Haut SR, Michels CA. 17.  1989. Molecular evolution of the telomere-associated MAL loci of Saccharomyces. Genetics 122:307–16 [Google Scholar]
  18. 18. Chr. Hansen A/S, Saerens SM, Swiegers JH 2013. Enhancement of beer flavor by a combination of Pichia yeast and different hop varieties. Int. Patent No. WO/2013/030398 [Google Scholar]
  19. Christiaens JF, van Mulders SE, Duitama J, Brown CA, Ghequire MG. 19.  et al. 2012. Functional divergence of gene duplicates through ectopic recombination. EMBO Rep. 13:1145–51 [Google Scholar]
  20. Ciani M, Comitini F. 20.  2010. Non-Saccharomyces wine yeasts have a promising role in biotechnological approaches to winemaking. Ann. Microbiol. 61:25–32 [Google Scholar]
  21. Ciani M, Fatichenti F. 21.  2001. Killer toxin of Kluyveromyces phaffii DBVPG 6076 as a biopreservative agent to control apiculate wine yeasts. Appl. Environ. Microbiol. 67:3058–63 [Google Scholar]
  22. Ciani M, Ferraro L. 22.  1996. Enhanced glycerol content in wines made with immobilized Candida stellata cells. Appl. Environ. Microbiol. 62:128–32 [Google Scholar]
  23. Ciani M, Ferraro L. 23.  1998. Combined use of immobilized Candida stellata cells and Saccharomyces cerevisiae to improve the quality of wines. J. Appl. Microbiol. 85:247–54 [Google Scholar]
  24. Clemente-Jimenez JM, Mingorance-Cazorla L, Martinez-Rodriguez S, Heras-Vazquez FJL, Rodriguez-Vico F. 24.  2005. Influence of sequential yeast mixtures on wine fermentation. Int. J. Food Microbiol. 98:301–8 [Google Scholar]
  25. Comitini F, De Ingeniis J, Pepe L, Mannazzu I, Ciani M. 25.  2004. Pichia anomala and Kluyveromyces wickerhamii killer toxins as new tools against Dekkera/Brettanomyces spoilage yeasts. FEMS Microbiol. Lett. 238:235–40 [Google Scholar]
  26. Conant GC, Wolfe KH. 26.  2007. Increased glycolytic flux as an outcome of whole-genome duplication in yeast. Mol. Syst. Biol. 3:129 [Google Scholar]
  27. Crafack M, Mikkelsen MB, Saerens S, Knudsen M, Blennow A. 27.  et al. 2013. Influencing cocoa flavour using Pichia kluyveri and Kluyveromyces marxianus in a defined mixed starter culture for cocoa fermentation. Int. J. Food Microbiol. 167:103–16 [Google Scholar]
  28. Csoma H, Zakany N, Capece A, Romano P, Sipiczki M. 28.  2010. Biological diversity of Saccharomyces yeasts of spontaneously fermenting wines in four wine regions: comparative genotypic and phenotypic analysis. Int. J. Food Microbiol. 140:239–48 [Google Scholar]
  29. Daenen L. 29.  2008. Exploitation of the flavour potential of hop and sour cherry glycosides by Saccharomyces and Brettanomyces glycoside hydrolase activities. PhD thesis, Kathol. Univ. Leuven, Belgium [Google Scholar]
  30. Daenen L, Saison D, Sterckx F, Delvaux FR, Verachtert H, Derdelinckx G. 30.  2008. Screening and evaluation of the glucoside hydrolase activity in Saccharomyces and Brettanomyces brewing yeasts. J. Appl. Microbiol. 104:478–88 [Google Scholar]
  31. Daenen L, Sterckx F, Delvaux FR, Verachtert H, Derdelinckx G. 31.  2008. Evaluation of the glycoside hydrolase activity of a Brettanomyces strain on glycosides from sour cherry (Prunus cerasus L.) used in the production of special fruit beers. FEMS Yeast Res. 8:1103–14 [Google Scholar]
  32. Dequin S, Casaregola S. 32.  2011. The genomes of fermentative Saccharomyces. C. R. Biol. 334:687–93 [Google Scholar]
  33. Di Maio S, Polizzotto G, Di Gangi E, Foresta G, Genna G. 33.  et al. 2012. Biodiversity of indigenous Saccharomyces populations from old wineries of south-eastern Sicily (Italy): preservation and economic potential. PLoS ONE 7:e30428 [Google Scholar]
  34. Doebley JF, Gaut BS, Smith BD. 34.  2006. The molecular genetics of crop domestication. Cell 127:1309–21 [Google Scholar]
  35. Domizio P, Lencioni L, Ciani M, Di Blasi S, Pontremolesi Cd, Sabatelli M. 35.  2007. Spontaneous and inoculated yeast populations dynamics and their effect on organoleptic characters of Vinsanto wine under different process conditions. Int. J. Food Microbiol. 115:281–89 [Google Scholar]
  36. Domizio P, Romani C, Lencioni L, Comitini F, Gobbi M. 36.  et al. 2011. Outlining a future for non-Saccharomyces yeasts: selection of putative spoilage wine strains to be used in association with Saccharomyces cerevisiae for grape juice fermentation. Int. J. Food Microbiol. 147:170–80 [Google Scholar]
  37. Dunn B, Sherlock G. 37.  2008. Reconstruction of the genome origins and evolution of the hybrid lager yeast Saccharomyces pastorianus. Genome Res. 18:1610–23 [Google Scholar]
  38. Egli CM, Edinger WD, Mitrakul CM, Henick-Kling T. 38.  1998. Dynamics of indigenous and inoculated yeast populations and their effect on the sensory character of Riesling and Chardonnay wines. J. Appl. Microbiol. 85:779–89 [Google Scholar]
  39. Erten H, Campbell I. 39.  1953. The production of low-alcohol wines by aerobic yeasts. J. Inst. Brew. 59:207–15 [Google Scholar]
  40. 40. Eur. Food Saf. Auth 2011. Scientific opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2011 update). EFSA J. 9:1–82 [Google Scholar]
  41. Fay JC, Benavides JA. 41.  2005. Evidence for domesticated and wild populations of Saccharomyces cerevisiae. PLoS Genet. 1:66–71 [Google Scholar]
  42. Fay JC, McCullough HL, Sniegowski PD, Eisen MB. 42.  2004. Population genetic variation in gene expression is associated with phenotypic variation in Saccharomyces cerevisiae. Genome Biol. 5:R26 [Google Scholar]
  43. Fia G, Giovani G, Rosi I. 43.  2005. Study of β-glucosidase production by wine-related yeasts during alcoholic fermentation: a new rapid fluorimetric method to determine enzymatic activity. J. Appl. Microbiol. 99:509–17 [Google Scholar]
  44. Fidalgo M, Barrales RR, Ibeas JI, Jimenez J. 44.  2006. Adaptive evolution by mutations in the FLO11 gene. Proc. Natl. Acad. Sci. USA 103:11228–33 [Google Scholar]
  45. Fleet GH. 45.  2003. Yeast interactions and wine flavour. Int. J. Food Microbiol. 86:11–22 [Google Scholar]
  46. Fleet GH, Lafon-Lafourcade S, Ribereau-Gayon P. 46.  1984. Evolution of yeast and lactic acid bacteria during fermentation and storage of Bordeaux wines. Appl. Environ. Microbiol. 48:1034–38 [Google Scholar]
  47. Galeote V, Novo M, Salema-Oom M, Brion C, Valerio E. 47.  et al. 2010. FSY1, a horizontally transferred gene in the Saccharomyces cerevisiae EC1118 wine yeast strain, encodes a high-affinity fructose/H+ symporter. Microbiology 156:3754–61 [Google Scholar]
  48. Goddard MR. 48.  2008. Quantifying the complexities of Saccharomyces cerevisiae's ecosystem engineering via fermentation. Ecology 89:2077–82 [Google Scholar]
  49. Goddard MR, Anfang N, Tang RY, Gardner RC, Jun C. 49.  2010. A distinct population of Saccharomyces cerevisiae in New Zealand: evidence for local dispersal by insects and human-aided global dispersal in oak barrels. Environ. Microbiol. 12:63–73 [Google Scholar]
  50. Goldstein H, Ting PL, Schulze WG, Murakami AA, Lusk LT, Young VD. 50.  1999. Methods of making and using purified kettle hop flavorants. Patent No. US 5,972,411
  51. Gonzalez R, Quirós M, Morales P. 51.  2013. Yeast respiration of sugars by non-Saccharomyces yeast species: a promising and barely explored approach to lowering alcohol content of wines. Trends Food Sci. Technol. 29:55–61 [Google Scholar]
  52. González SS, Barrio E, Querol A. 52.  2008. Molecular characterization of new natural hybrids of Saccharomyces cerevisiae and S. kudriavzevii in brewing. Appl. Environ. Microbiol. 74:2314–20 [Google Scholar]
  53. González-Pombo P, Fariña L, Carrau F, Batista-Viera F, Brena BM. 53.  2011. A novel extracellular β-glucosidase from Issatchenkia terricola: isolation, immobilization and application for aroma enhancement of white Muscat wine. Process Biochem. 46:385–89 [Google Scholar]
  54. Guillaume C, Delobel P, Sablayrolles JM, Blondin B. 54.  2007. Molecular basis of fructose utilization by the wine yeast Saccharomyces cerevisiae: a mutated HXT3 allele enhances fructose fermentation. Appl. Environ. Microbiol. 73:2432–9 [Google Scholar]
  55. Gutiérrez A, Beltran G, Warringer J, Guillamón JM. 55.  2013. Genetic basis of variations in nitrogen source utilization in four wine commercial yeast strains. PLoS ONE 8:e67166 [Google Scholar]
  56. Hagman A, Sall T, Compagno C, Piskur J. 56.  2013. Yeast “make-accumulate-consume” life strategy evolved as a multi-step process that predates the whole genome duplication. PLoS ONE 8:e68734 [Google Scholar]
  57. Heresztyn T. 57.  1986. Formation of substituted tetrahydropyridines by species of Brettanomyces and Lactobacillus isolated from mousy wines. Am. J. Enol. Vitic. 80:171–76 [Google Scholar]
  58. Howell KS, Klein M, Swiegers JH, Hayasaka Y, Elsey GM. 58.  et al. 2005. Genetic determinants of volatile-thiol release by Saccharomyces cerevisiae during wine fermentation. Appl. Environ. Microbiol. 71:5420–26 [Google Scholar]
  59. Hyma KE, Saerens SM, Verstrepen KJ, Fay JC. 59.  2011. Divergence in wine characteristics produced by wild and domesticated strains of Saccharomyces cerevisiae. FEMS Yeast Res. 11:540–51 [Google Scholar]
  60. Ihmels J, Bergmann S, Gerami-Nejad M, Yanai I, McClellan M. 60.  et al. 2005. Rewiring of the yeast transcriptional network through the evolution of motif usage. Science 309:938–40 [Google Scholar]
  61. Illeghems K, De Vuyst L, Papalexandratou Z, Weckx S. 61.  2012. Phylogenetic analysis of a spontaneous cocoa bean fermentation metagenome reveals new insights into its bacterial and fungal community diversity. PLoS ONE 7:e38040 [Google Scholar]
  62. 62. Int. Cocoa Organ 2012. Annual Report 2012. London: International Cocoa Organization
  63. Jones GV, White MA, Cooper OR, Storchmann K. 63.  2005. Climate change and global wine quality. Clim. Chang. 73:319–43 [Google Scholar]
  64. Kumara HMCS, De Cort S, Verachtert H. 64.  1993. Localization and characterization of α-glucosidase activity in Brettanomyces lambicus. Appl. Environ. Microbiol. 59:2352–58 [Google Scholar]
  65. Kumara HMCS, Verachtert H. 65.  1991. Identification of lambic superattenuating micro-organisms by the use of selective antibiotics. J. Inst. Brew. 97:181–85 [Google Scholar]
  66. Kutyna DR, Varela C, Henschke PA, Chambers PJ, Stanley GA. 66.  2010. Microbiological approaches to lowering ethanol concentration in wine. Trends Food Sci. Technol. 21:293–302 [Google Scholar]
  67. Legras JL, Merdinoglu D, Cornuet JM, Karst F. 67.  2007. Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history. Mol. Ecol. 16:2091–102 [Google Scholar]
  68. Libkind D, Hittinger CT, Valerio E, Goncalves C, Dover J. 68.  et al. 2011. Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. Proc. Natl. Acad. Sci. USA 108:14539–44 [Google Scholar]
  69. Licker JL, Acree TE, Henick-Kling T. 69.  1999. What is “Brett” (Brettanomyces) flavor?. Presented at Am. Chem. Soc. Symp., 213th Natl. Meet., San Francisco
  70. Lima LJR, Almeida MH, Nout MJR, Zwietering MH. 70.  2011. Theobroma cacao L., “The food of the gods”: quality determinants of commercial cocoa beans, with particular reference to the impact of fermentation. Crit. Rev. Food Sci. 51:731–61 [Google Scholar]
  71. Lin Z, Li W-H. 71.  2011. Expansion of hexose transporter genes was associated with the evolution of aerobic fermentation in yeasts. Mol. Biol. Evol. 28:131–42 [Google Scholar]
  72. Liti G, Carter DM, Moses AM, Warringer J, Parts L. 72.  et al. 2009. Population genomics of domestic and wild yeasts. Nature 458:337–41 [Google Scholar]
  73. Magyar I, Tóth T. 73.  2011. Comparative evaluation of some oenological properties in wine strains of Candida stellata, Candida zemplinina, Saccharomyces uvarum and Saccharomyces cerevisiae. Food Microbiol. 28:94–100 [Google Scholar]
  74. Martens H, Iserentant D, Verachtert H. 74.  1997. Microbiological aspects of a mixed yeast–bacterial fermentation in the production of a special Belgian acidic ale. J. Inst. Brew. 103:85–91 [Google Scholar]
  75. Meersman E, Steensels J, Mathawan M, Wittocx P-J, Saels V. 75.  et al. 2013. Detailed analysis of the microbial population in Malaysian spontaneous cocoa pulp fermentations reveals a core and variable microbiota. PLoS ONE 8:e81559 [Google Scholar]
  76. Mills DA, Johannsen EA, Cocolin L. 76.  2002. Yeast diversity and persistence in botrytis-affected wine fermentations. Appl. Environ. Microbiol. 68:4884–93 [Google Scholar]
  77. Moreira N, Mendes F, Guedes de Pinho P, Hogg T, Vasconcelos I. 77.  2008. Heavy sulphur compounds, higher alcohols and esters production profile of Hanseniaspora uvarum and Hanseniaspora guilliermondii grown as pure and mixed cultures in grape must. Int. J. Food Microbiol. 124:231–38 [Google Scholar]
  78. Mortimer R, Polsinelli M. 78.  1999. On the origins of wine yeast. Res. Microbiol. 150:199–204 [Google Scholar]
  79. Ness F, Aigle M. 79.  1995. RTM1: a member of a new family of telomeric repeated genes in yeast. Genetics 140:945–56 [Google Scholar]
  80. Nielsen DS, Teniola OD, Ban-Koffi L, Owusu M, Andersson TS, Holzapfel WH. 80.  2007. The microbiology of Ghanaian cocoa fermentations analysed using culture-dependent and culture-independent methods. Int. J. Food Microbiol. 114:168–86 [Google Scholar]
  81. Novo M, Bigey F, Beyne E, Galeote V, Gavory F. 81.  et al. 2009. Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118. Proc. Natl. Acad. Sci. USA 106:16333–38 [Google Scholar]
  82. 82. Onderz. Inf. Verbr 2012. Consumer Behavior Monitor: De Consumentenbarometer. Brussels: Onderz. Inf. Verbr http://www.crioc.be/NL/doc/x/y/document-6742.html
  83. Papalexandratou Z, Falony G, Romanens E, Jimenez JC, Amores F. 83.  et al. 2011. Species diversity, community dynamics, and metabolite kinetics of the microbiota associated with traditional Ecuadorian spontaneous cocoa bean fermentations. Appl. Environ. Microbiol. 77:7698–714 [Google Scholar]
  84. Parsons G. 84.  1981. de Bavay, Auguste Joseph François. Australian Dictionary of Biography. Volume 8. 1891–1939, Cl-Gib NB Nairn, G Serle 262–64 Carlton, Aust. Melbourne Univ. Press [Google Scholar]
  85. Pérez-Ortín JE, Querol A, Puig S, Barrio E. 85.  2002. Molecular characterization of a chromosomal rearrangement involved in the adaptive evolution of yeast strains. Genome Res. 12:1533–39 [Google Scholar]
  86. Piskur J, Rozpedowska E, Polakova S, Merico A, Compagno C. 86.  2006. How did Saccharomyces evolve to become a good brewer?. Trends Genet. 22:183–86 [Google Scholar]
  87. Powell CD, Quain DE, Smart KA. 87.  2004. The impact of sedimentation on cone yeast heterogeneity. J. Am. Soc. Brew. Chem. 62:8–17 [Google Scholar]
  88. Pretorius IS. 88.  2000. Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16:675–729 [Google Scholar]
  89. Querol A, Barrio E, Ramon D. 89.  1994. Population dynamics of natural Saccharomyces strains during wine fermentation. Int. J. Food Microbiol. 21:315–23 [Google Scholar]
  90. Querol A, Fernández-Espinar MT, Barrio E. 90.  2003. Adaptive evolution of wine yeast. Int. J. Food Microbiol. 86:3–10 [Google Scholar]
  91. Randez-Gil F, Córcoles-Sáez I, Prieto JA. 91.  2013. Genetic and phenotypic characteristics of baker's yeast: relevance to baking. Annu. Rev. Food Sci. Technol. 4:191–214 [Google Scholar]
  92. Rojas V, Gil JV, Pinaga F, Manzanares P. 92.  2001. Studies on acetate ester production by non-Saccharomyces wine yeasts. Int. J. Food Microbiol. 70:283–89 [Google Scholar]
  93. Rosi I, Vinella M, Domizio P. 93.  1994. Characterization of β-glucosidase activity in yeasts of oenological origin. J. Appl. Bacteriol. 77:519–27 [Google Scholar]
  94. Ruderfer DM, Pratt SC, Seidel HS, Kruglyak L. 94.  2006. Population genomic analysis of outcrossing and recombination in yeast. Nat. Genet. 38:1077–81 [Google Scholar]
  95. Sadoudi M, Tourdot-Maréchal R, Rousseaux S, Steyer D, Gallardo-Chacón J-J. 95.  et al. 2012. Yeast–yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces yeasts. Food Microbiol. 32:243–53 [Google Scholar]
  96. Schmitt MJ, Breinig F. 96.  2002. The viral killer system in yeast: from molecular biology to application. FEMS Microbiol. Rev. 26:257–76 [Google Scholar]
  97. Schuller D, Cardoso F, Sousa S, Gomes P, Gomes AC. 97.  et al. 2012. Genetic diversity and population structure of Saccharomyces cerevisiae strains isolated from different grape varieties and winemaking regions. PLoS ONE 7:e32507 [Google Scholar]
  98. Schwan RF. 98.  1998. Cocoa fermentations conducted with a defined microbial cocktail inoculum. Appl. Environ. Microbiol. 64:1477–83 [Google Scholar]
  99. Sicard D, Legras JL. 99.  2011. Bread, beer and wine: yeast domestication in the Saccharomyces sensu stricto complex. C. R. Biol. 334:229–36 [Google Scholar]
  100. Spano G, Russo P, Lonvaud-Funel A, Lucas P, Alexandre H. 100.  et al. 2010. Biogenic amines in fermented foods. Eur. J. Clin. Nutr. 64:Suppl. 3S95–100 [Google Scholar]
  101. Spor A, Nidelet T, Simon J, Bourgais A, de Vienne D, Sicard D. 101.  2009. Niche-driven evolution of metabolic and life-history strategies in natural and domesticated populations of Saccharomyces cerevisiae. BMC Evol. Biol. 9:296 [Google Scholar]
  102. Stambuk BU, Dunn B, Alves SL Jr, Duval EH, Sherlock G. 102.  2009. Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis. Genome Res 19:2271–78 [Google Scholar]
  103. Steensels J, Snoek T, Meersman E, Nicolino MP, Voordeckers K, Verstrepen KJ. 103.  2014. Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiol. Rev. In press. doi: 10.1111/1574-6976.12073
  104. Steyn AJ, Pretorius IS. 104.  1991. Co-expression of a Saccharomyces diastaticus glucoamylase-encoding gene and a Bacillus amyloliquefaciens α-amylase-encoding gene in Saccharomyces cerevisiae. Gene 100:85–93 [Google Scholar]
  105. Swiegers JH, Pretorius IS. 105.  2005. Yeast modulation of wine flavor. Adv. Appl. Microbiol. 57:131–75 [Google Scholar]
  106. Thomson JM, Gaucher EA, Burgan MF, De Kee DW, Li T. 106.  et al. 2005. Resurrecting ancestral alcohol dehydrogenases from yeast. Nat. Genet. 37:630–35 [Google Scholar]
  107. 107. US Food Drug Adm 2013. Food additive status list. US Food and Drug Administration. http://www.fda.gov/food/ingredientspackaginglabeling/foodadditivesingredients/ucm091048.htm
  108. Vail G. 108.  2009. Cacao use in Yucatán among the pre-Hispanic Maya. Chocolate: History, Culture, and Heritage LE Grivetti, H-Y Shapiro Hoboken, NJ: Wiley [Google Scholar]
  109. van Oevelen D. 109.  1979. Microbiology and biochemistry of the natural wort fermentation in the production of lambic and gueuze PhD Thesis, Kathol. Univ. Leuven, Belgium
  110. Verachtert H. 110.  1992. Lambic and gueuze brewing: mixed cultures in action Presented at COMETT Course Microb. Contam., Helsinki
  111. Verstrepen KJ, Derdelinckx G, Verachtert H, Delvaux FR. 111.  2003. Yeast flocculation: what brewers should know. Appl. Microbiol. Biotechnol. 61:197–205 [Google Scholar]
  112. Verstrepen KJ, Jansen A, Lewitter F, Fink GR. 112.  2005. Intragenic tandem repeats generate functional variability. Nat. Genet. 37:986–90 [Google Scholar]
  113. Voordeckers K, Brown CA, Vanneste K, van der Zande E, Voet A. 113.  et al. 2013. Reconstruction of ancestral metabolic enzymes reveals molecular mechanisms underlying evolutionary innovation through gene duplication. PLoS Biol. 10:e1001446 [Google Scholar]
  114. Wang C, Liu Y. 114.  2013. Dynamic study of yeast species and Saccharomyces cerevisiae strains during the spontaneous fermentations of Muscat blanc in Jingyang, China. Food Microbiol. 33:172–77 [Google Scholar]
  115. Wang D, Xu Y, Hu J, Zhao G. 115.  2004. Fermentation kinetics of different sugars by apple wine yeast Saccharomyces cerevisiae. J. Inst. Brew. 110:340–46 [Google Scholar]
  116. Wang QM, Liu WQ, Liti G, Wang SA, Bai FY. 116.  2012. Surprisingly diverged populations of Saccharomyces cerevisiae in natural environments remote from human activity. Mol. Ecol. 21:5404–17 [Google Scholar]
  117. Warringer J, Zorgo E, Cubillos FA, Zia A, Gjuvsland A. 117.  et al. 2011. Trait variation in yeast is defined by population history. PLoS Genet. 7:e1002111 [Google Scholar]
  118. Wedral D, Shewfelt R, Frank J. 118.  2010. The challenge of Brettanomyces in wine. LWT Food Sci. Technol. 43:1474–79 [Google Scholar]
  119. Wenger JW, Schwartz K, Sherlock G. 119.  2010. Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae. PLoS Genet. 6:e1000942 [Google Scholar]
  120. Will JL, Kim HS, Clarke J, Painter JC, Fay JC, Gasch AP. 120.  2010. Incipient balancing selection through adaptive loss of aquaporins in natural Saccharomyces cerevisiae populations. PLoS Genet. 6:e1000893 [Google Scholar]
  121. Yanai T, Sato M. 121.  1999. Isolation and properties of β-glucosidase produced by Debaryomyces hansenii and its application in winemaking. Am. J. Enol. Vitic. 50:231–35 [Google Scholar]
  122. Zott K, Thibon C, Bely M, Lonvaud-Funel A, Dubourdieu D, Masneuf-Pomarede I. 122.  2011. The grape must non-Saccharomyces microbial community: impact on volatile thiol release. Int. J. Food Microbiol. 151:210–15 [Google Scholar]
/content/journals/10.1146/annurev-micro-091213-113025
Loading
/content/journals/10.1146/annurev-micro-091213-113025
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error