1932

Abstract

Termite guts harbor a dense and diverse microbiota that is essential for symbiotic digestion. The major players in lower termites are unique lineages of cellulolytic flagellates, whereas higher termites harbor only bacteria and archaea. The functions of the mostly uncultivated lineages and their distribution in different diet groups are slowly emerging. Patterns in community structure match changes in the biology of different host groups and reflect the availability of microbial habitats provided by flagellates, wood fibers, and the increasing differentiation of the intestinal tract, which also creates new niches for microbial symbionts. Whereas the intestinal communities in the closely related cockroaches seem to be shaped primarily by the selective forces of microhabitat and functional niche, the social behavior of termites reduces the stochastic element of community assembly, which facilitates coevolution and may ultimately result in cospeciation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-092412-155715
2015-10-15
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/69/1/annurev-micro-092412-155715.html?itemId=/content/journals/10.1146/annurev-micro-092412-155715&mimeType=html&fmt=ahah

Literature Cited

  1. Ballor NR, Leadbetter JR. 1.  2012. Patterns of [FeFe] hydrogenase diversity in the gut communities of lignocellulose-feeding higher termites. Appl. Environ. Microbiol. 78:5368–74 [Google Scholar]
  2. Bauer E, Lampert N, Mikaelyan A, Köhler T, Maekawa K, Brune A. 2.  2015. Physicochemical conditions, metabolites, and community structure of the bacterial microbiota in the gut of wood-feeding cockroaches (Blaberidae: Panesthiinae). FEMS Microbiol. Ecol. 91. doi: 10.1093/femsec/fiu028
  3. Bertino-Grimaldi D, Medeiros MN, Vieira RP, Cardoso AM, Turque AS. 3.  et al. 2013. Bacterial community composition shifts in the gut of Periplaneta americana fed on different lignocellulosic materials. SpringerPlus 2:609 [Google Scholar]
  4. Bignell DE, Eggleton P. 4.  2000. Termites in ecosystems. Termites: Evolution, Sociality, Symbioses, Ecology 1 T Abe, DE Bignell, M Higashi 363–87 Dordrecht, Neth: Kluwer Acad. [Google Scholar]
  5. Bignell DE, Oskarsson H, Anderson JM. 5.  1980. Distribution and abundance of bacteria in the gut of a soil-feeding termite Procubitermes aburiensis (Termitidae, Termitinae). J. Gen. Microbiol. 117:393–403 [Google Scholar]
  6. Bignell DE, Oskarsson H, Anderson JM, Ineson P. 6.  1983. Structure, microbial associations and function of the so-called “mixed segment” of the gut in two soil-feeding termites, Procubitermes aburiensis and Cubitermes severus (Termitidae, Termitinae). J. Zool. Lond. 201:445–480 [Google Scholar]
  7. Boucias DG, Cai Y, Sun Y, Lietze VU, Sen R. 7.  et al. 2013. The hindgut lumen prokaryotic microbiota of the termite Reticulitermes flavipes and its responses to dietary lignocellulose composition. Mol. Ecol. 22:1836–53 [Google Scholar]
  8. Bourguignon T, Lo N, Cameron SL, Sobotník J, Hayashi Y, Shigenobu S. 8.  et al. 2015. The evolutionary history of termites as inferred from 66 mitochondrial genomes. Mol. Biol. Evol. 32:406–21 [Google Scholar]
  9. Breznak JA, Leadbetter JR. 9.  2006. Termite gut spirochetes. The Prokaryotes 7 Proteobacteria: Delta and Epsilon Subclasses. Deeply Rooting Bacteria M Dworkin, S Falkow, E Rosenberg, K-H Schleifer, E Stackebrandt 318–29 New York: Springer, 3rd ed.. [Google Scholar]
  10. Breznak JA, Pankratz HS. 10.  1977. In situ morphology of the gut microbiota of wood-eating termites [Reticulitermes flavipes (Kollar) and Coptotermes formosanus Shiraki]. Appl. Environ. Microbiol. 33:406–26 [Google Scholar]
  11. Brune A. 11.  1998. Termite guts: the world's smallest bioreactors. Trends Biotechnol. 16:16–21 [Google Scholar]
  12. Brune A. 12.  2006. Symbiotic associations between termites and prokaryotes. The Prokaryotes 1 Symbiotic Associations, Biotechnology, Applied Microbiology M Dworkin, S Falkow, E Rosenberg, K-H Schleifer, E Stackebrandt 439–74 New York: Springer, 3rd ed.. [Google Scholar]
  13. Brune A. 13.  2010. Methanogens in the digestive tract of termites. (Endo)symbiotic Methanogenic Archaea JHP Hackstein 81–100 Heidelberg, Ger: Springer [Google Scholar]
  14. Brune A. 14.  2012. Endomicrobia: intracellular symbionts of termite gut flagellates. J. Endocytobiosis Cell Res. 23:11–15 [Google Scholar]
  15. Brune A. 15.  2014. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol. 12:168–80 [Google Scholar]
  16. Brune A, Ohkuma M. 16.  2011. Role of the termite gut microbiota in symbiotic digestion. Biology of Termites: A Modern Synthesis DE Bignell, Y Roisin, N Lo 439–75 Dordrecht, Neth: Springer [Google Scholar]
  17. Chapman RF, Simpson SJ, Douglas AE. 17.  2013. The Insects: Structure and Function Cambridge, UK: Cambridge Univ. Press, 5th ed..
  18. Colman DR, Toolson EC, Takacs-Vesbach CD. 18.  2012. Do diet and taxonomy influence insect gut bacterial communities?. Mol. Ecol. 21:5124–37 [Google Scholar]
  19. Czolij R, Slaytor M, O'Brien RW. 19.  1985. Bacterial flora of the mixed segment and the hindgut of the higher termite Nasutitermes exitiosus Hill (Termitidae, Nasutitermitinae). Appl. Environ. Microbiol. 49:1226–36 [Google Scholar]
  20. Desai MS, Brune A. 20.  2012. Bacteroidales ectosymbionts of gut flagellates shape the nitrogen-fixing community in dry-wood termites. ISME J. 6:1302–13 [Google Scholar]
  21. Desai MS, Strassert JFH, Meuser K, Hertel H, Ikeda-Ohtsubo W. 21.  et al. 2010. Strict cospeciation of devescovinid flagellates and Bacteroidales ectosymbionts in the gut of dry-wood termites (Kalotermitidae). Environ. Microbiol. 12:2120–32 [Google Scholar]
  22. Dietrich C, Köhler T, Brune A. 22.  2014. The cockroach origin of the termite gut microbiota: Patterns in bacterial community structure reflect major evolutionary events. Appl. Environ. Microbiol. 80:2261–69 [Google Scholar]
  23. Do TH, Nguyen TT, Nguyen TN, Le QG, Nguyen C. 23.  et al. 2014. Mining biomass-degrading genes through Illumina-based de novo sequencing and metagenomic analysis of free-living bacteria in the gut of the lower termite Coptotermes gestroi harvested in Vietnam. J. Biosci. Bioeng. 118:665–71 [Google Scholar]
  24. Douglas AE. 24.  2014. The molecular basis of bacterial-insect symbiosis. J. Mol. Biol. 426:3830–37 [Google Scholar]
  25. Douglas AE. 25.  2015. Multiorganismal insects: diversity and function of resident microorganisms. Annu. Rev. Entomol. 60:17–34 [Google Scholar]
  26. Dröge S, Rachel R, Radek R, König H. 26.  2008. Treponema isoptericolens sp. nov., a novel spirochaete from the hindgut of the termite Incisitermes tabogae. Int. J. Syst. Evol. Microbiol 58:1079–83 [Google Scholar]
  27. Eggleton P. 27.  2011. An introduction to termites: biology, taxonomy and functional morphology. Biology of Termites: A Modern Synthesis DE Bignell, Y Roisin, N Lo 1–26 Dordrecht, Neth: Springer [Google Scholar]
  28. Engel P, Moran NA. 28.  2013. The gut microbiota of insects—diversity in structure and function. FEMS Microbiol. Rev. 37:699–735 [Google Scholar]
  29. Friedrich MW, Schmitt-Wagner D, Lueders T, Brune A. 29.  2001. Axial differences in community structure of Crenarchaeota and Euryarchaeota in the highly compartmentalized gut of the soil-feeding termite Cubitermes orthognathus. Appl. Environ. Microbiol. 67:4880–90 [Google Scholar]
  30. Fujita A. 30.  2004. Lysozymes in insects: What role do they play in nitrogen metabolism?. Physiol. Entomol. 299:305–10 [Google Scholar]
  31. Gile GH, Carpenter KJ, James ER, Scheffrahn RH, Keeling PJ. 31.  2013. Morphology and molecular phylogeny of Staurojoenina mulleri sp. nov. (Trichonymphida, Parabasalia) from the hindgut of the kalotermitid Neotermes jouteli. J. Eukaryot. Microbiol. 60:203–13 [Google Scholar]
  32. Gile GH, James ER, Scheffrahn RH, Carpenter KJ, Harper JT, Keeling PJ. 32.  2011. Molecular and morphological analysis of the Calonymphidae with a description of Calonympha chia sp. nov., Snyderella kirbyi sp. nov., Snyderella swezyae sp. nov., and Snyderella yamini sp. nov. Int. J. Syst. Evol. Microbiol. 61:2547–58 [Google Scholar]
  33. Grieco MAB, Cavalcante JJV, Cardoso AM, Vieira RP, Machado EA. 33.  et al. 2013. Microbial community diversity in the gut of the South American termite Cornitermes cumulans (Isoptera: Termitidae). Microb. Ecol. 65:197–204 [Google Scholar]
  34. Hamilton C, Bulmer MS. 34.  2012. Molecular antifungal defenses in subterranean termites: RNA interference reveals in vivo roles of termicins and GNBPs against a naturally encountered pathogen. Dev. Comp. Immunol. 36:372–77 [Google Scholar]
  35. He S, Ivanova N, Kirton E, Allgaier M, Bergin C. 35.  et al. 2013. Comparative metagenomic and metatranscriptomic analysis of hindgut paunch microbiota in wood- and dung-feeding higher termites. PLOS ONE 8:e61126 [Google Scholar]
  36. Hongoh Y. 36.  2010. Diversity and genomes of uncultured microbial symbionts in the termite gut. Biosci. Biotechnol. Biochem. 74:1145–51 [Google Scholar]
  37. Hongoh Y. 37.  2011. Toward the functional analysis of uncultivable, symbiotic microorganisms in the termite gut. Cell. Mol. Life Sci. 68:1311–25 [Google Scholar]
  38. Hongoh Y, Deevong P, Hattori S, Inoue T, Noda S. 38.  et al. 2006. Phylogenetic diversity, localization, and cell morphologies of the candidate phylum TG3 and a subphylum in the phylum Fibrobacteres, recently found bacterial groups dominant in termite guts. Appl. Environ. Microbiol. 72:6780–88 [Google Scholar]
  39. Hongoh Y, Deevong P, Inoue T, Moriya S, Trakulnaleamsai. 39.  et al. 2005. Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl. Environ. Microbiol. 71:6590–99 [Google Scholar]
  40. Hongoh Y, Ohkuma M. 40.  2010. Termite gut flagellates and their methanogenic and eubacterial symbionts. (Endo)symbiotic Methanogenic Archaea JHP Hackstein 55–79 Heidelberg, Ger: Springer [Google Scholar]
  41. Hongoh Y, Sato T, Dolan M, Noda S, Ui S. 41.  et al. 2007. The motility symbiont of the termite gut flagellate Caduceia versatilis is a member of the “Synergistes” group. Appl. Environ. Microbiol. 73:6270–76 [Google Scholar]
  42. Hongoh Y, Sharma VK, Prakash T, Noda S, Taylor TD. 42.  et al. 2009. Complete genome of the uncultured Termite Group 1 bacteria in a single host protist cell. PNAS 105:5555–60 [Google Scholar]
  43. Hongoh Y, Sharma VK, Prakash T, Noda S, Toh H. 43.  et al. 2008. Genome of an endosymbiont coupling N2 fixation to cellulolysis within protist cells in termite gut. Science 322:1108–9 [Google Scholar]
  44. Huang XF, Bakker MG, Judd TM, Reardon KF, Vivanco JM. 44.  2013. Variations in diversity and richness of gut bacterial communities of termites (Reticulitermes flavipes) fed with grassy and woody plant substrates. Microb. Ecol. 65:531–36 [Google Scholar]
  45. Ikeda-Ohtsubo W, Brune A. 45.  2009. Cospeciation of termite gut flagellates and their bacterial endosymbionts: Trichonympha species and ‘Candidatus Endomicrobium trichonymphae.’. Mol. Ecol. 18:332–42 [Google Scholar]
  46. Ikeda-Ohtsubo W, Faivre N, Brune A. 46.  2010. Putatively free-living ‘Endomicrobia’—ancestors of the intracellular symbionts of termite gut flagellates?. Environ. Microbiol. Rep. 2:554–59 [Google Scholar]
  47. Inoue J, Noda S, Hongoh Y, Ui S, Ohkuma M. 47.  2008. Identification of endosymbiotic methanogen and ectosymbiotic spirochetes of gut protists of the termite Coptotermes formosanus. Microb. Environ. 23:94–97 [Google Scholar]
  48. Inoue JI, Oshim K, Suda W, Sakamoto M, Iino T. 48.  et al. 2015. Distribution and evolution of nitrogen fixation genes in the phylum Bacteroidetes. Microb. Environ. 30:44–50 [Google Scholar]
  49. Isanapong J, Sealy-Hambright W, Willis AG, Boonmee A, Callister SJ. 49.  et al. 2013. Development of an ecophysiological model for Diplosphaera colotermitum TAV2, a termite hindgut verrucomicrobium. ISME J. 7:1–11 [Google Scholar]
  50. James ER, Okamoto N, Burki F, Scheffrahn RH, Keeling PJ. 50.  2013. Cthulhu macrofasciculumque n. g., n. sp. and Cthylla microfasciculumque n. g., n. sp., a newly identified lineage of parabasalian termite symbionts. PLOS ONE 8:e58509 [Google Scholar]
  51. James ER, Tai V, Scheffrahn RH, Keeling PJ. 51.  2013. Trichonympha burlesquei from Reticulitermes virginicus and evidence against a cosmopolitan distribution of Trichonympha agilis in many termite hosts. Int. J. Syst. Evol. Microbiol. 63:3873–76 [Google Scholar]
  52. Kitade O. 52.  2004. Comparison of symbiotic flagellate faunae between termites and a wood-feeding cockroach of the genus Cryptocercus. Microb. Environ. 19:215–220 [Google Scholar]
  53. Klass KD, Nalepa C, Lo N. 53.  2008. Wood-feeding cockroaches as models for termite evolution (Insecta: Dictyoptera): Cryptocercus versus Parasphaeria boleiriana. Mol. Phylogenet. Evol. 46:809–17 [Google Scholar]
  54. Köhler T, Dietrich C, Scheffrahn RH, Brune A. 54.  2012. High-resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp.). Appl. Environ. Microbiol. 78:4691–701 [Google Scholar]
  55. Köhler T, Stingl U, Meuser K, Brune A. 55.  2008. Novel lineages of Planctomycetes densely colonize the alkaline gut of soil-feeding termites (Cubitermes spp.). Environ. Microbiol. 10:1260–70 [Google Scholar]
  56. Lang K, Schuldes J, Klingl A, Poehlein A, Daniel R, Brune A. 56.  2015. New mode of energy metabolism in the seventh order of methanogens as indicated by comparative genome analysis of “Candidatus Methanoplasma termitum.”. Appl. Environ. Microbiol. 81:1338–52 [Google Scholar]
  57. Lemaitre B, Miguel-Aliaga I. 57.  2013. The digestive tract of Drosophila melanogaster. Annu. Rev. Genet. 47:377–404 [Google Scholar]
  58. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR. 58.  et al. 2008. Evolution of mammals and their gut microbes. Science 5883:1647–51 [Google Scholar]
  59. Li H, Sun J, Zhao J, Deng T, Lu J. 59.  et al. 2012. Physiochemical conditions and metal ion profiles in the gut of the fungus-growing termite Odontotermes formosanus. J. Insect Physiol. 58:1368–75 [Google Scholar]
  60. Liu N, Zhang L, Zhou H, Zhang M, Yan X. 60.  et al. 2013. Metagenomic insights into metabolic capacities of the gut microbiota in a fungus-cultivating termite (Odontotermes yunnanensis). PLOS ONE 8:e69184 [Google Scholar]
  61. Lo N, Eggleton P. 61.  2011. Termite phylogenetics and co-cladogenesis with symbionts. Biology of Termites: A Modern Synthesis DE Bignell, Y Roisin, N Lo 27–50 Dordrecht, Neth: Springer [Google Scholar]
  62. Lucey KS, Leadbetter JR. 62.  2014. Catechol 2,3-dioxygenase and other meta-cleavage catabolic pathway genes in the ‘anaerobic’ termite gut spirochete Treponema primitia. Mol. Ecol. 23:1531–43 [Google Scholar]
  63. Makonde HM, Boga HI, Osiemo Z, Mwirichia R, Mackenzie LM. 63.  et al. 2013. 16S-rRNA-based analysis of bacterial diversity in the gut of fungus-cultivating termites (Microtermes and Odontotermes species). Antonie Leeuwenhoek 104:869–83 [Google Scholar]
  64. Matson EG, Gora KG, Leadbetter JR. 64.  2011. Anaerobic carbon monoxide dehydrogenase diversity in the homoacetogenic hindgut microbial communities of lower termites and the wood roach. PLOS ONE 6:e19316 [Google Scholar]
  65. Mikaelyan A, Strassert JFH, Tokuda G, Brune A. 65.  2014. The fiber-associated cellulolytic bacterial community in the hindgut of wood-feeding higher termites (Nasutitermes spp.). Environ. Microbiol. 16:2711–22 [Google Scholar]
  66. Miyata R, Noda N, Tamaki H, Kinjyo K, Aoyagi H. 66.  et al. 2007. Influence of feed components on symbiotic bacterial community structure in the gut of the wood-feeding higher termite Nasutitermes takasagoensis. Biosci. Biotechnol. Biochem. 71:1244–51 [Google Scholar]
  67. Miyata R, Noda N, Tamaki H, Kinjyo K, Aoyagi H. 67.  et al. 2007. Phylogenetic relationship of symbiotic archaea in the gut of the higher termite Nasutitermes takasagoensis fed with various carbon sources. Microb. Environ. 22:157–64 [Google Scholar]
  68. Nakajima H, Hongoh Y, Noda S, Yoshida Y, Usami R. 68.  et al. 2006. Phylogenetic and morphological diversity of Bacteroidales members associated with the gut wall of termites. Biosci. Biotechnol. Biochem. 70:211–18 [Google Scholar]
  69. Nalepa CA. 69.  2011. Altricial development in wood-feeding cockroaches: the key antecedent of termite eusociality. Biology of Termites: A Modern Synthesis DE Bignell, Y Roisin, N Lo 69–95 Dordrecht, Neth: Springer [Google Scholar]
  70. Nalepa CA. 70.  2015. Origin of termite eusociality: Trophallaxis integrates the social, nutritional, and microbial environments. Ecol. Entomol. 40:323–35
  71. Ngugi DK, Brune A. 71.  2012. Nitrate reduction, nitrous oxide formation, and anaerobic ammonia oxidation to nitrite in the gut of soil-feeding termites (Cubitermes and Ophiotermes spp.). Environ. Microbiol. 14:860–71 [Google Scholar]
  72. Ni J, Tokuda G. 72.  2013. Lignocellulose-degrading enzymes from termites and their symbiotic microbiota. Biotechnol. Adv. 31:838–50 [Google Scholar]
  73. Nobre T, Rouland-Lefèvre C, Aanen DK. 73.  2011. Comparative biology of fungus cultivation in termites and ants. Biology of Termites: A Modern Synthesis DE Bignell, Y Roisin, N Lo 193–210 Dordrecht, Neth: Springer [Google Scholar]
  74. Noda S, Hongoh Y, Sato T, Ohkuma M. 74.  2009. Complex coevolutionary history of symbiotic Bacteroidales bacteria of various protists in the gut of termites. BMC Evol. Biol. 9:158 [Google Scholar]
  75. Noda S, Inoue T, Hongoh Y, Nalepa CA, Vongkaluang C. 75.  et al. 2006. Identification and characterization of ectosymbionts of distinct lineages in Bacteroidales attached to flagellated protists in the gut of termites and a wood-feeding cockroach. Environ. Microbiol. 8:11–20 [Google Scholar]
  76. Noda S, Kitade O, Inoue T, Kawai M, Kanuka M. 76.  et al. 2007. Cospeciation in the triplex symbiosis of termite gut protists (Pseudotrichonympha spp.), their hosts, and their bacterial endosymbionts. Mol. Ecol. 16:1257–66 [Google Scholar]
  77. Noda S, Mantini C, Meloni D, Inoue J-I, Kitade O. 77.  et al. 2012. Molecular phylogeny and evolution of parabasalia with improved taxon sampling and new protein markers of actin and elongation factor-1α. PLOS ONE 7:e29938 [Google Scholar]
  78. Noirot C. 78.  1995. The gut of termites (Isoptera). Comparative anatomy, systematics, phylogeny. I. Lower termites. Ann. Soc. Entomol. Fr. 31:197–226 [Google Scholar]
  79. Noirot C. 79.  2001. The gut of termites (Isoptera). Comparative anatomy, systematics, phylogeny. II. Higher termites (Termitidae). Ann. Soc. Entomol. Fr. 37:431–71 [Google Scholar]
  80. Ochman H, Worobey M, Kuo CH, Ndjango JBN, Peeters M. 80.  et al. 2010. Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLOS Biol. 8:e1000546 [Google Scholar]
  81. Ohkuma M, Brune A. 81.  2011. Diversity, structure, and evolution of the termite gut microbial community. Biology of Termites: A Modern Synthesis DE Bignell, Y Roisin, N Lo 413–38 Dordrecht, Neth: Springer [Google Scholar]
  82. Ohkuma M, Noda S, Hattori S, Iida T, Yuki M. 82.  et al. 2015. Acetogenesis from H2 plus CO2 and nitrogen fixation by an endosymbiotic spirochete of a termite-gut cellulolytic protist. PNAS. In press. doi: 10.1073/pnas.1423979112
  83. Otani S, Mikaelyan A, Nobre T, Hansen LH, Koné NA. 83.  et al. 2014. Identifying the core microbial community in the gut of fungus-growing termites. Mol. Ecol. 23:184631–44 [Google Scholar]
  84. Ottesen EA, Leadbetter JR. 84.  2011. Formyltetrahydrofolate synthetase gene diversity in the guts of higher termites with different diets and lifestyles. Appl. Environ. Microbiol. 77:3461–67 [Google Scholar]
  85. Paul K, Nonoh JO, Mikulski L, Brune A. 85.  2012. Methanoplasmatales,” Thermoplasmatales-related archaea in termite guts and other environments, are the seventh order of methanogens. Appl. Environ. Microbiol. 78:8245–53 [Google Scholar]
  86. Pérez-Cobas AE, Maiques E, Angelova A, Carrasco P, Moya A, Latorre A. 86.  2015. Diet shapes the gut microbiota of the omnivorous cockroach Blatella germanica. FEMS Microbiol. Ecol. 91. doi: 10.1093/femsec/fiv022
  87. Pester M, Brune A. 87.  2007. Hydrogen is the central free intermediate during lignocellulose degradation by termite gut symbionts. ISME J. 1:551–65 [Google Scholar]
  88. Poulsen M. 88.  2015. Towards an integrated understanding of the consequences of fungus domestication on the fungus-growing termite gut microbiota. Environ. Microbiol. In press. doi: 10.1111/1462-2920.12765
  89. Poulsen M, Hu H, Li C, Chen Z, Xu L. 89.  et al. 2014. Complementary symbiont contributions to plant decomposition in a fungus-farming termite. PNAS 111:14500–5 [Google Scholar]
  90. Pramono AK, Sakamoto M, Iino T, Hongoh Y, Ohkuma M. 90.  2015. Dysgonomonas termitidis sp. nov., isolated from the gut of the subterranean termite Reticulitermes speratus. Int. J. Syst. Evol. Microbiol. 65:681–685 [Google Scholar]
  91. Radek R, Strassert JFH, Krüger J, Meuser K, Scheffrahn RH, Brune A. 91.  2014. Phylogeny and ultrastructure of Oxymonas jouteli, a rostellum-free species, and Opisthomitus longiflagellatus sp. nov., oxymonadid flagellates from the gut of Neotermes jouteli. Protist 165:384–99 [Google Scholar]
  92. Rahman NA, Parks DH, Willner DL, Engelbrektson AL, Goffredi SK. 92.  et al. 2015. A molecular survey of Australian and North American termite genera indicates that vertical inheritance is the primary force shaping termite gut microbiomes. Microbiome 3:5 [Google Scholar]
  93. Rawls JF, Mahowald MA, Ley RE, Gordon JI. 93.  2006. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 127:423–33 [Google Scholar]
  94. Raychoudhury R, Sen R, Cai Y, Sun Y, Lietze V-U. 94.  et al. 2013. Comparative metatranscriptomic signatures of wood and paper feeding in the gut of the termite Reticulitermes flavipes (Isoptera: Rhinotermitidae). Insect Mol. Biol. 22:155–71 [Google Scholar]
  95. Reid NM, Addison SL, West MA, Lloyd-Jones G. 95.  2014. The bacterial microbiota of Stolotermes ruficeps (Stolotermitidae), a phylogenetically basal termite endemic to New Zealand. FEMS Microbiol. Ecol. 90:678–88 [Google Scholar]
  96. Rosengaus RB, Schultheis KF, Yalonetskaya A, Bulmer MS, du Comb W. 96.  et al. 2014. Symbiont-derived β-1,3-glucanases in a social insect: mutualism beyond nutrition. Front. Microbiol. 5:607 [Google Scholar]
  97. Rosenthal AZ, Matson EG, Eldar A, Leadbetter JR. 97.  2011. RNA-seq reveals cooperative metabolic interactions between two termite-gut spirochete species in co-culture. ISME J. 5:1133–42 [Google Scholar]
  98. Rosenthal AZ, Zhang X, Lucey KS, Ottesen EA, Trivedi V. 98.  et al. 2013. Localizing transcripts to single cells suggests an important role of uncultured deltaproteobacteria in the termite gut hydrogen economy. PNAS 110:16163–68 [Google Scholar]
  99. Sabree ZL, Huang CY, Arakawa G, Tokuda G, Lo N. 99.  et al. 2012. Genome shrinkage and loss of nutrient-providing potential in the obligate symbiont of the primitive termite Mastotermes darwiniensis. Appl. Environ. Microbiol. 78:204–10 [Google Scholar]
  100. Sabree ZL, Moran NA. 100.  2014. Host-specific assemblages typify gut microbial communities of related insect species. SpringerPlus 3:138 [Google Scholar]
  101. Sakamoto M, Ohkuma M. 101.  2013. Bacteroides reticulotermitis sp. nov., isolated from the gut of the subterranean termite (Reticulitermes speratus). Int. J. Syst. Evol. Microbiol. 63:691–695 [Google Scholar]
  102. Sato T, Hongoh Y, Noda S, Hattori S, Ui S, Ohkuma M. 102.  2009. Candidatus Desulfovibrio trichonymphae, a novel intracellular symbiont of the flagellate Trichonympha agilis in termite gut. Environ. Microbiol. 11:1007–15 [Google Scholar]
  103. Sato T, Kuwahara H, Fujita K, Noda S, Kihara K. 103.  et al. 2014. Intranuclear verrucomicrobial symbionts and evidence of lateral gene transfer to the host protist in the termite gut. ISME J. 8:1008–19 [Google Scholar]
  104. Schauer C, Thompson CL, Brune A. 104.  2012. The bacterial community in the gut of the cockroach Shelfordella lateralis reflects the close evolutionary relatedness of cockroaches and termites. Appl. Environ. Microbiol. 78:2758–67 [Google Scholar]
  105. Schauer C, Thompson CL, Brune A. 105.  2014. Pyrotag sequencing of the gut microbiota of the cockroach Shelfordella lateralis reveals a highly dynamic core but only limited effects of diet on community structure. PLOS ONE 9:e85861 [Google Scholar]
  106. Schmitt-Wagner D, Friedrich MW, Wagner B, Brune A. 106.  2003. Phylogenetic diversity, abundance, and axial distribution of bacteria in the intestinal tract of two soil-feeding termites (Cubitermes spp.). Appl. Environ. Microbiol. 69:6007–17 [Google Scholar]
  107. Seedorf H, Griffin NW, Ridaura VK, Reyes A, Cheng J. 107.  et al. 2014. Bacteria from diverse habitats colonize and compete in the mouse gut. Cell 159:254–66 [Google Scholar]
  108. Strassert JFH, Köhler T, Wienemann THG, Ikeda-Ohtsubo W, Faivre N. 108.  et al. 2012. Candidatus Ancillula trichonymphae’, a novel lineage of endosymbiotic Actinobacteria in termite gut flagellates of the genus Trichonympha. Environ. Microbiol. 14:3259–70 [Google Scholar]
  109. Tai V, Gile GH, Pan J, James ER, Carpenter KJ. 109.  et al. 2014. The phylogenetic position of Kofoidia loriculata (Parabasalia) and its implications for the evolution of the Cristamonadea. J. Eukaryot. Microbiol. 62:255–59 [Google Scholar]
  110. Tai V, James ER, Nalepa CA, Scheffrahn RH, Perlman SJ, Keeling PJ. 110.  2015. The role of host phylogeny varies in shaping microbial diversity in the hindguts of lower termites. Appl. Environ. Microbiol. 81:1059–70 [Google Scholar]
  111. Tai V, James ER, Perlman SJ, Keeling PJ. 111.  2013. Single-cell DNA barcoding using sequences from the small subunit rRNA and internal transcribed spacer region identifies new species of Trichonympha and Trichomitopsis from the hindgut of the termite Zootermopsis angusticollis. PLOS ONE 8:e58728 [Google Scholar]
  112. Tamschick S, Radek R. 112.  2013. Colonization of termite hindgut walls by oxymonad flagellates and prokaryotes in Incisitermes tabogae, I. marginipennis and Reticulitermes flavipes. Eur. J. Protistol. 49:1–14 [Google Scholar]
  113. Tanaka H, Aoyagi H, Shina S, Dodo Y, Yoshimura T. 113.  et al. 2006. Influence of the diet components on the symbiotic microorganisms community in hindgut of Coptotermes formosanus Shiraki. Appl. Microbiol. Biotechnol. 71:907–17 [Google Scholar]
  114. Thompson CL, Vier R, Mikaelyan A, Wienemann T, Brune A. 114.  2012. Candidatus Arthromitus’ revised: Segmented filamentous bacteria in arthropod guts are members of Lachnospiraceae. Environ. Microbiol. 14:1454–65 [Google Scholar]
  115. Thongaram T, Hongoh Y, Kosono S, Ohkuma M, Trakulnaleamsai S. 115.  et al. 2005. Comparison of bacterial communities in the alkaline gut segment among various species of higher termites. Extremophiles 9:229–38 [Google Scholar]
  116. Tokuda G, Nakamura T, Murakami R, Yamaoka I. 116.  2001. Morphology of the digestive system in the wood-feeding termite Nasutitermes takasagoensis (Shiraki) [Isoptera: Termitidae]. Zool. Sci. 18:869–77 [Google Scholar]
  117. Tokuda G, Tsuboi Y, Kihara K, Saitou S, Moriya S. 117.  et al. 2014. Metabolomic profiling of 13C-labelled cellulose digestion in a lower termite: insights into gut symbiont function. Proc. R. Soc. B 281:20140990 [Google Scholar]
  118. Ulyshen MD. 118.  2014. Wood decomposition as influenced by invertebrates. Biol. Rev. In press. doi: 10.1111/brv.12158
  119. Warnecke F, Luginbühl P, Ivanova N, Ghassemian M, Richardson TH. 119.  et al. 2007. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–65 [Google Scholar]
  120. Watanabe H, Tokuda G. 120.  2010. Cellulolytic systems in insects. Annu. Rev. Entomol. 55:609–32 [Google Scholar]
  121. Wenzel M, Radek R, Brugerolle G, König H. 121.  2003. Identification of the ectosymbiotic bacteria of Mixotricha paradoxa involved in movement symbiosis. Eur. J. Protistol. 39:11–24 [Google Scholar]
  122. Wertz JT, Breznak JA. 122.  2007. Physiological ecology of Stenoxybacter acetivorans, an obligate microaerophile in termite guts. Appl. Environ. Microbiol. 73:6829–41 [Google Scholar]
  123. Wertz JT, Kim E, Breznak JA, Schmidt TM, Rodrigues JLM. 123.  2012. Genomic and physiological characterization of the Verrucomicrobia isolate Diplosphaera colotermitum gen. nov., sp. nov. reveals microaerophily and nitrogen fixation genes. Appl. Environ. Microbiol. 78:1544–55 [Google Scholar]
  124. Yamada A, Inoue T, Noda Y, Hongoh H, Ohkuma M. 124.  2007. Evolutionary trend of phylogenetic diversity of nitrogen fixation genes in the gut community of wood-feeding termites. Mol. Ecol. 16:3768–77 [Google Scholar]
  125. Yang YJ, Zhang N, Ji SQ, Lan X, Zhang KD. 125.  et al. 2014. Dysgonomonas macrotermitis sp. nov., isolated from the hindgut of a fungus-growing termite. Int. J. Syst. Evol. Microbiol. 64:2956–2961 [Google Scholar]
  126. Yun J-H, Roh SW, Whon TW, Jung M-J, Kim M-S. 126.  et al. 2014. Insects gut bacterial diversity determined by host environmental habitat, diet, developmental stage and phylogeny. Appl. Environ. Microbiol. 80:5254–64 [Google Scholar]
  127. Zhang M, Liu N, Qian C, Wang Q, Wang Q. 127.  et al. 2014. Phylogenetic and functional analysis of gut microbiota of a fungus-growing higher termite: Bacteroidetes from higher termites are a rich source of β-glucosidase genes. Microb. Ecol. 68:416–25 [Google Scholar]
  128. Zhang X, Leadbetter JR. 128.  2012. Evidence for cascades of perturbation and adaptation in the metabolic genes of higher termite gut symbionts. mBio 3:e00223–12 [Google Scholar]
  129. Zheng H, Bodington D, Zhang C, Miyanaga K, Tanji Y. 129.  et al. 2013. Comprehensive phylogenetic diversity of [FeFe]-hydrogenase genes in termite gut microbiota. Microb. Environ. 28:491–94 [Google Scholar]
  130. Zheng H, Dietrich C, Thompson CL, Meuser K, Brune A. 130.  2015. Population structure of Endomicrobia in single host cells of termite gut flagellates (Trichonympha spp.). Microb. Environ. 30:92–98 [Google Scholar]
/content/journals/10.1146/annurev-micro-092412-155715
Loading
/content/journals/10.1146/annurev-micro-092412-155715
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error