1932

Abstract

Ultraviolet (UV) radiation is a leading external hazard to the integrity of DNA. Exposure to UV radiation triggers a cascade of chemical reactions, and many molecular products (photolesions) have been isolated that are potentially dangerous for the cellular system. The early steps that take place after UV absorption by DNA have been studied by ultrafast spectroscopy. The review focuses on the evolution of excited electronic states, the formation of photolesions, and processes suppressing their formation. Emphasis is placed on lesions involving two thymine bases, such as the cyclobutane pyrimidine dimer, the (6-4) lesion, and its Dewar valence isomer.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040214-121821
2015-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/physchem/66/1/annurev-physchem-040214-121821.html?itemId=/content/journals/10.1146/annurev-physchem-040214-121821&mimeType=html&fmt=ahah

Literature Cited

  1. Gates FL. 1.  1928. On nuclear derivatives and the lethal action of ultra-violet light. Science 68:479–80 [Google Scholar]
  2. Gates FL. 2.  1930. A study of the bactericidal action of ultra violet light III. The absorption of ultra violet light by bacteria. J. Gen. Physiol. 14:31–42 [Google Scholar]
  3. Björn LO. 3.  2010. Photobiology: The Science of Life and Light New York: Springer
  4. Cadet J, Vigny P. 4.  1990. The photochemistry of nucleic acid in bioorganic photochemistry. Bioorganic Photochemistry, Photochemistry and the Nucleic Acids H Morrison 1–272 New York: Wiley [Google Scholar]
  5. Spotheim-Maurizot M, Mostafavi M, Douki T, Belloni J. 5.  2008. Radiation Chemistry: From Basics to Applications in Material and Life Sciences France: EDP Sci.
  6. Taylor JS. 6.  1994. Unraveling the molecular pathway from sunlight to skin cancer. Acc. Chem. Res. 27:76–82 [Google Scholar]
  7. de Gruijl FR, van Kranen HJ, Mullenders LHF. 7.  2001. UV-induced DNA damage, repair, mutations and oncogenic pathways in skin cancer. J. Photochem. Photobiol. B 63:19–27 [Google Scholar]
  8. Pfeifer GP, You Y-H, Besaratinia A. 8.  2005. Mutations induced by ultraviolet light. Mutat. Res. 571:19–31 [Google Scholar]
  9. Serrano-Andreés L, Merchaán M. 9.  2009. Are the five natural DNA/RNA base monomers a good choice from natural selection? A photochemical perspective. J. Photochem. Photobiol. C 10:21–32 [Google Scholar]
  10. Beukers R, Ylstra J, Berends W. 10.  1958. The effect of ultraviolet light on some components of the nucleic acids. II. In rapidly frozen solutions. Recl. Trav. Chim. Pays-Bas 77:729–32 [Google Scholar]
  11. Beukers R, Berends W. 11.  1960. Isolation and identification of the irradiation product of thymine. Biochim. Biophys. Acta 41:550–51 [Google Scholar]
  12. Beukers R, Eker APM, Lohman PHM. 12.  2008. 50 years thymine dimer. DNA Repair 7:530–43 [Google Scholar]
  13. Cadet J, Mouret S, Ravanat J-L, Douki T. 13.  2012. Photoinduced damage to cellular DNA: direct and photosensitized reactions. Photochem. Photobiol. 88:1048–65 [Google Scholar]
  14. Chang JC, Ossoff SF, Lobe DC, Dorfman MH, Dumais CM. 14.  et al. 1985. UV inactivation of pathogenic and indicator microorganisms. Appl. Environ. Microbiol. 49:1361–65 [Google Scholar]
  15. Turro NJ, Ramamurthy V, Scaiano JC. 15.  2010. Modern Molecular Photochemistry of Organic Molecules Sausalito, CA: Univ. Sci.
  16. Ovchinnikov VA, Sundholm D. 16.  2014. Coupled-cluster and density functional theory studies of the electronic 0-0 transitions of the DNA bases. Phys. Chem. Chem. Phys. 16:6931–41 [Google Scholar]
  17. Crespo-Hernández CE, Cohen B, Hare PM, Kohler B. 17.  2004. Ultrafast excited-state dynamics in nucleic acids. Chem. Rev. 104:1977–2020 [Google Scholar]
  18. Middleton CT, de La Harpe K, Su C, Law YK, Crespo-Hernández CE, Kohler B. 18.  2009. DNA excited-state dynamics: from single bases to the double helix. Annu. Rev. Phys. Chem. 60:217–39 [Google Scholar]
  19. Kleinermanns K, Nachtigallova D, de Vries MS. 19.  2013. Excited state dynamics of DNA bases. Int. Rev. Phys. Chem. 32:308–42 [Google Scholar]
  20. Chen J, Zhang Y, Kohler B. 20.  2015. Excited states in DNA strands investigated by ultrafast laser spectroscopy. Top. Curr. Chem. 35639–87
  21. Peon J, Zewail AH. 21.  2001. DNA/RNA nucleotides and nucleosides: direct measurement of excited-state lifetimes by femtosecond fluorescence up-conversion. Chem. Phys. Lett. 348:255–62 [Google Scholar]
  22. Pecourt JML, Peon J, Kohler B. 22.  2001. DNA excited-state dynamics: ultrafast internal conversion and vibrational cooling in a series of nucleosides. J. Am. Chem. Soc. 123:10370–78 [Google Scholar]
  23. Yang M, Szyc L, Elsaesser T. 23.  2012. Vibrational dynamics of the water shell of DNA studied by femtosecond two-dimensional infrared spectroscopy. J. Photochem. Photobiol. Chem. 234:49–56 [Google Scholar]
  24. Elsaesser T, Szyc L, Yang M. 24.  2013. Ultrafast structural and vibrational dynamics of the hydration shell around DNA. EPJ Web Conf. 41:06004 [Google Scholar]
  25. Fidder H, Yang M, Nibbering ETJ, Elsaesser T, Roettger K, Temps F. 25.  2013. N–H stretching vibrations of guanosine-cytidine base pairs in solution: ultrafast dynamics, couplings, and line shapes. J. Phys. Chem. A 117:845–54 [Google Scholar]
  26. Pecourt JML, Peon J, Kohler B. 26.  2000. Ultrafast internal conversion of electronically excited RNA and DNA nucleosides in water. J. Am. Chem. Soc. 122:9348–49 [Google Scholar]
  27. Ismail N, Blancafort L, Olivucci M, Kohler B, Robb MA. 27.  2002. Ultrafast decay of electronically excited singlet cytosine via π, π* to nO,π* state switch. J. Am. Chem. Soc. 124:6818–19 [Google Scholar]
  28. Perun S, Sobolewski AL, Domcke W. 28.  2006. Conical intersections in thymine. J. Phys. Chem. A 110:13238–44 [Google Scholar]
  29. Perun S, Sobolewski AL, Domcke W. 29.  2005. Ab initio studies on the radiationless decay mechanisms of the lowest excited singlet states of 9H-adenine. J. Am. Chem. Soc. 127:6257–65 [Google Scholar]
  30. Hudock HR, Levine BG, Thompson AL, Satzger H, Townsend D. 30.  et al. 2007. Ab initio molecular dynamics and time-resolved photoelectron spectroscopy of electronically excited uracil and thymine. J. Phys. Chem. A 111:8500–8 [Google Scholar]
  31. Hudock HR, Martínez TJ. 31.  2008. Excited-state dynamics of cytosine reveal multiple intrinsic subpicosecond pathways. ChemPhysChem 9:2486–90 [Google Scholar]
  32. McFarland BK, Farrell JP, Miyabe S, Tarantelli F, Aguilar A. 32.  et al. 2014. Ultrafast X-ray Auger probing of photoexcited molecular dynamics. Nat. Commun. 5:4235 [Google Scholar]
  33. Wood PD, Redmond RW. 33.  1996. Triplet state interactions between nucleic acid bases in solution at room temperature: intermolecular energy and electron transfer. J. Am. Chem. Soc. 118:4256–63 [Google Scholar]
  34. González-Luque R, Climent T, González-Ramírez I, Merchán M, Serrano-Andrés L. 34.  2010. Singlet-triplet states interaction regions in DNA/RNA nucleobase hypersurfaces. J. Chem. Theory Comput. 6:2103–14 [Google Scholar]
  35. Banyasz A, Douki T, Improta R, Gustavsson T, Onidas D. 35.  et al. 2012. Electronic excited states responsible for dimer formation upon UV absorption directly by thymine strands: joint experimental and theoretical study. J. Am. Chem. Soc. 134:14834–45 [Google Scholar]
  36. Salet C, Bensasson R, Becker RS. 36.  1979. Triplet excited states of pyrimidine nucleosides and nucleotides. Photochem. Photobiol. 30:325–29 [Google Scholar]
  37. Bucher DB, Pilles BM, Carell T, Zinth W. 37.  2014. Charge separation and charge delocalization identified in long-living states of photoexcited DNA. Proc. Natl. Acad. Sci. USA 111:4369–74 [Google Scholar]
  38. Voityuk AA. 38.  2013. Effects of dynamic disorder on exciton delocalization and photoinduced charge separation in DNA. Photochem. Photobiol. Sci. 12:1303–9 [Google Scholar]
  39. Markovitsi D. 39.  2009. Interaction of UV radiation with DNA helices. Pure Appl. Chem. 81:1635–44 [Google Scholar]
  40. Improta R. 40.  2012. Photophysics and photochemistry of thymine deoxy-dinucleotide in water: a PCM/TD-DFT quantum mechanical study. J. Phys. Chem. B 116:14261–74 [Google Scholar]
  41. Sobolewski AL, Domcke W. 41.  2003. Ab initio study of the excited-state coupled electron-proton-transfer process in the 2-aminopyridine dimer. Chem. Phys. 294:73–83 [Google Scholar]
  42. Schultz T, Samoylova E, Radloff W, Hertel IV, Sobolewski AL, Domcke W. 42.  2004. Efficient deactivation of a model base pair via excited-state hydrogen transfer. Science 306:1765–68 [Google Scholar]
  43. Perun S, Sobolewski AL, Domcke W. 43.  2006. Role of electron-driven proton-transfer processes in the excited-state deactivation adenine-thymine base pair. J. Phys. Chem. A 110:9031–38 [Google Scholar]
  44. Douki T. 44.  2013. The variety of UV-induced pyrimidine dimeric photoproducts in DNA as shown by chromatographic quantification methods. Photochem. Photobiol. Sci. 12:1286–302 [Google Scholar]
  45. Fenick DJ, Carr HS, Falvey DE. 45.  1995. Synthesis and photochemical cleavage of cis-syn pyrimidine cyclobutane dimer analogs. J. Org. Chem. 60:624–31 [Google Scholar]
  46. Schrader T, Sieg A, Koller F, Schreier W, An Q. 46.  et al. 2004. Vibrational relaxation following ultrafast internal conversion: comparing IR and Raman probing. Chem. Phys. Lett. 392:358–64 [Google Scholar]
  47. Schreier WJ, Schrader TE, Koller FO, Gilch P, Crespo-Hernández CE. 47.  et al. 2007. Thymine dimerization in DNA is an ultrafast photoreaction. Science 315:625–29 [Google Scholar]
  48. Hare PM, Middleton CT, Mertel KI, Herbert JM, Kohler B. 48.  2008. Time-resolved infrared spectroscopy of the lowest triplet state of thymine and thymidine. Chem. Phys. 347:383–92 [Google Scholar]
  49. Kuimova MK, Cowan AJ, Matousek P, Parker AW, Sun XZ. 49.  et al. 2006. Monitoring the direct and indirect damage of DNA bases and polynucleotides by using time-resolved infrared spectroscopy. Proc. Natl. Acad. Sci. USA 103:2150–53 [Google Scholar]
  50. Towrie M, Doorley GW, George MW, Parker AW, Quinn SJ, Kelly JM. 50.  2009. ps-TRIR covers all the bases: recent advances in the use of transient IR for the detection of short-lived species in nucleic acids. Analyst 134:1265–73 [Google Scholar]
  51. Doorley GW, Wojdyla M, Watson GW, Towrie M, Parker AW. 51.  et al. 2013. Tracking DNA excited states by picosecond-time-resolved infrared spectroscopy: signature band for a charge-transfer excited state in stacked adenine-thymine systems. J. Phys. Chem. Lett. 4:2739–44 [Google Scholar]
  52. Bucher DB, Pilles BM, Pfaffeneder T, Carell T, Zinth W. 52.  2014. Fingerprinting DNA oxidation processes: IR characterization of the 5-methyl-2′-deoxycytidine radical cation. ChemPhysChem 15:420–23 [Google Scholar]
  53. Haiser K, Fingerhut BP, Heil K, Glas A, Herzog TT. 53.  et al. 2012. Mechanism of UV-induced formation of Dewar lesions in DNA. Angew. Chem. Int. Ed. Engl. 51:408–11 [Google Scholar]
  54. Desnous C, Guillaume D, Clivio P. 54.  2010. Spore photoproduct: a key to bacterial eternal life. Chem. Rev. 110:1213–32 [Google Scholar]
  55. Heelis PF, Hartman RF, Rose SD. 55.  1995. Photoenzymic repair of UV-damaged DNA: a chemist's perspective. Chem. Soc. Rev. 24:289–97 [Google Scholar]
  56. Sancar A. 56.  1996. DNA excision repair. Annu. Rev. Biochem. 65:43–81 [Google Scholar]
  57. Wood RD. 57.  1996. DNA repair in eukaryotes. Annu. Rev. Biochem. 65:135–67 [Google Scholar]
  58. Sinha RP, Hader DP. 58.  2002. UV-induced DNA damage and repair: a review. Photochem. Photobiol. Sci. 1:225–36 [Google Scholar]
  59. Friedel MG, Cichon MK, Carell T. 59.  2004. DNA damage and repair: photochemistry. CRC Handbook of Organic Photochemistry and Photobiology W Horspool, F Lenci , ch. 141, pp. 1–22 Boca Raton, FL: CRC [Google Scholar]
  60. Kneuttinger AC, Kashiwazaki G, Prill S, Heil K, Müller M, Carell T. 60.  2014. Formation and direct repair of UV-induced dimeric DNA pyrimidine lesions. Photochem. Photobiol. 90:1–14 [Google Scholar]
  61. Crespo-Hernández CE, Cohen B, Kohler B. 61.  2005. Base stacking controls excited-state dynamics in A-T DNA. Nature 436:1141–44 [Google Scholar]
  62. Takaya T, Su C, de La Harpe K, Crespo-Hernández CE, Kohler B. 62.  2008. UV excitation of single DNA and RNA strands produces high yields of exciplex states between two stacked bases. Proc. Natl. Acad. Sci. USA 105:10285–90 [Google Scholar]
  63. Vaya I, Gustavsson T, Douki T, Berlin Y, Markovitsi D. 63.  2012. Electronic excitation energy transfer between nucleobases of natural DNA. J. Am. Chem. Soc. 134:11366–68 [Google Scholar]
  64. Zhang Y, Dood J, Beckstead AA, Li X-B, Nguyen KV. 64.  et al. 2014. Efficient UV-induced charge separation and recombination in an 8-oxoguanine-containing dinucleotide. Proc. Natl. Acad. Sci. USA 111:11612–17 [Google Scholar]
  65. Pilles BM, Bucher DB, Liu L, Gilch P, Zinth W, Schreier WJ. 65.  2014. Identification of charge separated states in thymine single strands. Chem. Commun. 50:15623–26 [Google Scholar]
  66. Genereux JC, Wuerth SM, Barton JK. 66.  2011. Single-step charge transport through DNA over long distances. J. Am. Chem. Soc. 133:3863–68 [Google Scholar]
  67. Genereux JC, Barton JK. 67.  2010. Mechanisms for DNA charge transport. Chem. Rev. 110:1642–62 [Google Scholar]
  68. Schwalb NK, Temps F. 68.  2007. Ultrafast electronic relaxation in guanosine is promoted by hydrogen bonding with cytidine. J. Am. Chem. Soc. 129:9272–73 [Google Scholar]
  69. Samoylova E, Lippert H, Ullrich S, Hertel IV, Radloff W, Schultz T. 69.  2005. Dynamics of photoinduced processes in adenine and thymine base pairs. J. Am. Chem. Soc. 127:1782–86 [Google Scholar]
  70. Schultz T, Samoylova E, Radloff W, Hertel IV, Sobolewski AL, Domcke W. 70.  2004. Efficient deactivation of a model base pair via excited-state hydrogen transfer. Science 306:1765–68 [Google Scholar]
  71. Markovitsi D, Gustavsson T, Talbot F. 71.  2007. Excited states and energy transfer among DNA bases in double helices. Photochem. Photobiol. Sci. 6:717–24 [Google Scholar]
  72. Onidas D, Gustavsson T, Lazzarotto E, Markovitsi D. 72.  2007. Fluorescence of the DNA double helices (dAdT)n · (dAdT)n studied by femtosecond spectroscopy. Phys. Chem. Chem. Phys. 9:5143–48 [Google Scholar]
  73. Markovitsi D, Onidas D, Gustavsson T, Talbot F, Lazzarotto E. 73.  2005. Collective behavior of Franck–Condon excited states and energy transfer in DNA double helices. J. Am. Chem. Soc. 127:17130–31 [Google Scholar]
  74. Bucher DB, Schlueter A, Carell T, Zinth W. 74.  2014. Watson–Crick base pairing controls excited state decay in natural DNA. Angew. Chem. Int. Ed. Engl. 53:11366–69 [Google Scholar]
  75. de La Harpe K, Crespo-Hernández CE, Kohler B. 75.  2009. Deuterium isotope effect on excited-state dynamics in an alternating GC oligonucleotide. J. Am. Chem. Soc. 131:17557–59 [Google Scholar]
  76. Douhal A, Kim SK, Zewail AH. 76.  1995. Femtosecond molecular dynamics of tautomerization in model base pairs. Nature 378:260–63 [Google Scholar]
  77. Takeuchi S, Tahara T. 77.  2007. The answer to concerted versus step-wise controversy for the double proton transfer mechanism of 7-azaindole dimer in solution. Proc. Natl. Acad. Sci. USA 104:5285–90 [Google Scholar]
  78. Marguet S, Markovitsi D. 78.  2005. Time-resolved study of thymine dimer formation. J. Am. Chem. Soc. 127:5780–81 [Google Scholar]
  79. Pilles BM, Bucher DB, Liu L, Clivio P, Gilch P. 79.  et al. 2014. Mechanism of the decay of thymine triplets in DNA single strands. J. Phys. Chem. Lett. 5:1616–22 [Google Scholar]
  80. D'Auria M, Racioppi R. 80.  2013. Oxetane synthesis through the Paternò-Büchi reaction. Molecules 18:11384–428 [Google Scholar]
  81. Clivio P, Fourrey JL, Gasche J, Favre A. 81.  1991. DNA photodamage mechanistic studies: characterization of a thietane intermediate in a model reaction relevant to “6-4 lesions.”. J. Am. Chem. Soc. 113:5481–83 [Google Scholar]
  82. Fingerhut BP, Herzog TT, Ryseck G, Haiser K, Graupner FF. 82.  et al. 2012. Dynamics of ultraviolet-induced DNA lesions: Dewar formation guided by pre-tension induced by the backbone. New J. Phys. 14:065006 [Google Scholar]
  83. Ryseck G, Schmierer T, Haiser K, Schreier WJ, Zinth W, Gilch P. 83.  2011. The excited-state decay of 1-methyl-2(1H)-pyrimidinone is an activated process. ChemPhysChem 12:1880–88 [Google Scholar]
  84. Fingerhut BP, Oesterling S, Haiser K, Heil K, Glas A. 84.  et al. 2012. ONIOM approach for non-adiabatic on-the-fly molecular dynamics demonstrated for the backbone controlled Dewar valence isomerization. J. Chem. Phys. 136:204307 [Google Scholar]
  85. Setlow P. 85.  2007. I will survive: DNA protection in bacterial spores. Trends Microbiol. 15:172–80 [Google Scholar]
  86. Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P. 86.  2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64:548–72 [Google Scholar]
  87. Cadet J, Anselmino C, Douki T, Voituriez L. 87.  1992. Photochemistry of nucleic acids in cells. J. Photochem. Photobiol. B 15:277–98 [Google Scholar]
  88. Varghese AJ. 88.  1970. 5-Thyminyl-5,6-dihydrothymine from DNA irradiated with ultraviolet light. Biochem. Biophys. Res. Commun. 38:484–90 [Google Scholar]
  89. Mantel C, Chandor A, Gasparutto D, Douki T, Atta M. 89.  et al. 2008. Combined NMR and DFT studies for the absolute configuration elucidation of the spore photoproduct, a UV-induced DNA lesion. J. Am. Chem. Soc. 130:16978–84 [Google Scholar]
  90. Heil K, Kneuttinger AC, Schneider S, Lischke U, Carell T. 90.  2011. Crystal structures and repair studies reveal the identity and the base-pairing properties of the UV-induced spore photoproduct DNA lesion. Chemistry 17:9651–57 [Google Scholar]
  91. Ames DM, Lin G, Jian Y, Cadet J, Li L. 91.  2014. Unusually large deuterium discrimination during spore photoproduct formation. J. Org. Chem. 79:4843–51 [Google Scholar]
  92. Lin G, Li L. 92.  2010. Elucidation of spore-photoproduct formation by isotope labeling. Angew. Chem. Int. Ed. Engl. 49:9926–29 [Google Scholar]
  93. Douki T, Setlow B, Setlow P. 93.  2005. Photosensitization of DNA by dipicolinic acid, a major component of spores of Bacillus species. Photochem. Photobiol. Sci. 4:591–97 [Google Scholar]
  94. Douki T, Court M, Sauvaigo S, Odin F, Cadet J. 94.  2000. Formation of the main UV-induced thymine dimeric lesions within isolated and cellular DNA as measured by high performance liquid chromatography-tandem mass spectrometry. J. Biol. Chem. 275:11678–85 [Google Scholar]
  95. Benhur E, Benishai R. 95.  1968. Trans-syn thymine dimers in ultraviolet-irradiated denatured DNA: identification and photoreactivability. Biochim. Biophys. Acta 166:9–15 [Google Scholar]
  96. Garcés F, Dávila CA. 96.  1982. Alterations in DNA irradiated with ultraviolet radiation—I. The formation process of cyclobutylpyrimidine dimers: cross sections, action spectra and quantum yields. Photochem. Photobiol. 35:9–16 [Google Scholar]
  97. Douki T, Cadet J. 97.  2001. Individual determination of the yield of the main UV-induced dimeric pyrimidine photoproducts in DNA suggests a high mutagenicity of CC photolesions. Biochemistry 40:2495–501 [Google Scholar]
  98. Hoffmann R, Woodward RB. 98.  1968. Conservation of orbital symmetry. Acc. Chem. Res. 1:17–22 [Google Scholar]
  99. Zhang RB, Eriksson LA. 99.  2006. A triplet mechanism for the formation of cyclobutane pyrimidine dimers in UV-irradiated DNA. J. Phys. Chem. B 110:7556–62 [Google Scholar]
  100. Durbeej B, Eriksson LA. 100.  2002. Reaction mechanism of thymine dimer formation in DNA induced by UV light. J. Photochem. Photobiol. A 152:95–101 [Google Scholar]
  101. Kwok WM, Ma C, Phillips DL. 101.  2008. A doorway state leads to photostability or triplet photodamage in thymine DNA. J. Am. Chem. Soc. 130:5131–39 [Google Scholar]
  102. Schreier WJ, Kubon J, Regner N, Haiser K, Schrader TE. 102.  et al. 2009. Thymine dimerization in DNA model systems: Cyclobutane photolesion is predominantly formed via the singlet channel. J. Am. Chem. Soc. 131:5038–39 [Google Scholar]
  103. Johns HE, Delbruck M, Rapaport SA. 103.  1962. Photochemistry of thymine dimers. J. Mol. Biol. 4:104–14 [Google Scholar]
  104. Fisher GJ, Johns HE. 104.  1976. Pyrimidine photohydrates. Photochemistry and Photobiology of Nucleic Acids SY Wang 225–94 New York: Academic [Google Scholar]
  105. Lamola AA, Yamane T. 105.  1967. Sensitized photodimerization of thymine in DNA. Proc. Natl. Acad. Sci. USA 58:443–46 [Google Scholar]
  106. Epe B. 106.  2012. DNA damage spectra induced by photosensitization. Photochem. Photobiol. Sci. 11:98–106 [Google Scholar]
  107. Cuquerella MC, Lhiaubet-Vallet V, Bosca F, Miranda MA. 107.  2011. Photosensitised pyrimidine dimerisation in DNA. Chem. Sci. 2:1219–32 [Google Scholar]
  108. Gut IG, Wood PD, Redmond RW. 108.  1996. Interaction of triplet photosensitizers with nucleotides and DNA in aqueous solution at room temperature. J. Am. Chem. Soc. 118:2366–73 [Google Scholar]
  109. Lamola AA, Gueron M, Yamane T, Eisinger J, Shulman RG. 109.  1967. Triplet state of DNA. J. Chem. Phys. 47:2210–17 [Google Scholar]
  110. Curutchet C, Voityuk AA. 110.  2011. Triplet–triplet energy transfer in DNA: a process that occurs on the nanosecond timescale. Angew. Chem. Int. Ed. Engl. 50:1820–22 [Google Scholar]
  111. Eisinger J, Lamola AA. 111.  1967. Excited-state precursor of thymine dimer. Biochem. Biophys. Res. Commun. 28:558–65 [Google Scholar]
  112. Fisher GJ, Johns HE. 112.  1970. Ultraviolet photochemistry of thymine in aqueous solution. Photochem. Photobiol. 11:429–44 [Google Scholar]
  113. Lamola AA, Eisinger J. 113.  1968. On the mechanism of thymine photodimerization. Proc. Natl. Acad. Sci. USA 59:46–51 [Google Scholar]
  114. Eisinger J, Shulman RG. 114.  1967. Precursor of thymine dimer in ice. Proc. Natl. Acad. Sci. USA 58:895–900 [Google Scholar]
  115. Banyasz A, Vaya I, Changenet-Barret P, Gustavsson T, Douki T, Markovitsi D. 115.  2011. Base pairing enhances fluorescence and favors cyclobutane dimer formation induced upon absorption of UVA radiation by DNA. J. Am. Chem. Soc. 133:5163–65 [Google Scholar]
  116. Desnous C, Ravindra Babu B, Moriou C, Oritz Mayo JU, Favre A. 116.  et al. 2008. The sugar conformation governs (6-4) photoproduct formation at the dinucleotide level. J. Am. Chem. Soc. 130:30–31 [Google Scholar]
  117. Blancafort L, Migani A. 117.  2007. Modeling thymine photodimerizations in DNA: mechanism and correlation diagrams. J. Am. Chem. Soc. 129:14540–41 [Google Scholar]
  118. Boggio-Pasqua M, Groenhof G, Schafer LV, Grubmuller H, Robb MA. 118.  2007. Ultrafast deactivation channel for thymine dimerization. J. Am. Chem. Soc. 129:10996–97 [Google Scholar]
  119. González-Ramírez I, Roca-Sanjuán D, Climent T, Serrano-Pérez JJ, Merchán M, Serrano-Andrés L. 119.  2011. On the photoproduction of DNA/RNA cyclobutane pyrimidine dimers. Theor. Chem. Acc. 128:705–11 [Google Scholar]
  120. Climent T, González-Ramírez I, González-Luque R, Merchán M, Serrano-Andrés L. 120.  2010. Cyclobutane pyrimidine photodimerization of DNA/RNA nucleobases in the triplet state. J. Phys. Chem. Lett. 1:2072–76 [Google Scholar]
  121. Wagner PJ, Bucheck DJ. 121.  1970. Photodimerization of thymine and uracil in acetonitrile. J. Am. Chem. Soc. 92:181–85 [Google Scholar]
  122. Whillans DW, Johns HE. 122.  1971. Properties of triplet states of thymine and uracil in aqueous solution. J. Am. Chem. Soc. 93:1358–62 [Google Scholar]
  123. Johnson AT, Wiest O. 123.  2007. Structure and dynamics of poly(T) single-strand DNA: implications toward CPD formation. J. Phys. Chem. B 111:14398–404 [Google Scholar]
  124. Law YK, Azadi J, Crespo-Hernández CE, Olmon E, Kohler B. 124.  2008. Predicting thymine dimerization yields from molecular dynamics simulations. Biophys. J. 94:3590–600 [Google Scholar]
  125. Rössle S, Friedrichs J, Frank I. 125.  2010. The formation of DNA photodamage: the role of exciton localization. ChemPhysChem 11:2011–15 [Google Scholar]
  126. McCullagh M, Hariharan M, Lewis FD, Markovitsi D, Douki T, Schatz GC. 126.  2010. Conformational control of TT dimerization in DNA conjugates: a molecular dynamics study. J. Phys. Chem. B 114:5215–21 [Google Scholar]
  127. Hariharan M, Siegmund K, Saurel C, McCullagh M, Schatz GC, Lewis FD. 127.  2013. Thymine photodimer formation in DNA hairpins: Unusual conformations favor (6 − 4) vs. (2 + 2) adducts. Photochem. Photobiol. Sci. 13:266–71 [Google Scholar]
  128. Gale JM, Nissen KA, Smerdon MJ. 128.  1987. UV-induced formation of pyrimidine dimers in nucleosome core DNA is strongly modulated with a period of 10.3 bases. Proc. Natl. Acad. Sci. USA 84:6644–48 [Google Scholar]
  129. Mitchell DL, Jen J, Cleaver JE. 129.  1992. Sequence specificity of cyclobutane pyrimidine dimers in DNA treated with solar (ultraviolet B) radiation. Nucleic Acids Res. 20:225–29 [Google Scholar]
  130. Yoon JH, Lee CS, O'Connor TR, Yasui A, Pfeifer GP. 130.  2000. The DNA damage spectrum produced by simulated sunlight. J. Mol. Biol. 302:1019–20 [Google Scholar]
  131. Hariharan M, Lewis FD. 131.  2008. Context-dependent photodimerization in isolated thymine-thymine steps in DNA. J. Am. Chem. Soc. 130:11870–71 [Google Scholar]
  132. Pan ZZ, Hariharan M, Arkin JD, Jalilov AS, McCullagh M. 132.  et al. 2011. Electron donor-acceptor interactions with flanking purines influence the efficiency of thymine photodimerization. J. Am. Chem. Soc. 133:20793–98 [Google Scholar]
  133. Gordon LK, Haseltine WA. 133.  1982. Quantitation of cyclobutane pyrimidine dimer formation in double-stranded and single-stranded DNA fragments of defined sequence. Radiat. Res. 89:99–112 [Google Scholar]
  134. Holman MR, Ito T, Rokita SE. 134.  2007. Self-repair of thymine dimer in duplex DNA. J. Am. Chem. Soc. 129:6–7 [Google Scholar]
  135. Law YK, Forties RA, Liu X, Poirier MG, Kohler B. 135.  2013. Sequence-dependent thymine dimer formation and photoreversal rates in double-stranded DNA. Photochem. Photobiol. Sci. 12:1431–39 [Google Scholar]
  136. Pan Z, McCullagh M, Schatz GC, Lewis FD. 136.  2011. Conformational control of thymine photodimerization in purine-containing trinucleotides. J. Phys. Chem. Lett. 2:1432–38 [Google Scholar]
  137. You Y-H, Szabo PE, Pfeifer GP. 137.  2000. Cyclobutane pyrimidine dimers form preferentially at the major p53 mutational hotspot in UVB-induced mouse skin tumors. Carcinogenesis 21:2113–17 [Google Scholar]
  138. Douki T, Bérard I, Wack A, Andrä S. 138.  2014. Contribution of cytosine-containing cyclobutane dimers to DNA damage produced by photosensitized triplet–triplet energy transfer. Chemistry 20:5787–94 [Google Scholar]
  139. Esposito L, Banyasz A, Douki T, Perron M, Markovitsi D, Improta R. 139.  2014. Effect of C5 methylation of cytosine on the photoreactivity of DNA: a joint experimental and computational study of TCG trinucleotides. J. Am. Chem. Soc. 136:10838–41 [Google Scholar]
  140. Mouret S, Philippe C, Gracia-Chantegrel J, Banyasz A, Karpati S. 140.  et al. 2010. UVA-induced cyclobutane pyrimidine dimers in DNA: a direct photochemical mechanism?. Org. Biomol. Chem. 8:1706–11 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040214-121821
Loading
/content/journals/10.1146/annurev-physchem-040214-121821
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error