1932

Abstract

Scientific names are crucial in communicating knowledge about fungi. In plant pathology, they link information regarding the biology, host range, distribution, and potential risk. Our understanding of fungal biodiversity and fungal systematics has undergone an exponential leap, incorporating genomics, web-based systems, and DNA data for rapid identification to link species to metadata. The impact of our ability to recognize hitherto unknown organisms on plant pathology and trade is enormous and continues to grow. Major challenges for phytomycology are intertwined with the Genera of Fungi project, which adds DNA barcodes to known biodiversity and corrects the application of old, established names via epi- or neotypification. Implementing the one fungus–one name system and linking names to validated type specimens, cultures, and reference sequences will provide the foundation on which the future of plant pathology and the communication of names of plant pathogens will rest.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080614-120245
2015-08-04
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/phyto/53/1/annurev-phyto-080614-120245.html?itemId=/content/journals/10.1146/annurev-phyto-080614-120245&mimeType=html&fmt=ahah

Literature Cited

  1. Amend AS, Seifert KA, Samson R, Bruns TD. 1.  2010. Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics. Proc. Natl. Acad. Sci. USA 107:13748–53 [Google Scholar]
  2. Andersen B, Sørensen JL, Nielsen KF, Gerrits van den Ende B, de Hoog GS. 2.  2009. A polyphasic approach to the taxonomy of the Alternaria infectoria species-group. Fungal Genet. Biol. 46:642–56 [Google Scholar]
  3. Ariyawansa HA, Hawksworth DL, Hyde KD, Gareth Jones EB, Maharachchikumbura SSN. 3.  et al. 2014. Epitypification and neotypification: guidelines with appropriate and inappropriate examples. Fungal Divers. 69:57–91 [Google Scholar]
  4. Bearchell SJ, Fraaije BA, Shaw MW, Fitt BDL. 4.  2005. Wheat archive links long-term fungal pathogen population dynamics to air pollution. Proc. Natl. Acad. Sci. USA 102:5438–42 [Google Scholar]
  5. Berbee ML, Taylor JW. 5.  1992. 18S ribosomal RNA gene sequence characters place the human pathogen Sporothrix schenckii in the genus Ophiostoma. Exp. Mycol. 16:87–91The first paper to link asexual and sexual genera by employing DNA sequence data. [Google Scholar]
  6. Berkeley MJ. 6.  1846. Observations, botanical and physiological, on the potato murrain. J. R. Hortic. Soc. 1:9–34 [Google Scholar]
  7. Bidartondo MI, Bruns TD, Blackwell M, Edwards I, Taylor AFS. 7.  et al. 2008. Preserving accuracy in GenBank. Science 319:1616 [Google Scholar]
  8. Blackwell M. 8.  2011. The fungi: 1, 2, 3… 5.1 million species?. Am. J. Bot. 98:426–38 [Google Scholar]
  9. Blackwell M, Hibbett DS, Taylor JW, Spatafora JW. 9.  2006. Research coordination networks: a phylogeny for kingdom Fungi (Deep Hypha). Mycologia 98:829–37 [Google Scholar]
  10. Brasier CM, Kirk SA. 10.  2001. Designation of the EAN and NAN races of Ophiostoma novo-ulmi as subspecies. Mycol. Res. 105:547–54 [Google Scholar]
  11. Bruns TD, White TJ, Taylor JW. 11.  1991. Fungal molecular systematics. Annu. Rev. Ecol. Syst. 22:525–64 [Google Scholar]
  12. Buée M, Reich M, Murat C, Morin E, Nilsson RH. 12.  et al. 2009. 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol. 184:449–56 [Google Scholar]
  13. Cai L, Hyde KD, Taylor PWJ, Weir BS, Waller JM. 13.  et al. 2009. A polyphasic approach for studying Colletotrichum. Fungal Divers. 39:183–204 [Google Scholar]
  14. Cannon PF, Damm U, Johnston PR, Weir BS. 14.  2012. Colletotrichum: current status and future directions. Stud. Mycol. 73:181–213 [Google Scholar]
  15. Carmichael JW, Sekhon AS, Sigler L. 15.  1973. Classification of some dermatophytes by pyrolysis-gas-liquid chromatography. Can. J. Microbiol. 19:403–7 [Google Scholar]
  16. Cheewangkoon R, Groenewald JZ, Hyde KD, To-anun C, Crous PW. 16.  2012. Chocolate spot of Eucalyptus. Mycol. Prog. 11:61–69 [Google Scholar]
  17. Chupp C. 17.  1954. A Monograph of the Fungus Genus Cercospora. Ithaca, NY
  18. Cole GT, Samson RA. 18.  1979. Patterns of Development in Conidial Fungi London: Pitman Publ.
  19. Crous PW. 19.  1998. Mycosphaerella spp. and Their Anamorphs Associated with Leaf Spot Diseases of Eucalyptus. St. Paul, MN: APS Press [Google Scholar]
  20. Crous PW, Braun U, Hunter GC, Wingfield MJ, Verkley GJM. 20.  et al. 2013. Phylogenetic lineages in Pseudocercospora. Stud. Mycol. 75:37–114 [Google Scholar]
  21. Crous PW, Gams W, Stalpers JA, Robert V, Stegehuis G. 21.  2004. MycoBank: an online initiative to launch mycology into the 21st century. Stud. Mycol. 50:19–22The launch of an online registration system for taxonomic names of fungi. Later, zoologists launched ZooBank. [Google Scholar]
  22. Crous PW, Giraldo A, Hawksworth DL, Robert V, Kirk PM. 22.  et al. 2014. The Genera of Fungi: fixing the application of type species of generic names. IMA Fungus 5:141–60 [Google Scholar]
  23. Crous PW, Slippers B, Wingfield MJ, Rheeder J, Marasas WFO. 23.  et al. 2006. Phylogenetic lineages in the Botryosphaeriaceae. Stud. Mycol. 55:235–53One of the first papers to ignore dual nomenclature, use asexual generic names where these were available, and not introduce sexual genera, as these were considered superfluous. [Google Scholar]
  24. Damm U, Cannon PF, Woudenberg JHC, Crous PW. 24.  2012. The Colletotrichum acutatum species complex. Stud. Mycol. 73:37–113 [Google Scholar]
  25. Damm U, Cannon PF, Woudenberg JHC, Johnston PR, Weir BS. 25.  et al. 2012. The Colletotrichum boninense species complex. Stud. Mycol. 73:1–36 [Google Scholar]
  26. de Beer ZW, Duong TA, Barnes I, Wingfield BD, Wingfield MJ. 26.  2014. Redefining Ceratocystis. Stud. Mycol. 79:187–219 [Google Scholar]
  27. de Queiroz K. 27.  2007. Species concepts and species delimitation. Syst. Biol. 56:879–86 [Google Scholar]
  28. Dickie IA, FitzJohn RG. 28.  2007. Using terminal restriction fragment length polymorphism (T-RFLP) to identify mycorrhizal fungi: a methods review. Mycorrhiza 17:259–70 [Google Scholar]
  29. Federhen S. 29.  2015. Type material in the NCBI Taxonomy Database. Nucleic Acids Res. 43:D1086–98 [Google Scholar]
  30. Fuckel L. 30.  1870. Symbolae mycologicae. Beiträge zur Kenntniss der Rheinischen Pilze. Jahrb. des Nassauischen Vereins für Naturk 23–24:1–459 [Google Scholar]
  31. Gams W, Humber RA, Jaklitsch W, Kirschner R, Stadler M. 31.  2012. Minimizing the chaos following the loss of Article 59: suggestions for a discussion. Mycotaxon 119:495–507 [Google Scholar]
  32. Gargouri S, Hamza S, Hajlaoui MR. 32.  2006. AFLP analysis of the genetic variability and population structure of the wheat crown rot fungus Fusarium pseudograminearum in Tunisia. Tunis. J. Plant Prot. 1:93–104 [Google Scholar]
  33. Gibbons A. 33.  2013. On the trail of ancient killers. Science 340:1278–82 [Google Scholar]
  34. Greuter W, Garrity G, Hawksworth DL, Jahn R, Kirk PM. 34.  et al. 2011. Draft BioCode 2011: principles and rules regulating the naming of organisms. Taxon 60:201–12 [Google Scholar]
  35. Groenewald JZ, Nakashima C, Nishikawa J, Shin H-D, Park J-H. 35.  et al. 2013. Species concepts in Cercospora: spotting the weeds among the roses. Stud. Mycol. 75:115–70 [Google Scholar]
  36. Groenewald M, Barnes I, Bradshaw RE, Brown AV, Dale A. 36.  et al. 2007. Characterization and distribution of mating type genes in the Dothistroma needle blight pathogens. Phytopathology 97:825–34 [Google Scholar]
  37. Groenewald M, Groenewald JZ, Braun U, Crous PW. 37.  2006. Host range of Cercospora apii and C. beticola, and description of C. apiicola, a novel species from celery. Mycologia 98:275–85 [Google Scholar]
  38. Hansen K, Lobuglio KF, Pfister DH. 38.  2005. Evolutionary relationships of the cup-fungus genus Peziza and Pezizaceae inferred from multiple nuclear genes: RPB2, beta-tubulin, and LSU rDNA. Mol. Phyl. Evol. 36:1–23 [Google Scholar]
  39. Harrington TC, Rizzo DM. 39.  1999. Defining species in the fungi. Structure and Dynamics of Fungal Populations JJ Worrall 43–70 Dordrecht, Neth: Kluwer Acad. [Google Scholar]
  40. Hall R. 40.  1969. Molecular approaches to taxonomy of fungi. Bot. Rev. 35:285–304 [Google Scholar]
  41. Hawksworth DL. 41.  1991. The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol. Res. 95:641–55Landmark paper arguing that there are at least 1.5 million species of fungi on Earth. [Google Scholar]
  42. Hawksworth DL. 42.  1996. Microbial collections as a tool in biodiversity and biosystematic research. Culture Collections to Improve the Quality of Life RA Samson, JA Stalpers, D van der Mei, AH Stouthamer 26–35 Baarn, Neth: Centraalbureau voor Schimmelcultures [Google Scholar]
  43. Hawksworth DL. 43.  2004. (183–187) Limitation of dual nomenclature for pleomorphic fungi. Taxon 53:596–98 [Google Scholar]
  44. Hawksworth DL. 44.  2012. Global species numbers of fungi: Are tropical studies and molecular approaches contributing to a more robust estimate?. Biodivers. Conserv. 21:2425–33 [Google Scholar]
  45. Hawksworth DL, Crous PW, Redhead SA, Reynolds DR, Samson RA. 45.  et al. 2011. The Amsterdam Declaration on Fungal Nomenclature. IMA Fungus 2:105–12Important declaration stating that the mycological community no longer accepted dual nomenclature. [Google Scholar]
  46. Hibbett DS, Ohman A, Glotzer D, Nuhn M, Kirk PM. 46.  et al. 2011. Progress in molecular and morphological taxon discovery and options for formal classification of environmental sequences. Fungal Biol. Rev. 25:38–47 [Google Scholar]
  47. Hyde KD, Jones EBG, Lui J-K, Ariyawansa H, Boehm E. 47.  et al. 2013. Families of Dothideomycetes. Fungal Divers. 63:1–313 [Google Scholar]
  48. Johnston PR, Seifert KA, Stone JK, Rossman AY, Marvanová L. 48.  2014. Recommendations on generic names competing for use in Leotiomycetes (Ascomycota). IMA Fungus 5:91–120 [Google Scholar]
  49. Kemler M, Garnas J, Wingfield MJ, Gryzenhout M, Pillay K-A. 49.  et al. 2013. Ion Torrent PGM as tool for fungal community analysis: a case study of endophytes in Eucalyptus grandis reveals high taxonomic diversity. PLOS ONE 8:e81718 [Google Scholar]
  50. Kendrick B. 50.  1979. The Whole Fungus: The Sexual-Asexual Synthesis 1, 2 Ottawa: Natl. Mus. Can.
  51. Kirk PM, Stalpers JA, Braun U, Crous PW, Hansen K. 51.  et al. 2013. A without-prejudice list of generic names of fungi for protection under the International Code of Nomenclature for algae, fungi and plants. IMA Fungus 4:381–443 [Google Scholar]
  52. Klaubauf S, Tharreau D, Fournier E, Groenewald JZ, Crous PW. 52.  et al. 2014. Resolving the polyphyletic nature of Pyricularia (Pyriculariaceae). Stud. Mycol. 79:85–120 [Google Scholar]
  53. Kõljalg U, Henrik Nilsson R, Abarenkov K, Tedersoo L, Taylor AFS. 53.  et al. 2013. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22:5271–77 [Google Scholar]
  54. Leslie JF. 54.  1993. Fungal vegetative compatibility. Annu. Rev. Phytopathol. 31:127–50 [Google Scholar]
  55. Leslie JF, Summerell BA. 55.  2006. The Fusarium Laboratory Manual Ames, IA: Blackwell Publ. [Google Scholar]
  56. Manamgoda DS, Rossman AY, Castlebury LA, Crous PW, Madrid H. 56.  et al. 2014. The genus Bipolaris. Stud. Mycol. 79:221–88 [Google Scholar]
  57. Martin MD, Cappellini E, Samaniego JA, Zepeda ML, Campos PF. 57.  et al. 2013. Reconstructing genome evolution in historic samples of the Irish potato famine pathogen. Nat. Commun. 4:2172 [Google Scholar]
  58. Mayden RL. 58.  1997. A hierarchy of species concepts: the denouncement in the saga of the species problem. Species: The Units of Diversity MF Claridge, HA Dawah, MR Wilson 381–424 London: Chapman & Hall [Google Scholar]
  59. McNeill J, Barrie FR, Buck WR, Demoulin V, Greuter W. 59.  et al. 2012. International Code of Nomenclature for Algae, Fungi, and Plants (Melbourne Code). Regnum Vegetabile 154 Königstein, Germ: Koeltz Sci. Books [Google Scholar]
  60. Micales JA, Bonde MR, Peterson GL. 60.  1986. The use of isozyme analysis in fungal taxonomy and genetics. Mycotaxon 27:405–49 [Google Scholar]
  61. Mostert L, Crous PW, Kang C-J, Phillips AJL. 61.  2001. Species of Phomopsis and a Libertella sp. occurring on grapevines with specific reference to South Africa: morphological, cultural, molecular and pathological characterization. Mycologia 93:145–66 [Google Scholar]
  62. Mostert L, Groenewald JZ, Summerbell RC, Gams W, Crous PW. 62.  2006. Taxonomy and pathology of Togninia (Diaporthales) and its Phaeoacremonium anamorphs. Stud. Mycol. 54:1–115 [Google Scholar]
  63. Ni M, Feretzaki M, Sun S, Wang X, Heitman J. 63.  2011. Sex in fungi. Annu. Rev. Genet. 45:405–30 [Google Scholar]
  64. Nilsson RH, Hyde KD, Pawlowska J, Ryberg M, Tedersoo L. 64.  et al. 2014. Improving ITS sequence data for identification of plant pathogenic fungi. Fungal Divers. 67:11–19 [Google Scholar]
  65. Nilsson RH, Ryberg M, Kristiansson E, Abarenkov K, Larsson K-H. 65.  et al. 2006. Taxonomic reliability of DNA sequences in public sequence databases: a fungal perspective. PLOS ONE 1:e59 [Google Scholar]
  66. O'Brien BL, Parrent JL, Jackson JA, Moncalvo JM, Vilgalys R. 66.  2005. Fungal community analysis by large-scale sequencing of enviromental samples. Appl. Environ. Microbiol. 71:5544–50 [Google Scholar]
  67. O'Donnell K, Cigelnik E, Nirenberg HI. 67.  1998. Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90:465–93 [Google Scholar]
  68. O'Donnell K, Kistler HC, Tacke BK, Casper HH. 68.  2000. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc. Natl. Acad. Sci. USA 97:7905–10 [Google Scholar]
  69. Ohm RA, Feau N, Henrissat B, Schoch CL, Horwitz BA. 69.  et al. 2012. Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen Dothideomycetes fungi. PLOS Pathog. 8:e1003037 [Google Scholar]
  70. Opik M, Metsis M, Daniell TJ, Zobel M, Moora M. 70.  2009. Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytol. 184:424–37 [Google Scholar]
  71. Ovaskainen O, Nokso-Koivisto J, Hottola J, Rajala T, Pennanen T. 71.  et al. 2010. Identifying wood-inhabiting fungi with 454 sequencing: What is the probability that BLAST gives the correct species?. Fungal Ecol. 3:274–83 [Google Scholar]
  72. Petrini LE. 72.  1992. Rosellinia species of the temperate zones.. Sydowia 44:169–281 [Google Scholar]
  73. Phillips AJL, Alves A, Abdollahzadeh J, Slippers B, Wingfield MJ. 73.  et al. 2013. The Botryosphaeriaceae: genera and species known from culture. Stud. Mycol. 76:51–167 [Google Scholar]
  74. Quaedvlieg W, Binder M, Groenewald JZ, Summerell BA, Carnegie AJ. 74.  et al. 2014. Introducing the consolidated species concept to resolve species in the Teratosphaeriaceae. Persoonia 33:1–40 [Google Scholar]
  75. Quaedvlieg W, Kema GHJ, Groenewald JZ, Verkley GJM, Seifbarghi S. 75.  et al. 2011. Zymoseptoria gen. nov.: a new genus to accommodate Septoria-like species occurring on graminicolous hosts. Persoonia 26:57–69 [Google Scholar]
  76. Redhead SA, Demoulin V, Hawksworth DL, Seifert KA, Turland NJ. 76.  2014. Fungal nomenclature at IMC10: report of the nomenclature sessions. IMA Fungus 5:449–62 [Google Scholar]
  77. Reynolds DR, Taylor JW. 77.  1991. DNA specimens and the “International Code of Botanical Nomenclature.”. Taxon 40:311–15 [Google Scholar]
  78. Richards RA. 78.  2010. The Species Problem: A Philosophical Analysis Cambridge, UK: Cambridge Univ. Press
  79. Robert V, Vu D, Amor ABH, van de Wiele N, Brouwer C. 79.  et al. 2013. MycoBank gearing up for new horizons. IMA Fungus 4:371–79 [Google Scholar]
  80. Ropars J, López-Villavicencio M, Dupont J, Snirc A, Gillot G. 80.  et al. 2014. Induction of sexual reproduction and genetic diversity in the cheese fungus Penicillium roqueforti. Evol. Appl. 7:433–41 [Google Scholar]
  81. Rossman AY, Seifert KA, Samuels GJ, Minnis AW, Schroers HJ. 81.  et al. 2013. Genera in Bionectriaceae, Hypocreaceae, and Nectriaceae (Hypocreales) proposed for acceptance or rejection. IMA Fungus 4:41–51 [Google Scholar]
  82. Roux J, Greyling I, Coutinho TA, Verleur M, Wingfield MJ. 82.  2013. The Myrtle rust pathogen, Puccinia psidii, discovered in Africa. IMA Fungus 4:155–59 [Google Scholar]
  83. Saccardo PA. 83.  1882–86. Sylloge Fungorum1–4 Padova: P.A. Saccardo.
  84. Samson RA, Noonim P, Meijer M, Houbraken J, Frisvad JV. 84.  et al. 2007. Diagnostic tools to identify black aspergilli. Stud. Mycol. 59:129–46 [Google Scholar]
  85. Schoch CL, Crous PW, Wingfield MJ, Wingfield BD. 85.  2000. Phylogeny of Calonectria and selected hypocrealean genera with cylindrical macroconidia. Stud. Mycol. 45:45–62 [Google Scholar]
  86. Schoch CL, Robbertse B, Robert V, Vu D, Cardinali G. 86.  et al. 2014. Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi. Database doi:10.1093/database/bau061 Paper launching the RefSeq database for curated, validated ex-type sequence data for fungi.
  87. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL. 87.  et al. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA 109:6241–46Proposal of the ITS rDNA as official DNA barcode for the Fungi. [Google Scholar]
  88. Scott PM, Lawrence JW, van Walbeek W. 88.  1970. Detection of mycotoxins by thin-layer chromatography: application to screening of fungal extracts. Appl. Microbiol. 20:839–42 [Google Scholar]
  89. Seifert KA. 89.  2003. Has dual nomenclature for fungi run its course? The Article 59 debate. Mycotaxon 88:493–508 [Google Scholar]
  90. Seifert KA, Rossman AY. 90.  2010. How to describe a new fungal species. IMA Fungus 1:109–16 [Google Scholar]
  91. Shivas RG, Beasley DR, McTaggart AR. 91.  2014. Online identification guides for Australian smut fungi (Ustilaginomycotina) and rust fungi (Pucciniales). IMA Fungus 5:195–202 [Google Scholar]
  92. Silva-Mann R, Vieira MGGC, Machado JC, Bernardino Filho JR, Salgado KCC. 92.  et al. 2005. AFLP markers differentiate Colletotrichum gossypii from C. gossypii var. cephalosporioides. Fitopatol. Bras. 30:169–72 [Google Scholar]
  93. Slippers B, Boissin E, Phillips AJL, Groenewald JZ, Wingfield MJ. 93.  et al. 2013. Phylogenetic lineages in the Botryosphaeriales: a systematic and evolutionary framework. Stud. Mycol. 76:31–49 [Google Scholar]
  94. Stadler M, Læssøe T, Fournier J, Decock C, Schmieschek B. 94.  et al. 2014. A polyphasic taxonomy of Daldinia (Xylariaceae). Stud. Mycol. 77:1–143 [Google Scholar]
  95. Storck R, Alexopoulos CJ, Phaff HJ. 95.  1969. Nucleotide composition of deoxyribonucleic acid of some species of Cryptococcus, Rhodotorula, and Sporobolomyces. J. Bacteriol. 98:1069–72 [Google Scholar]
  96. Su YY, Cai L. 96.  2012. Polyphasic characterisation of three new Phyllosticta spp. Persoonia 28:76–84 [Google Scholar]
  97. Takamatsu S, Kano Y. 97.  2001. PCR primers useful for nucleotide sequencing of rDNA of the powdery mildew fungi. Mycoscience 42:135–39 [Google Scholar]
  98. Taylor DL, Hollingsworth TN, McFarland JW. 98.  et al. 2013. A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning. Ecol. Monogr. 84:3–20 [Google Scholar]
  99. Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM. 99.  et al. 2000. Phylogenetic species recognition and species concepts in fungi. Fungal Genet. Biol. 31:21–32 [Google Scholar]
  100. Taylor TN, Krings M, Taylor EJ. 100.  2014. Fossil Fungi London: Elsevier Acad, 1st ed..
  101. Tehler A. 101.  1993. Schismatomma and three new or reinstated genera, a reassessment of generic relationships in Arthoniales. Cryptogam. Bot. 3:139–51 [Google Scholar]
  102. Tulasne LR, Tulasne C. 102.  1865. Selecta Fungorum Carpologia: Nectriei-Phacidiei-Pezizei, Vol.1 Paris: Imp. Typogr. Parisiis [Google Scholar]
  103. van der Nest MA, Bihon W, De Vos L, Naidoo K, Roodt D. 103.  et al. 2014. Draft genome sequences of Diplodia sapinea, Ceratocystis manginecans, and Ceratocystis moniliformis. IMA Fungus 5:135–40 [Google Scholar]
  104. van Driel KGA, Humbel BM, Verkleij AJ, Stalpers J, Müller WH, Boekhout T. 104.  2009. Septal pore complex morphology in the Agaricomycotina (Basidiomycota) with emphasis on the Cantharellales and Hymenochaetales. Mycol. Res. 113:559–76 [Google Scholar]
  105. Varga J, Frisvad JC, Samson RA. 105.  2010. Polyphasic taxonomy of Aspergillus section Sparsi. IMA Fungus 1:187–95 [Google Scholar]
  106. von Arx JA, van der Walt JP, Liebenberg NVDM. 106.  1982. The classification of Taphrina and other fungi with yeast-like cultural states. Mycologia 74:285–96 [Google Scholar]
  107. Wang H-K, Aptroot A, Crous PW, Hyde KD, Jeewon R. 107.  2007. The polyphyletic nature of Pleosporales: an example from Massariosphaeria based on rDNA and RPB2 gene phylogenies. Mycol. Res. 111:1268–76 [Google Scholar]
  108. Weresub LK, Pirozynski KA. 108.  1979. Pleomorphism of fungi as treated in the history of mycology and nomenclature. The Whole Fungus 1 B Kendrick 17–25 Ottawa: Natl. Mus. Can. [Google Scholar]
  109. White TJ, Bruns T, Lee S, Taylor W. 109.  1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications M Innis, D Gelfand, J Sninsky, T White 315–22 San Diego, CA: Academic PressThe publication of the ITS rDNA primers for molecular phylogenetics. [Google Scholar]
  110. Wieloch W. 110.  2006. Chromosome visualisation in filamentous fungi. J. Microbiol. Meth. 67:1–8 [Google Scholar]
  111. Wijayawardene NN, Crous PW, Kirk PM, Hawksworth DL, Boonmee S. 111.  et al. 2014. Naming and outline of Dothideomycetes-2014 including proposals for the protection or suppression of generic names. Fungal Divers. 69:1–55 [Google Scholar]
  112. Wikee S, Lombard L, Nakashima C, Motohashi K, Chukeatirote E. 112.  et al. 2013. A phylogenetic re-evaluation of Phyllosticta (Botryosphaeriales). Stud. Mycol. 76:1–29 [Google Scholar]
  113. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. 113.  1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18:6531–35 [Google Scholar]
  114. Wingfield MJ, De Beer ZW, Slippers B, Wingfield BD, Groenewald JZ. 114.  et al. 2012. One fungus, one name promotes progressive plant pathology. Mol. Plant Pathol. 13:604–13Implications of the end of dual nomenclature for plant pathologists. [Google Scholar]
  115. Woudenberg JHC, Truter M, Groenewald JZ, Crous PW. 115.  2014. Large-spored Alternaria pathogens in section Porri disentangled. Stud. Mycol. 79:1–47 [Google Scholar]
/content/journals/10.1146/annurev-phyto-080614-120245
Loading
/content/journals/10.1146/annurev-phyto-080614-120245
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error