1932

Abstract

The mechanisms and impacts of the transmission of plant viruses by insect vectors have been studied for more than a century. The virus route within the insect vector is amply documented in many cases, but the identity, the biochemical properties, and the structure of the actual molecules (or molecule domains) ensuring compatibility between them remain obscure. Increased efforts are required both to identify receptors of plant viruses at various sites in the vector body and to design competing compounds capable of hindering transmission. Recent trends in the field are opening questions on the diversity and sophistication of viral adaptations that optimize transmission, from the manipulation of plants and vectors ultimately increasing the chances of acquisition and inoculation, to specific “sensing” of the vector by the virus while still in the host plant and the subsequent transition to a transmission-enhanced state.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-102313-045920
2014-08-04
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/phyto/52/1/annurev-phyto-102313-045920.html?itemId=/content/journals/10.1146/annurev-phyto-102313-045920&mimeType=html&fmt=ahah

Literature Cited

  1. Ammar ED, Gargani D, Lett JM, Peterschmitt M. 1.  2009. Large accumulations of maize streak virus in the filter chamber and midgut cells of the leafhopper vector Cicadulina mbila. Arch. Virol. 154:255–62 [Google Scholar]
  2. Ammar ED, Hogenhout SA. 2.  2008. A neurotropic route for Maize mosaic virus (Rhabdoviridae) in its planthopper vector Peregrinus maidis. Virus Res. 131:77–85 [Google Scholar]
  3. Ammar ED, Järlfors U, Pirone TP. 3.  1994. Association of potyvirus helper component protein with virions and the cuticule lining the maxillary food canal and foregut of an aphid vector. Phytopathology 84:1054–60 [Google Scholar]
  4. Ammar ED, Nault LR. 4.  1985. Assembly and accumulation sites of maize mosaic virus in its planthopper vector. Intervirology 24:33–41 [Google Scholar]
  5. Ammar ED, Nault LR. 5.  1991. Maize chlorotic dwarf viruslike particles associated with the foregut in vector and nonvector leafhopper species. Phytopathology 81:444–48 [Google Scholar]
  6. Ammar ED, Tsai CW, Whitfield AE, Redinbaugh MG, Hogenhout SA. 6.  2009. Cellular and molecular aspects of rhabdovirus interactions with insect and plant hosts. Annu. Rev. Entomol. 54:447–68 [Google Scholar]
  7. Bak A, Gargani D, Macia JL, Malouvet E, Vernerey MS. 7.  et al. 2013. Virus factories of Cauliflower mosaic virus are virion reservoirs that engage actively in vector transmission. J. Virol. 87:12207–15 [Google Scholar]
  8. Bak A, Irons SL, Martiniere A, Blanc S, Drucker M. 8.  2011. Host cell processes to accomplish mechanical and non-circulative virus transmission. Protoplasma 249:529–39 [Google Scholar]
  9. Bandla MD, Campbell LR, Ullman DE, Sherwood JL. 9.  1998. Interaction of tomato spotted wilt tospovirus (TSWV) glycoproteins with a thrips midgut protein, a potential cellular receptor for TSWV. Phytopathology 88:98–104 [Google Scholar]
  10. Berger PH, Pirone TP. 10.  1986. The effect of helper-component on the uptake and localization of potyviruses in Myzus persicae. Virology 153:256–61 [Google Scholar]
  11. Blanc S. 11.  2008. Vector transmission of plant viruses. Encyclopedia of Virology BWJ Mahy, MHV van Regenmortel 274–82 Waltham, MA: Elsevier Ltd. [Google Scholar]
  12. Blanc S, Ammar ED, Garcia-Lampasona S, Dolja VV, Llave C. 12.  et al. 1998. Mutations in the potyvirus helper component protein: effects on interactions with virions and aphid stylets. J. Gen. Virol. 79:Pt. 123119–22 [Google Scholar]
  13. Blanc S, Cerutti M, Usmany M, Vlak JM, Hull R. 13.  1993. Biological activity of cauliflower mosaic virus aphid transmission factor expressed in a heterologous system. Virology 192:643–50 [Google Scholar]
  14. Blanc S, Drucker M. 14.  2011. Functions of virus and host factors during vector-mediated transmission. Recent Advances in Plant Virology C Caranta, MA Aranda, M Tepfer, JJ Lopez-Moya 103–20 Caister, UK: Caister Academic [Google Scholar]
  15. Blanc S, Lopez-Moya JJ, Wang R, Garcia-Lampasona S, Thornbury DW, Pirone TP. 15.  1997. A specific interaction between coat protein and helper component correlates with aphid transmission of a potyvirus. Virology 231:141–47 [Google Scholar]
  16. Blanc S, Uzest M, Drucker M. 16.  2011. New research horizons in vector-transmission of plant viruses. Curr. Opin. Microbiol. 14:483–91 [Google Scholar]
  17. Boquel S, Giguère M, Clark C, Nanayakkara U, Zhang J, Pelletier Y. 17.  2013. Effect of mineral oil on Potato virus Y acquisition by Rhopalosiphum padi. Entomol. Exp. Appl. 148:48–55 [Google Scholar]
  18. Bosque-Perez NA, Eigenbrode SD. 18.  2011. The influence of virus-induced changes in plants on aphid vectors: insights from luteovirus pathosystems. Virus Res. 159:201–5 [Google Scholar]
  19. Bouvaine S, Boonham N, Douglas AE. 19.  2011. Interactions between a luteovirus and the GroEL chaperonin protein of the symbiotic bacterium Buchnera aphidicola of aphids. J. Gen. Virol. 92:1467–74 [Google Scholar]
  20. Bradley RH, Ganong RY. 20.  1955. Evidence that potato virus Y is carried near the tip of the stylets of the aphid vector Myzus persicae (sulz.). Can. J. Microbiol. 1:775–82 [Google Scholar]
  21. Bradley RH, Ganong RY. 21.  1955. Some effects of formaldehyde on potato virus Y in vitro, and ability of aphids to transmit the virus when their stylets are treated with formaldehyde. Can. J. Microbiol. 1:783–93 [Google Scholar]
  22. Bragard C, Caciagli P, Lemaire O, Lopez-Moya JJ, MacFarlane S. 22.  et al. 2013. Status and prospects of plant virus control through interference with vector transmission. Annu. Rev. Phytopathol. 51:177–201 [Google Scholar]
  23. Brault V, Bergdoll M, Mutterer J, Prasad V, Pfeffer S. 23.  et al. 2003. Effects of point mutations in the major capsid protein of beet western yellows virus on capsid formation, virus accumulation, and aphid transmission. J. Virol. 77:3247–56 [Google Scholar]
  24. Brault V, Herrbach E, Reinbold C. 24.  2007. Electron microscopy studies on luteovirid transmission by aphids. Micron 38:302–12 [Google Scholar]
  25. Brault V, Perigon S, Reinbold C, Erdinger M, Scheidecker D. 25.  et al. 2005. The polerovirus minor capsid protein determines vector specificity and intestinal tropism in the aphid. J. Virol. 79:9685–93 [Google Scholar]
  26. Brault V, Uzest M, Monsion B, Jacquot E, Blanc S. 26.  2010. Aphids as transport devices for plant viruses. C. R. Biol. 333:524–38 [Google Scholar]
  27. Brault V, van den Heuvel JF, Verbeek M, Ziegler-Graff V, Reutenauer A. 27.  et al. 1995. Aphid transmission of beet western yellows luteovirus requires the minor capsid read-through protein P74. EMBO J. 14:650–59 [Google Scholar]
  28. Brault V, Ziegler-Graff V, Richards KE. 28.  2001. Viral determinants involved in luteovirus-aphid interactions. See Ref. 56a 207–32
  29. Briddon RW, Pinner MS, Stanley J, Markham PG. 29.  1990. Geminivirus coat protein replacement alters insect specificity. Virology 177:85–94 [Google Scholar]
  30. Brown JK, Czosnek H. 30.  2002. Whitefly transmission of plant viruses. Adv. Bot. Res. 36:65–100 [Google Scholar]
  31. Chen AY, Walker GP, Carter D, Ng JC. 31.  2011. A virus capsid component mediates virion retention and transmission by its insect vector. Proc. Natl. Acad. Sci. USA 108:16777–82 [Google Scholar]
  32. Chen B, Francki RIB. 32.  1990. Cucumovirus transmission by the aphid Myzus persicae is determined solely by the viral coat protein. J. Gen. Virol. 71:939–44 [Google Scholar]
  33. Chen H, Chen Q, Omura T, Uehara-Ichiki T, Wei T. 33.  2011. Sequential infection of Rice dwarf virus in the internal organs of its insect vector after ingestion of virus. Virus Res. 160:389–94 [Google Scholar]
  34. Chen Q, Chen H, Mao Q, Liu Q, Shimizu T. 34.  et al. 2012. Tubular structure induced by a plant virus facilitates viral spread in its vector insect. PLoS Pathog. 8:e1003032 [Google Scholar]
  35. Childress SA, Harris KF. 35.  1989. Localization of virus-like particles in the foreguts of viruliferous Graminella nigrifrons leafhoppers carrying the semi-persistent maize chlorotic dwarf virus. J. Gen. Virol. 70:247–51 [Google Scholar]
  36. Chougule NP, Li H, Liu S, Linz LB, Narva KE. 36.  et al. 2013. Retargeting of the Bacillus thuringiensis toxin Cyt2Aa against hemipteran insect pests. Proc. Natl. Acad. Sci. USA 110:8465–70 [Google Scholar]
  37. Cilia M, Tamborindeguy C, Fish T, Howe K, Thannhauser TW, Gray S. 37.  2011. Genetics coupled to quantitative intact proteomics links heritable aphid and endosymbiont protein expression to circulative polerovirus transmission. J. Virol. 85:2148–66 [Google Scholar]
  38. Consortium TIAG. 38.  2010. Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol. 8:e1000313 [Google Scholar]
  39. Czosnek H, Ghanim M, Ghanim M. 39.  2002. The circulative pathway of begomoviruses in the whitefly vector Bemisia tabaci: insights from studies with Tomato yellow leaf curl virus. Ann. Appl. Biol. 140:215–31 [Google Scholar]
  40. Czosnek H, Morin S, Rubinstein M, Fridman V, Zeidan M, Ghanim M. 40.  2001. Tomato yellow leaf curl virus: a disease sexually transmitted by whiteflies. See Ref. 56a 1–27
  41. Diaz-Pendon JA, Canizares MC, Moriones E, Bejarano ER, Czosnek H, Navas-Castillo J. 41.  2010. Tomato yellow leaf curl viruses: ménage à trois between the virus complex, the plant and the whitefly vector. Mol. Plant Pathol. 11:441–50 [Google Scholar]
  42. Engel P, Moran NA. 42.  2013. The gut microbiota of insects: diversity in structure and function. FEMS Microbiol. Rev. 37:699–735 [Google Scholar]
  43. Espinoza AM, Medina V, Hull R, Markham PG. 43.  1991. Cauliflower mosaic virus gene II product forms distinct inclusion bodies in infected plant cells. Virology 185:337–44 [Google Scholar]
  44. Fereres A, Moreno A. 44.  2009. Behavioural aspects influencing plant virus transmission by homopteran insects. Virus Res. 141:158–68 [Google Scholar]
  45. Filichkin SA, Brumfield S, Filichkin TP, Young MJ. 45.  1997. In vitro interactions of the aphid endosymbiotic SymL chaperonin with barley yellow dwarf virus. J. Virol. 71:569–77 [Google Scholar]
  46. Franz AW, van der Wilk F, Verbeek M, Dullemans AM, van den Heuvel JF. 46.  1999. Faba bean necrotic yellows virus (genus Nanovirus) requires a helper factor for its aphid transmission. Virology 262:210–19 [Google Scholar]
  47. Gera A, Loebenstein G, Raccah B. 47.  1979. Protein coats of two strains of cucumber mosaic virus affect transmission of Aphis gossypii. Phytopathology 69:369–99 [Google Scholar]
  48. Gergerich RC. 48.  2001. Elucidation of transmission mechanisms: mechanism of virus transmission by leaf-feeding beetles. See Ref. 56a 133–40
  49. Ghanim M, Brumin M, Popovski S. 49.  2009. A simple, rapid and inexpensive method for localization of Tomato yellow leaf curl virus and Potato leafroll virus in plant and insect vectors. J. Virol. Methods 159:311–14 [Google Scholar]
  50. Gildow F. 50.  1999. Luteovirus transmission mechanisms regulating vector specificity. The Luteoviridae HG Smith, H Barker 88–111 Wallingford, UK: CABI [Google Scholar]
  51. Goldman V, Czosnek H. 51.  2002. Whiteflies (Bemisia tabaci) issued from eggs bombarded with infectious DNA clones of Tomato yellow leaf curl virus from Israel (TYLCV) are able to infect tomato plants. Arch. Virol. 147:787–801 [Google Scholar]
  52. Govier DA, Kassanis B. 52.  1974. A virus induced component of plant sap needed when aphids acquire potato virus Y from purified preparations. Virology 61:420–26 [Google Scholar]
  53. Gray S, Gildow FE. 53.  2003. Luteovirus-aphid interactions. Annu. Rev. Phytopathol. 41:539–66 [Google Scholar]
  54. Guo B, Lin J, Ye K. 54.  2011. Structure of the autocatalytic cysteine protease domain of potyvirus helper-component proteinase. J. Biol. Chem. 286:21937–43 [Google Scholar]
  55. Gutiérrez S, Michalakis Y, Van Munster M, Blanc S. 55.  2013. Plant feeding by insect vectors can affect life cycle, population genetics, and evolution of plant viruses. Funct. Ecol. 27:610–22 [Google Scholar]
  56. Harris KF. 56.  1977. An ingestion-egestion hypothesis of non circulative virus transmission. Aphids as Virus Vectors KF Harris, K Maramorosch 166–208 New York: Academic [Google Scholar]
  57. Harris KF, Smith OP, Duffus JE. 56a.  2001. Virus-Insect-Plant Interactions San Diego, CA: Acad. Press
  58. Hogenhout SA, Ammar ED, Whitfield AE, Redinbaugh MG. 57.  2008. Insect vector interactions with persistently transmitted viruses. Annu. Rev. Phytopathol. 46:327–59 [Google Scholar]
  59. Ingram WM, Goodrich LM, Robey EA, Eisen MB. 58.  2013. Mice infected with low-virulence strains of Toxoplasma gondii lose their innate aversion to cat urine, even after extensive parasite clearance. PLoS ONE 8:e75246 [Google Scholar]
  60. Ingwell LL, Eigenbrode SD, Bosque-Perez NA. 59.  2012. Plant viruses alter insect behavior to enhance their spread. Sci. Rep. 2:578 [Google Scholar]
  61. Jiu M, Zhou X-P, Tong L, Xu J, Yang X. 60.  et al. 2007. Vector-virus mutualism accelerates population increase of an invasive whitefly. PLoS ONE 2:e182 [Google Scholar]
  62. Johnson JE. 61.  2003. An atomic model of a plant reovirus: rice dwarf virus. Structure 11:1193–94 [Google Scholar]
  63. Kaper JM. 62.  1969. Reversible dissociation of cucumber mosaic virus (strain S). Virology 37:134–39 [Google Scholar]
  64. Kennedy JS, Day MF, Eastop VF. 63.  1962. A Conspectus of Aphids as Vectors of Plant Viruses London: Commonwealth Inst. Entomol114
  65. Khelifa M, Journou S, Krishnan K, Gargani D, Esperandieu P. 64.  et al. 2007. Electron-lucent inclusion bodies are structures specialized for aphid transmission of cauliflower mosaic virus. J. Gen. Virol. 88:2872–80 [Google Scholar]
  66. Kikkert M, Meurs C, van de Wetering F, Dorfmuller S, Peters D. 65.  et al. 1998. Binding of Tomato spotted wilt virus to a 94-kDa thrips protein. Phytopathology 88:63–69 [Google Scholar]
  67. Killiny N, Rashed A, Almeida RP. 66.  2012. Disrupting the transmission of a vector-borne plant pathogen. Appl. Environ. Microbiol. 78:638–43 [Google Scholar]
  68. Lefevre T, Adamo SA, Biron DG, Misse D, Hughes D, Thomas F. 67.  2009. Invasion of the body snatchers: the diversity and evolution of manipulative strategies in host-parasite interactions. Adv. Parasitol. 68:45–83 [Google Scholar]
  69. Leh V, Jacquot E, Geldreich A, Hermann T, Leclerc D. 68.  et al. 1999. Aphid transmission of cauliflower mosaic virus requires the viral PIII protein. EMBO J. 18:7077–85 [Google Scholar]
  70. Leshkowitz D, Gazit S, Reuveni E, Ghanim M, Czosnek H. 69.  et al. 2006. Whitefly (Bemisia tabaci) genome project: analysis of sequenced clones from egg, instar, and adult (viruliferous and non-viruliferous) cDNA libraries. BMC Genomics 7:79 [Google Scholar]
  71. Li C, Cox-Foster D, Gray SM, Gildow F. 70.  2001. Vector specificity of barley yellow dwarf virus (BYDV) transmission: identification of potential cellular receptors binding BYDV-MAV in the aphid, Sitobion avenae. Virology 286:125–33 [Google Scholar]
  72. Li J, Wang XP, Wang MQ, Ma WH, Hua HX. 71.  2013. Advances in the use of the RNA interference technique in Hemiptera. Insect Sci. 20:31–39 [Google Scholar]
  73. Liu S, He X, Park G, Josefsson C, Perry KL. 72.  2002. A conserved capsid protein surface domain of Cucumber mosaic virus is essential for efficient aphid vector transmission. J. Virol. 76:9756–62 [Google Scholar]
  74. Liu S, Sivakumar S, Sparks WO, Miller WA, Bonning BC. 73.  2010. A peptide that binds the pea aphid gut impedes entry of Pea enation mosaic virus into the aphid hemocoel. Virology 401:107–16 [Google Scholar]
  75. Luedke AJ, Jones RH, Walton TE. 74.  1977. Overwintering mechanism for bluetongue virus: biological recovery of latent virus from a bovine by bites of Culicoides variipennis. Am. J. Trop. Med. Hyg. 26:313–25 [Google Scholar]
  76. Lung MCY, Pirone TP. 75.  1974. Acquisition factor required for aphid transmission of purified cauliflower mosaic virus. Virology 60:260–64 [Google Scholar]
  77. Malmstrom CM, Melcher U, Bosque-Perez NA. 76.  2011. The expanding field of plant virus ecology: historical foundations, knowledge gaps, and research directions. Virus Res. 159:84–94 [Google Scholar]
  78. Martin B, Collar JL, Tjallingii WF, Fereres A. 77.  1997. Intracellular ingestion and salivation by aphids may cause the acquisition and inoculation of non-persistently transmitted plant viruses. J. Gen. Virol. 78:2701–5 [Google Scholar]
  79. Martinière A, Bak A, Macia JL, Lautredou N, Gargani D. 78.  et al. 2013. A virus responds instantly to the presence of the vector on the host and forms transmission morphs. Elife 2:e00183 [Google Scholar]
  80. Martinière A, Gargani D, Uzest M, Lautredou N, Blanc S, Drucker M. 79.  2009. A role for plant microtubules in the formation of transmission-specific inclusion bodies of Cauliflower mosaic virus. Plant J. 58:135–46 [Google Scholar]
  81. Matthews KR. 80.  2011. Controlling and coordinating development in vector-transmitted parasites. Science 331:1149–53 [Google Scholar]
  82. Mauck KE, De Moraes CM, Mescher MC. 81.  2010. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proc. Natl. Acad. Sci. USA 107:3600–5 [Google Scholar]
  83. Medina V, Pinner MS, Bedford ID, Achon MA, Gemeno C, Markham PG. 82.  2006. Immunolocalization of Tomato yellow leaf curl sardinia virus in natural host plants and its vector Bemisia tabaci. J. Plant Pathol. 88:299–308 [Google Scholar]
  84. Megahed ES, Pirone TP. 83.  1966. Comparative transmission of cucumber mosaic virus acquired by aphids from plants or through a membrane. Phytopathology 56:1420–21 [Google Scholar]
  85. Mello AF, Clark AJ, Perry KL. 84.  2010. Capsid protein of cowpea chlorotic mottle virus is a determinant for vector transmission by a beetle. J. Gen. Virol. 91:545–51 [Google Scholar]
  86. Miyazaki N, Nakagawa A, Iwasaki K. 85.  2013. Life cycle of phytoreoviruses visualized by electron microscopy and tomography. Front. Microbiol. 4:306 [Google Scholar]
  87. Moreno A, Hebrard E, Uzest M, Blanc S, Fereres A. 86.  2005. A single amino acid position in the helper component of cauliflower mosaic virus can change the spectrum of transmitting vector species. J. Virol. 79:13587–93 [Google Scholar]
  88. Morin S, Ghanim M, Sobol I, Czosnek H. 87.  2000. The GroEL protein of the whitefly Bemisia tabaci interacts with the coat protein of transmissible and nontransmissible begomoviruses in the yeast two-hybrid system. Virology 276:404–16 [Google Scholar]
  89. Morin S, Ghanim M, Zeidan M, Czosnek H, Verbeek M, van den Heuvel JF. 88.  1999. A GroEL homologue from endosymbiotic bacteria of the whitefly Bemisia tabaci is implicated in the circulative transmission of tomato yellow leaf curl virus. Virology 256:75–84 [Google Scholar]
  90. Mowry TM. 89.  1995. Within-plant accumulation of Potato leafroll virus by aggregated green peach aphid feeding. Phytopathology 85:859–63 [Google Scholar]
  91. Murant AF, Roberts IM, Elnagar S. 90.  1976. Association of virus-like particles with the foregut of the aphid Cavariella aegpodii transmitting the semipersistent viruses anthriscus yellows and parnish yellow fleck. J. Gen. Virol. 31:47–57 [Google Scholar]
  92. Nagata T, Inoue-Nagata AK, Prins M, Goldbach R, Peters D. 91.  2000. Impeded thrips transmission of defective Tomato spotted wilt virus isolates. Phytopathology 90:454–59 [Google Scholar]
  93. Nagata T, Inoue-Nagata AK, Smid HM, Goldbach R, Peters D. 92.  1999. Tissue tropism related to vector competence of Frankliniella occidentalis for tomato spotted wilt tospovirus. J. Gen. Virol. 80:Pt. 2507–15 [Google Scholar]
  94. Nakagawa A, Miyazaki N, Taka J, Naitow H, Ogawa A. 93.  et al. 2003. The atomic structure of Rice dwarf virus reveals the self-assembly mechanism of component proteins. Structure 11:1227–38 [Google Scholar]
  95. Pan H, Chu D, Yan W, Su Q, Liu B. 94.  et al. 2012. Rapid spread of Tomato yellow leaf curl virus in China is aided differentially by two invasive whiteflies. PLoS ONE 7:e34817 [Google Scholar]
  96. Pelletier Y, Nie X, Giguere MA, Nanayakkara U, Maw E, Foottit R. 95.  2012. A new approach for the identification of aphid vectors (Hemiptera: Aphididae) of Potato virus Y. J. Econ. Entomol. 105:1909–14 [Google Scholar]
  97. Peng YH, Kadoury D, Gal-On A, Huet H, Wang Y, Raccah B. 96.  1998. Mutations in the HC-Pro gene of zucchini yellow mosaic potyvirus: effects on aphid transmission and binding to purified virions. J. Gen. Virol. 79:Pt. 4897–904 [Google Scholar]
  98. Pfeiffer ML, Gildow FE, Gray SM. 97.  1997. Two distinct mechanisms regulate luteovirus transmission efficiency and specificity at the aphid salivary gland. J. Gen. Virol. 78:495–503 [Google Scholar]
  99. Pirone TP. 98.  1964. Aphid transmission of a purified stylet-borne virus acquired through membrane. Virology 23:107–8 [Google Scholar]
  100. Pirone TP, Blanc S. 99.  1996. Helper-dependent vector transmission of plant viruses. Annu. Rev. Phytopathol. 34:227–47 [Google Scholar]
  101. Pirone TP, Harris KF. 100.  1977. Nonpersistent transmission of plant viruses by aphids. Annu. Rev. Phytopathol. 15:55–73 [Google Scholar]
  102. Pitino M, Coleman AD, Maffei ME, Ridout CJ, Hogenhout SA. 101.  2011. Silencing of aphid genes by dsRNA feeding from plants. PLoS ONE 6:e25709 [Google Scholar]
  103. Plisson C, Drucker M, Blanc S, German-Retana S, Le Gall O. 102.  et al. 2003. Structural characterization of HC-Pro, a plant virus multifunctional protein. J. Biol. Chem. 278:23753–61 [Google Scholar]
  104. Plisson C, Uzest M, Drucker M, Froissart R, Dumas C. 103.  et al. 2005. Structure of the mature P3-virus particle complex of cauliflower mosaic virus revealed by cryo-electron microscopy. J. Mol. Biol. 346:267–77 [Google Scholar]
  105. Ponsen MB. 104.  1972. The site of potato leafroll virus multiplication in its vector, Myzus persicae: an anatomical study. Meded. Landbouwhogesch. Wageningen 72:1–147 [Google Scholar]
  106. Ponton F, Otalora-Luna F, Lefevre T, Guerin PM, Lebarbenchon C. 105.  et al. 2011. Water-seeking behavior in worm-infected crickets and reversibility of parasitic manipulation. Behav. Ecol. 22:392–400 [Google Scholar]
  107. Powell G. 106.  2005. Intracellular salivation is the aphid activity associated with inoculation of non-persistently transmitted viruses. J. Gen. Virol. 86:469–72 [Google Scholar]
  108. Rana VS, Singh ST, Priya NG, Kumar J, Rajagopal R. 107.  2012. Arsenophonus GroEL interacts with CLCuV and is localized in midgut and salivary gland of whitefly B. tabaci. PLoS ONE 7:e42168 [Google Scholar]
  109. Reinbold C, Herrbach E, Brault V. 108.  2003. Posterior midgut and hindgut are both sites of acquisition of Cucurbit aphid-borne yellows virus in Myzus persicae and Aphis gossypii. J. Gen. Virol. 84:3473–84 [Google Scholar]
  110. Ruiz-Ferrer V, Boskovic J, Alfonso C, Rivas G, Llorca O. 109.  et al. 2005. Structural analysis of tobacco etch potyvirus HC-pro oligomers involved in aphid transmission. J. Virol. 79:3758–65 [Google Scholar]
  111. Seddas P, Boissinot S, Strub JM, Van Dorsselaer A, van Regenmortel MH, Pattus F. 110.  2004. Rack-1, GAPDH3, and actin: proteins of Myzus persicae potentially involved in the transcytosis of beet western yellows virus particles in the aphid. Virology 325:399–412 [Google Scholar]
  112. Sin SH, McNulty BC, Kennedy GG, Moyer JW. 111.  2005. Viral genetic determinants for thrips transmission of Tomato spotted wilt virus. Proc. Natl. Acad. Sci. USA 102:5168–73 [Google Scholar]
  113. Smith TJ, Chase E, Schmidt T, Perry KL. 112.  2000. The structure of cucumber mosaic virus and comparison to cowpea chlorotic mottle virus. J. Virol. 74:7578–86 [Google Scholar]
  114. Stafford CA, Walker GP, Ullman DE. 113.  2011. Infection with a plant virus modifies vector feeding behavior. Proc. Natl. Acad. Sci. USA 108:9350–55 [Google Scholar]
  115. Stafford CA, Walker GP, Ullman DE. 114.  2012. Hitching a ride: vector feeding and virus transmission. Commun. Integr. Biol. 5:43–49 [Google Scholar]
  116. Storey HH. 115.  1933. Investigations of the mechanims of transmission of plant viruses by insect vectors. Proc. R. Soc. B 113:463–85 [Google Scholar]
  117. Sylvester ES. 116.  1956. Beet yellows virus transmission by the green peach aphid. J. Econ. Entomol. 49:789–800 [Google Scholar]
  118. Takamatsu H, Mellor PS, Mertens PP, Kirkham PA, Burroughs JN, Parkhouse RM. 117.  2003. A possible overwintering mechanism for bluetongue virus in the absence of the insect vector. J. Gen. Virol. 84:227–35 [Google Scholar]
  119. Tamborindeguy C, Bereman MS, DeBlasio S, Igwe D, Smith DM. 118.  et al. 2013. Genomic and proteomic analysis of Schizaphis graminum reveals cyclophilin proteins are involved in the transmission of Cereal yellow dwarf virus. PLoS ONE 8:e71620 [Google Scholar]
  120. Tamborindeguy C, Monsion B, Brault V, Hunnicutt L, Ju HJ. 119.  et al. 2010. A genomic analysis of transcytosis in the pea aphid, Acyrthosiphon pisum, a mechanism involved in virus transmission. Insect Mol. Biol. 19:259–72 [Google Scholar]
  121. Taylor CE, Robertson WM. 120.  1974. Electron microscopy evidence for the association of tobacco severe etch virus with the maxillae of Myzus persicae (Sulzer). Phytopathol. Z. 80:257–66 [Google Scholar]
  122. Ullman DE, German TL, Sherwood JL, Wetscot DM, Cantone FA. 121.  1993. Tospovirus replication in insect vector cells: immunocytochemical evidence that the nonstructural protein encoded by the S RNA of tomato spotted wilt tospovirus is present in thrips vector cells. Phytopathology 83:456–63 [Google Scholar]
  123. Ullman DE, Westcot DM, Chenault KD, Sherwood JL, German TL. 122.  et al. 1995. Compartmentalization, intracellular transport, and autophagy of Tomato spotted wilt tospovirus proteins in infected thrips cells. Phytopathology 85:644–54 [Google Scholar]
  124. Uzest M, Gargani D, Dombrovsky A, Cazevieille C, Cot D, Blanc S. 123.  2010. The “acrostyle”: a newly described anatomical structure in aphid stylets. Arthropod Struct. Dev. 39:221–29 [Google Scholar]
  125. Uzest M, Gargani D, Drucker M, Hébrard E, Garzo E. 124.  et al. 2007. A protein key to plant virus transmission at the tip of the insect vector stylet. Proc. Natl. Acad. Sci. USA 104:17959–64 [Google Scholar]
  126. van den Heuvel JF, Bruyère A, Hogenhout SA, Ziegler-Graff V, Brault V. 125.  et al. 1997. The N-terminal region of the luteovirus readthrough domain determines virus binding to Buchnera GroEL and is essential for virus persistence in the aphid. J. Virol. 71:7258–65 [Google Scholar]
  127. van den Heuvel JF, Verbeek M, van der Wilk F. 126.  1994. Endosymbiotic bacteria associated with circulative transmission of potato leafroll virus by Myzus persicae. J. Virol. 75:2559–65 [Google Scholar]
  128. Wang RY, Ammar ED, Thornbury DW, Lopez-Moya JJ, Pirone TP. 127.  1996. Loss of potyvirus transmissibility and helper-component activity correlate with non-retention of virions in aphid stylets. J. Gen. Virol. 77:861–67 [Google Scholar]
  129. Wang RY, Pirone TP. 128.  1996. Potyvirus transmission is not increased by pre-acquisition fasting of aphids reared on artificial diet. J. Gen. Virol. 77:3145–48 [Google Scholar]
  130. Watanabe S, Borthakur D, Bressan A. 129.  2013. Lack of evidence for an interaction between Buchnera GroEL and Banana bunchy top virus (Nanoviridae). Virus Res. 177:98–102 [Google Scholar]
  131. Watanabe S, Bressan A. 130.  2013. Tropism, compartmentalization and retention of Banana bunchy top virus (Nanoviridae) in the aphid vector Pentalonia nigronervosa. J. Gen. Virol. 94:209–19 [Google Scholar]
  132. Watanabe S, Greenwell AM, Bressan A. 131.  2013. Localization, concentration, and transmission efficiency of Banana bunchy top virus in four asexual lineages of Pentalonia aphids. Viruses 5:758–76 [Google Scholar]
  133. Watson MA, Roberts FM. 132.  1939. A comparative study of the transmission of hyocyamus virus 3, potato virus Y and cucumber virus by the vector Myzus persicae (Sulz), M. circumflexus (Buckton) and Macrosiphum gei (Koch). Proc. R. Soc. B 127:543–76 [Google Scholar]
  134. Weber KA, Hampton RO. 133.  1980. Transmission of two purified carlaviruses by the pea aphid. Phypathology 70:631–33 [Google Scholar]
  135. Wei T, Chen H, Ichiki-Uehara T, Hibino H, Omura T. 134.  2007. Entry of Rice dwarf virus into cultured cells of its insect vector involves clathrin-mediated endocytosis. J. Virol. 81:7811–15 [Google Scholar]
  136. Wei T, Hibino H, Omura T. 135.  2009. Release of Rice dwarf virus from insect vector cells involves secretory exosomes derived from multivesicular bodies. Commun. Integr. Biol. 2:324–26 [Google Scholar]
  137. Wei T, Uehara-Ichiki T, Miyazaki N, Hibino H, Iwasaki K, Omura T. 136.  2009. Association of Rice gall dwarf virus with microtubules is necessary for viral release from cultured insect vector cells. J. Virol. 83:10830–35 [Google Scholar]
  138. Whitfield AE, Kumar NK, Rotenberg D, Ullman DE, Wyman EA. 137.  et al. 2008. A soluble form of the Tomato spotted wilt virus (TSWV) glycoprotein G(N) (G(N)-S) inhibits transmission of TSWV by Frankliniella occidentalis. Phytopathology 98:45–50 [Google Scholar]
  139. Whitfield AE, Rotenberg D, Aritua V, Hogenhout SA. 138.  2011. Analysis of expressed sequence tags from Maize mosaic rhabdovirus–infected gut tissues of Peregrinus maidis reveals the presence of key components of insect innate immunity. Insect Mol. Biol. 20:225–42 [Google Scholar]
  140. Whitfield AE, Ullman DE, German TL. 139.  2004. Expression and characterization of a soluble form of Tomato spotted wilt virus glycoprotein GN. J. Virol. 78:13197–206 [Google Scholar]
  141. Wijkamp I, van Lent J, Kormelink R, Goldbach R, Peters D. 140.  1993. Multiplication of tomato spotted wilt virus in its insect vector, Frankliniella occidentalis. J. Gen. Virol. 74:341–49 [Google Scholar]
  142. Wilson A, Darpel K, Mellor PS. 141.  2008. Where does bluetongue virus sleep in the winter?. PLoS Biol. 6:e210 [Google Scholar]
  143. Woolston CJ, Czaplewski LG, Markham PG, Goad AS, Hull R, Davies JW. 142.  1987. Location and sequence of a region of cauliflower mosaic virus gene II responsible for aphid transmissibility. Virology 160:246–51 [Google Scholar]
  144. Ziegler-Graff V, Brault V. 143.  2008. Role of vector-transmission proteins. Methods Mol. Biol. 451:81–96 [Google Scholar]
/content/journals/10.1146/annurev-phyto-102313-045920
Loading
/content/journals/10.1146/annurev-phyto-102313-045920
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error