1932

Abstract

It is well known that numerous viruses integrate their genetic material into host cell chromosomes. Human herpesvirus 6 (HHV-6) and oncogenic Marek's disease virus (MDV) have been shown to integrate their genomes into host telomeres of latently infected cells. This is unusual for herpesviruses as most maintain their genomes as circular episomes during the quiescent stage of infection. The genomic DNA of HHV-6, MDV, and several other herpesviruses harbors telomeric repeats (TMRs) that are identical to host telomere sequences (TTAGGG). At least in the case of MDV, viral TMRs facilitate integration into host telomeres. Integration of HHV-6 occurs not only in lymphocytes but also in the germline of some individuals, allowing vertical virus transmission. Although the molecular mechanism of telomere integration is poorly understood, the presence of TMRs in a number of herpesviruses suggests it is their default program for genome maintenance during latency and also allows efficient reactivation.

[Erratum, Closure]

An erratum has been published for this article:
Herpesvirus Genome Integration into Telomeric Repeats of Host Cell Chromosomes
Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-031413-085422
2014-09-29
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/virology/1/1/annurev-virology-031413-085422.html?itemId=/content/journals/10.1146/annurev-virology-031413-085422&mimeType=html&fmt=ahah

Literature Cited

  1. Bertani G, Six E. 1.  1958. Inheritance of prophage P2 in bacterial crosses. Virology 6:357–81 [Google Scholar]
  2. Appleyard RK. 2.  1954. Segregation of lambda lysogenicity during bacterial recombination in Escherichia coli K12. Genetics 39:429–39 [Google Scholar]
  3. Lennox ES. 3.  1955. Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1:190–206 [Google Scholar]
  4. Lederberg EM, Lederberg J. 4.  1953. Genetic studies of lysogenicity in Escherichia coli. Genetics 38:51–64First evidence of integration of the genetic material of viruses into that of the host cell. [Google Scholar]
  5. Campbell A. 5.  1957. Transduction and segregation in Escherichia coli K12. Virology 4:366–84 [Google Scholar]
  6. Kohn A. 6.  1963. Possible integration of viral nucleic acid into the genome of animal cells. Prog. Med. Virol. 5:169–218 [Google Scholar]
  7. Rogers S, Moore M. 7.  1963. Studies of the mechanism of action of the Shope rabbit papilloma virus. I. Concerning the nature of the induction of arginase in the infected cells. J. Exp. Med. 117:521–42 [Google Scholar]
  8. Schwarz E, Freese UK, Gissmann L, Mayer W, Roggenbuck B. 8.  et al. 1985. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature 314:111–14 [Google Scholar]
  9. Gissmann L, Wolnik L, Ikenberg H, Koldovsky U, Schnurch HG, zur Hausen H. 9.  1983. Human papillomavirus types 6 and 11 DNA sequences in genital and laryngeal papillomas and in some cervical cancers. Proc. Natl. Acad. Sci. USA 80:560–63 [Google Scholar]
  10. Sambrook J, Westphal H, Srinivasan PR, Dulbecco R. 10.  1968. The integrated state of viral DNA in SV40-transformed cells. Proc. Natl. Acad. Sci. USA 60:1288–95 [Google Scholar]
  11. Hirai K, Lehman J, Defendi V. 11.  1971. Integration of simian virus 40 deoxyribonucleic acid into the deoxyribonucleic acid of primary infected Chinese hamster cells. J. Virol. 8:708–15 [Google Scholar]
  12. Doerfler W. 12.  1970. Integration of the deoxyribonucleic acid of adenovirus type 12 into the deoxyribonucleic acid of baby hamster kidney cells. J. Virol. 6:652–66 [Google Scholar]
  13. Temin HM, Mizutani S. 13.  1970. RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature 226:1211–13 [Google Scholar]
  14. Baltimore D. 14.  1970. RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature 226:1209–11 [Google Scholar]
  15. Varmus HE, Vogt PK, Bishop JM. 15.  1973. Integration of deoxyribonucleic acid specific for Rous sarcoma virus after infection of permissive and nonpermissive hosts. Proc. Natl. Acad. Sci. USA 70:3067–71 [Google Scholar]
  16. Crochu S, Cook S, Attoui H, Charrel RN, De Chesse R. 16.  et al. 2004. Sequences of flavivirus-related RNA viruses persist in DNA form integrated in the genome of Aedes spp. mosquitoes. J. Gen. Virol. 85:1971–80 [Google Scholar]
  17. Zhdanov VM, Bogomolova NN, Andzhaparidze OG. 17.  1975. Viral genome integration with nuclear DNA in chronic viral infection. Genetika 10:143–47 (in Russian) [Google Scholar]
  18. Horie M, Honda T, Suzuki Y, Kobayashi Y, Daito T. 18.  et al. 2010. Endogenous non-retroviral RNA virus elements in mammalian genomes. Nature 463:84–87 [Google Scholar]
  19. Horie M, Kobayashi Y, Suzuki Y, Tomonaga K. 19.  2013. Comprehensive analysis of endogenous bornavirus-like elements in eukaryote genomes. Philos. Trans. R. Soc. B 368:20120499 [Google Scholar]
  20. Boehmer PE, Nimonkar AV. 20.  2003. Herpes virus replication. IUBMB Life 55:13–22 [Google Scholar]
  21. Garber DA, Beverley SM, Coen DM. 21.  1993. Demonstration of circularization of herpes simplex virus DNA following infection using pulsed field gel electrophoresis. Virology 197:459–62 [Google Scholar]
  22. Poffenberger KL, Roizman B. 22.  1985. A noninverting genome of a viable herpes simplex virus. 1. Presence of head-to-tail linkages in packaged genomes and requirements for circularization after infection. J. Virol. 53:587–95 [Google Scholar]
  23. Jackson SA, DeLuca NA. 23.  2003. Relationship of herpes simplex virus genome configuration to productive and persistent infections. Proc. Natl. Acad. Sci. USA 100:7871–76 [Google Scholar]
  24. Sinclair J. 24.  2008. Human cytomegalovirus: latency and reactivation in the myeloid lineage. J. Clin. Virol. 41:180–85 [Google Scholar]
  25. Bolovan-Fritts CA, Mocarski ES, Wiedeman JA. 25.  1999. Peripheral blood CD14+ cells from healthy subjects carry a circular conformation of latent cytomegalovirus genome. Blood 93:394–98 [Google Scholar]
  26. Sissons JG, Bain M, Wills MR. 26.  2002. Latency and reactivation of human cytomegalovirus. J. Infect. 44:73–77 [Google Scholar]
  27. Adams MJ, Carstens EB. 27.  2012. Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses 2012. Arch. Virol. 157:1411–22 [Google Scholar]
  28. Lieberman PM. 28.  2013. Keeping it quiet: chromatin control of gammaherpesvirus latency. Nat. Rev. Microbiol. 11:863–75 [Google Scholar]
  29. Yates JL, Warren N, Sugden B. 29.  1985. Stable replication of plasmids derived from Epstein–Barr virus in various mammalian cells. Nature 313:812–15 [Google Scholar]
  30. Frappier L. 30.  2012. EBNA1 and host factors in Epstein–Barr virus latent DNA replication. Curr. Opin. Virol. 2:733–39 [Google Scholar]
  31. Deng Z, Lezina L, Chen CJ, Shtivelband S, So W, Lieberman PM. 31.  2002. Telomeric proteins regulate episomal maintenance of Epstein–Barr virus origin of plasmid replication. Mol. Cell 9:493–503 [Google Scholar]
  32. Hu J, Liu E, Renne R. 32.  2009. Involvement of SSRP1 in latent replication of Kaposi's sarcoma–associated herpesvirus. J. Virol. 83:11051–63 [Google Scholar]
  33. Kishi M, Harada H, Takahashi M, Tanaka A, Hayashi M. 33.  et al. 1988. A repeat sequence, GGGTTA, is shared by DNA of human herpesvirus 6 and Marek's disease virus. J. Virol. 62:4824–27Presence of TMRs in herpesvirus genomes. [Google Scholar]
  34. Secchiero P, Nicholas J, Deng H, Xiaopeng T, van Loon N. 34.  et al. 1995. Identification of human telomeric repeat motifs at the genome termini of human herpesvirus. 7. Structural analysis and heterogeneity. J. Virol. 69:8041–45 [Google Scholar]
  35. McVoy MA, Nixon DE, Hur JK, Adler SP. 35.  2000. The ends on herpesvirus DNA replicative concatemers contain pac2 cis cleavage/packaging elements and their formation is controlled by terminal cis sequences. J. Virol. 74:1587–92 [Google Scholar]
  36. Kaufer BB, Jarosinski KW, Osterrieder N. 36.  2011. Herpesvirus telomeric repeats facilitate genomic integration into host telomeres and mobilization of viral DNA during reactivation. J. Exp. Med. 208:605–15Herpesvirus TMRs facilitate MDV integration into host telomeres. [Google Scholar]
  37. Gompels UA, Macaulay HA. 37.  1995. Characterization of human telomeric repeat sequences from human herpesvirus 6 and relationship to replication. J. Gen. Virol. 76:451–58 [Google Scholar]
  38. Stevens JG. 38.  1989. Human herpesviruses: a consideration of the latent state. Microbiol. Rev. 53:318–32 [Google Scholar]
  39. Cesarman E, Mesri EA. 39.  2007. Kaposi sarcoma–associated herpesvirus and other viruses in human lymphomagenesis. Curr. Top. Microbiol. Immunol. 312:263–87 [Google Scholar]
  40. Osterrieder N, Kamil JP, Schumacher D, Tischer BK, Trapp S. 40.  2006. Marek's disease virus: from miasma to model. Nat. Rev. Microbiol. 4:283–94 [Google Scholar]
  41. Delecluse HJ, Hammerschmidt W. 41.  1993. Status of Marek's disease virus in established lymphoma cell lines: herpesvirus integration is common. J. Virol. 67:82–92Integration of MDV into the distal ends of chromosomes. [Google Scholar]
  42. Silva RF, Lee LF, Kutish GF. 42.  2001. The genomic structure of Marek's disease virus. Curr. Top. Microbiol. Immunol. 255:143–58 [Google Scholar]
  43. Nixon DE, McVoy MA. 43.  2002. Terminally repeated sequences on a herpesvirus genome are deleted following circularization but are reconstituted by duplication during cleavage and packaging of concatemeric DNA. J. Virol. 76:2009–13 [Google Scholar]
  44. Kishi M, Bradley G, Jessip J, Tanaka A, Nonoyama M. 44.  1991. Inverted repeat regions of Marek's disease virus DNA possess a structure similar to that of the a sequence of herpes simplex virus DNA and contain host cell telomere sequences. J. Virol. 65:2791–97 [Google Scholar]
  45. Porter IM, Stow ND. 45.  2004. Replication, recombination and packaging of amplicon DNA in cells infected with the herpes simplex virus type 1 alkaline nuclease null mutant ambUL12. J. Gen. Virol. 85:3501–10 [Google Scholar]
  46. Reuven NB, Willcox S, Griffith JD, Weller SK. 46.  2004. Catalysis of strand exchange by the HSV-1 UL12 and ICP8 proteins: Potent ICP8 recombinase activity is revealed upon resection of dsDNA substrate by nuclease. J. Mol. Biol. 342:57–71 [Google Scholar]
  47. Porter IM, Stow ND. 47.  2004. Virus particles produced by the herpes simplex virus type 1 alkaline nuclease null mutant ambUL12 contain abnormal genomes. J. Gen. Virol. 85:583–91 [Google Scholar]
  48. Goldstein JN, Weller SK. 48.  1998. The exonuclease activity of HSV-1 UL12 is required for in vivo function. Virology 244:442–57 [Google Scholar]
  49. Makhov AM, Sen A, Yu X, Simon MN, Griffith JD, Egelman EH. 49.  2009. The bipolar filaments formed by herpes simplex virus type 1 SSB/recombination protein (ICP8) suggest a mechanism for DNA annealing. J. Mol. Biol. 386:273–79 [Google Scholar]
  50. Dutch RE, Lehman IR. 50.  1993. Renaturation of complementary DNA strands by herpes simplex virus type 1 ICP8. J. Virol. 67:6945–49 [Google Scholar]
  51. Boehmer PE, Lehman IR. 51.  1997. Herpes simplex virus DNA replication. Annu. Rev. Biochem. 66:347–84 [Google Scholar]
  52. Masson JY, West SC. 52.  2001. The Rad51 and Dmc1 recombinases: a non-identical twin relationship. Trends Biochem. Sci. 26:131–36 [Google Scholar]
  53. Jones D, Lee L, Liu JL, Kung HJ, Tillotson JK. 53.  1992. Marek disease virus encodes a basic-leucine zipper gene resembling the fos/jun oncogenes that is highly expressed in lymphoblastoid tumors. Proc. Natl. Acad. Sci. USA 89:4042–46 Erratum 1993. Proc. Natl. Acad. Sci. USA 90:2556 [Google Scholar]
  54. Lupiani B, Lee LF, Cui X, Gimeno I, Anderson A. 54.  et al. 2004. Marek's disease virus–encoded Meq gene is involved in transformation of lymphocytes but is dispensable for replication. Proc. Natl. Acad. Sci. USA 101:11815–20 [Google Scholar]
  55. Liu JL, Kung HJ. 55.  2000. Marek's disease herpesvirus transforming protein MEQ: a c-Jun analogue with an alternative life style. Virus Genes 21:51–64 [Google Scholar]
  56. Brown AC, Baigent SJ, Smith LP, Chattoo JP, Petherbridge LJ. 56.  et al. 2006. Interaction of MEQ protein and C-terminal-binding protein is critical for induction of lymphomas by Marek's disease virus. Proc. Natl. Acad. Sci. USA 103:1687–92 [Google Scholar]
  57. Kaufer BB, Trapp S, Jarosinski KW, Osterrieder N. 57.  2010. Herpesvirus telomerase RNA (vTR)-dependent lymphoma formation does not require interaction of vTR with telomerase reverse transcriptase (TERT). PLoS Pathog. 6e1001073
  58. Kaufer BB, Arndt S, Trapp S, Osterrieder N, Jarosinski KW. 58.  2011. Herpesvirus telomerase RNA (vTR) with a mutated template sequence abrogates herpesvirus-induced lymphomagenesis. PLoS Pathog. 7:e1002333 [Google Scholar]
  59. Parcells MS, Lin SF, Dienglewicz RL, Majerciak V, Robinson DR. 59.  et al. 2001. Marek's disease virus (MDV) encodes an interleukin-8 homolog (vIL-8): characterization of the vIL-8 protein and a vIL-8 deletion mutant MDV. J. Virol. 75:5159–73 [Google Scholar]
  60. Engel AT, Selvaraj RK, Kamil JP, Osterrieder N, Kaufer BB. 60.  2012. Marek's disease viral interleukin-8 (vIL-8) promotes lymphoma formation through targeted recruitment of B cells and CD4+CD25+ T cells. J. Virol. 86:8536–45 [Google Scholar]
  61. Zhao Y, Xu H, Yao Y, Smith LP, Kgosana L. 61.  et al. 2011. Critical role of the virus-encoded microRNA-155 ortholog in the induction of Marek's disease lymphomas. PLoS Pathog. 7:e1001305 [Google Scholar]
  62. Yao Y, Zhao Y, Smith LP, Lawrie CH, Saunders NJ. 62.  et al. 2009. Differential expression of microRNAs in Marek's disease virus–transformed T-lymphoma cell lines. J. Gen. Virol. 90:1551–59 [Google Scholar]
  63. Jarosinski KW, Osterrieder N, Nair VK, Schat KA. 63.  2005. Attenuation of Marek's disease virus by deletion of open reading frame RLORF4 but not RLORF5a. J. Virol. 79:11647–59 [Google Scholar]
  64. Jarosinski KW, Schat KA. 64.  2006. Multiple alternative splicing to exons II and III of viral interleukin-8 (vIL-8) in the Marek's disease virus genome: the importance of vIL-8 exon I. Virus Genes 34:9–22 [Google Scholar]
  65. Delecluse HJ, Schuller S, Hammerschmidt W. 65.  1993. Latent Marek's disease virus can be activated from its chromosomally integrated state in herpesvirus-transformed lymphoma cells. EMBO J. 12:3277–86 [Google Scholar]
  66. Salahuddin SZ, Ablashi DV, Markham PD, Josephs SF, Sturzenegger S. 66.  et al. 1986. Isolation of a new virus, HBLV, in patients with lymphoproliferative disorders. Science 234:596–601 [Google Scholar]
  67. Ablashi DV, Balachandran N, Josephs SF, Hung CL, Krueger GR. 67.  et al. 1991. Genomic polymorphism, growth properties, and immunologic variations in human herpesvirus-6 isolates. Virology 184:545–52 [Google Scholar]
  68. Levy JA, Ferro F, Greenspan D, Lennette ET. 68.  1990. Frequent isolation of HHV-6 from saliva and high seroprevalence of the virus in the population. Lancet 335:1047–50 [Google Scholar]
  69. Okuno T, Takahashi K, Balachandra K, Shiraki K, Yamanishi K. 69.  et al. 1989. Seroepidemiology of human herpesvirus 6 infection in normal children and adults. J. Clin. Microbiol. 27:651–53 [Google Scholar]
  70. Yamanishi K, Okuno T, Shiraki K, Takahashi M, Kondo T. 70.  et al. 1988. Identification of human herpesvirus-6 as a causal agent for exanthem subitum. Lancet 331:1065–67 [Google Scholar]
  71. Hall CB, Long CE, Schnabel KC, Caserta MT, McIntyre KM. 71.  et al. 1994. Human herpesvirus-6 infection in children. A prospective study of complications and reactivation. N. Engl. J. Med. 331:432–38 [Google Scholar]
  72. McCullers JA, Lakeman FD, Whitley RJ. 72.  1995. Human herpesvirus 6 is associated with focal encephalitis. Clin. Infect. Dis. 21:571–76 [Google Scholar]
  73. Caselli E, Di Luca D. 73.  2007. Molecular biology and clinical associations of Roseoloviruses human herpesvirus 6 and human herpesvirus 7. New Microbiol. 30:173–87 [Google Scholar]
  74. De Bolle L, Naesens L, De Clercq E. 74.  2005. Update on human herpesvirus 6 biology, clinical features, and therapy. Clin. Microbiol. Rev. 18:217–45 [Google Scholar]
  75. Kondo K, Kondo T, Okuno T, Takahashi M, Yamanishi K. 75.  1991. Latent human herpesvirus 6 infection of human monocytes/macrophages. J. Gen. Virol. 72:1401–8 [Google Scholar]
  76. Luppi M, Barozzi P, Morris C, Maiorana A, Garber R. 76.  et al. 1999. Human herpesvirus 6 latently infects early bone marrow progenitors in vivo. J. Virol. 73:754–59 [Google Scholar]
  77. Yasukawa M, Ohminami H, Sada E, Yakushijin Y, Kaneko M. 77.  et al. 1999. Latent infection and reactivation of human herpesvirus 6 in two novel myeloid cell lines. Blood 93:991–99 [Google Scholar]
  78. Yoshikawa T, Asano Y, Akimoto S, Ozaki T, Iwasaki T. 78.  et al. 2002. Latent infection of human herpesvirus 6 in astrocytoma cell line and alteration of cytokine synthesis. J. Med. Virol. 66:497–505 [Google Scholar]
  79. Ahlqvist J, Fotheringham J, Akhyani N, Yao K, Fogdell-Hahn A, Jacobson S. 79.  2005. Differential tropism of human herpesvirus 6 (HHV-6) variants and induction of latency by HHV-6A in oligodendrocytes. J. Neurovirol. 11:384–94 [Google Scholar]
  80. Kondo K, Shimada K, Sashihara J, Tanaka-Taya K, Yamanishi K. 80.  2002. Identification of human herpesvirus 6 latency-associated transcripts. J. Virol. 76:4145–51 [Google Scholar]
  81. Rotola A, Ravaioli T, Gonelli A, Dewhurst S, Cassai E, Di Luca D. 81.  1998. U94 of human herpesvirus 6 is expressed in latently infected peripheral blood mononuclear cells and blocks viral gene expression in transformed lymphocytes in culture. Proc. Natl. Acad. Sci. USA 95:13911–16 [Google Scholar]
  82. Luppi M, Marasca R, Barozzi P, Ferrari S, Ceccherini-Nelli L. 82.  et al. 1993. Three cases of human herpesvirus-6 latent infection: integration of viral genome in peripheral blood mononuclear cell DNA. J. Med. Virol. 40:44–52 [Google Scholar]
  83. Torelli G, Barozzi P, Marasca R, Cocconcelli P, Merelli E. 83.  et al. 1995. Targeted integration of human herpesvirus 6 in the p arm of chromosome 17 of human peripheral blood mononuclear cells in vivo. J. Med. Virol. 46:178–88 [Google Scholar]
  84. Daibata M, Taguchi T, Taguchi H, Miyoshi I. 84.  1998. Integration of human herpesvirus 6 in a Burkitt's lymphoma cell line. Br. J. Haematol. 102:1307–13 [Google Scholar]
  85. Nacheva EP, Ward KN, Brazma D, Virgili A, Howard J. 85.  et al. 2008. Human herpesvirus 6 integrates within telomeric regions as evidenced by five different chromosomal sites. J. Med. Virol. 80:1952–58 [Google Scholar]
  86. Tanaka-Taya K, Sashihara J, Kurahashi H, Amo K, Miyagawa H. 86.  et al. 2004. Human herpesvirus 6 (HHV-6) is transmitted from parent to child in an integrated form and characterization of cases with chromosomally integrated HHV-6 DNA. J. Med. Virol. 73:465–73 [Google Scholar]
  87. Daibata M, Taguchi T, Nemoto Y, Taguchi H, Miyoshi I. 87.  1999. Inheritance of chromosomally integrated human herpesvirus 6 DNA. Blood 94:1545–49 [Google Scholar]
  88. Leong HN, Tuke PW, Tedder RS, Khanom AB, Eglin RP. 88.  et al. 2007. The prevalence of chromosomally integrated human herpesvirus 6 genomes in the blood of UK blood donors. J. Med. Virol. 79:45–51 [Google Scholar]
  89. Ward KN, Leong HN, Thiruchelvam AD, Atkinson CE, Clark DA. 89.  2007. Human herpesvirus 6 DNA levels in cerebrospinal fluid due to primary infection differ from those due to chromosomal viral integration and have implications for diagnosis of encephalitis. J. Clin. Microbiol. 45:1298–304 [Google Scholar]
  90. Potenza L, Barozzi P, Masetti M, Pecorari M, Bresciani P. 90.  et al. 2009. Prevalence of human herpesvirus-6 chromosomal integration (CIHHV-6) in Italian solid organ and allogeneic stem cell transplant patients. Am. J. Transplant. 9:1690–97 [Google Scholar]
  91. Hubacek P, Muzikova K, Hrdlickova A, Cinek O, Hyncicova K. 91.  et al. 2009. Prevalence of HHV-6 integrated chromosomally among children treated for acute lymphoblastic or myeloid leukemia in the Czech Republic. J. Med. Virol. 81:258–63 [Google Scholar]
  92. Ward KN, Leong HN, Nacheva EP, Howard J, Atkinson CE. 92.  et al. 2006. Human herpesvirus 6 chromosomal integration in immunocompetent patients results in high levels of viral DNA in blood, sera, and hair follicles. J. Clin. Microbiol. 44:1571–74 [Google Scholar]
  93. Hubacek P, Virgili A, Ward KN, Pohlreich D, Keslova P. 93.  et al. 2009. HHV-6 DNA throughout the tissues of two stem cell transplant patients with chromosomally integrated HHV-6 and fatal CMV pneumonitis. Br. J. Haematol. 145:394–98 [Google Scholar]
  94. Arbuckle JH, Medveczky MM, Luka J, Hadley SH, Luegmayr A. 94.  et al. 2010. The latent human herpesvirus-6A genome specifically integrates in telomeres of human chromosomes in vivo and in vitro. Proc. Natl. Acad. Sci. USA 107:5563–6894 and 95: In vitro and in vivo integration of HHV-6A and HHV-6B into the telomeric region. [Google Scholar]
  95. Arbuckle JH, Pantry SN, Medveczky MM, Prichett J, Loomis KS. 95.  et al. 2013. Mapping the telomere integrated genome of human herpesvirus 6A and 6B. Virology 442:3–1194 and 95: In vitro and in vivo integration of HHV-6A and HHV-6B into the telomeric region. [Google Scholar]
  96. Mori T, Tanaka-Taya K, Satoh H, Aisa Y, Yamazaki R. 96.  et al. 2009. Transmission of chromosomally integrated human herpesvirus 6 (HHV-6) variant A from a parent to children leading to misdiagnosis of active HHV-6 infection. Transpl. Infect. Dis. 11:503–6 [Google Scholar]
  97. Daibata M, Taguchi T, Sawada T, Taguchi H, Miyoshi I. 97.  1998. Chromosomal transmission of human herpesvirus 6 DNA in acute lymphoblastic leukaemia. Lancet 352:543–44 [Google Scholar]
  98. Morris C, Luppi M, McDonald M, Barozzi P, Torelli G. 98.  1999. Fine mapping of an apparently targeted latent human herpesvirus type 6 integration site in chromosome band 17p13.3. J. Med. Virol. 58:69–75 [Google Scholar]
  99. Watanabe H, Daibata M, Tohyama M, Batchelor J, Hashimoto K, Iijima M. 99.  2008. Chromosomal integration of human herpesvirus 6 DNA in anticonvulsant hypersensitivity syndrome. Br. J. Dermatol. 158:640–42 [Google Scholar]
  100. Hall CB, Caserta MT, Schnabel K, Shelley LM, Marino AS. 100.  et al. 2008. Chromosomal integration of human herpesvirus 6 is the major mode of congenital human herpesvirus 6 infection. Pediatrics 122:513–20 [Google Scholar]
  101. Hubacek P, Maalouf J, Zajickova M, Kouba M, Cinek O. 101.  et al. 2007. Failure of multiple antivirals to affect high HHV-6 DNAaemia resulting from viral chromosomal integration in case of severe aplastic anaemia. Haematologica 92:e98–100 [Google Scholar]
  102. Morissette G, Flamand L. 102.  2010. Herpesviruses and chromosomal integration. J. Virol. 84:12100–9 [Google Scholar]
  103. Pellett PE, Ablashi DV, Ambros PF, Agut H, Caserta MT. 103.  et al. 2012. Chromosomally integrated human herpesvirus 6: questions and answers. Rev. Med. Virol. 22:144–55 [Google Scholar]
  104. Huang Y, Hidalgo-Bravo A, Zhang E, Cotton VE, Mendez-Bermudez A. 104.  et al. 2014. Human telomeres that carry an integrated copy of human herpesvirus 6 are often short and unstable, facilitating release of the viral genome from the chromosome. Nucleic Acids Res. 42:315–27 [Google Scholar]
  105. Gompels UA, Nicholas J, Lawrence G, Jones M, Thomson BJ. 105.  et al. 1995. The DNA sequence of human herpesvirus-6: structure, coding content, and genome evolution. Virology 209:29–51 [Google Scholar]
  106. Dominguez G, Dambaugh TR, Stamey FR, Dewhurst S, Inoue N, Pellett PE. 106.  1999. Human herpesvirus 6B genome sequence: coding content and comparison with human herpesvirus 6A. J. Virol. 73:8040–52 [Google Scholar]
  107. Isegawa Y, Mukai T, Nakano K, Kagawa M, Chen J. 107.  et al. 1999. Comparison of the complete DNA sequences of human herpesvirus 6 variants A and B. J. Virol. 73:8053–63 [Google Scholar]
  108. Thomson BJ, Dewhurst S, Gray D. 108.  1994. Structure and heterogeneity of the a sequences of human herpesvirus 6 strain variants U1102 and Z29 and identification of human telomeric repeat sequences at the genomic termini. J. Virol. 68:3007–14 [Google Scholar]
  109. Gompels UA, Macaulay HA. 109.  1995. Characterization of human telomeric repeat sequences from human herpesvirus 6 and relationship to replication. J. Gen. Virol. 76:451–58 [Google Scholar]
  110. Achour A, Malet I, Deback C, Bonnafous P, Boutolleau D. 110.  et al. 2009. Length variability of telomeric repeat sequences of human herpesvirus 6 DNA. J. Virol. Methods 159:127–30 [Google Scholar]
  111. Rapp JC, Krug LT, Inoue N, Dambaugh TR, Pellett PE. 111.  2000. U94, the human herpesvirus 6 homolog of the parvovirus nonstructural gene, is highly conserved among isolates and is expressed at low mRNA levels as a spliced transcript. Virology 268:504–16 [Google Scholar]
  112. Arbuckle JH, Medveczky PG. 112.  2011. The molecular biology of human herpesvirus-6 latency and telomere integration. Microbes Infection 13:731–41 [Google Scholar]
  113. Thomson BJ, Efstathiou S, Honess RW. 113.  1991. Acquisition of the human adeno-associated virus type-2 rep gene by human herpesvirus type-6. Nature 351:78–80 [Google Scholar]
  114. Im DS, Muzyczka N. 114.  1990. The AAV origin binding protein Rep68 is an ATP-dependent site-specific endonuclease with DNA helicase activity. Cell 61:447–57 [Google Scholar]
  115. Im DS, Muzyczka N. 115.  1989. Factors that bind to adeno-associated virus terminal repeats. J. Virol. 63:3095–104 [Google Scholar]
  116. Hickman AB, Ronning DR, Perez ZN, Kotin RM, Dyda F. 116.  2004. The nuclease domain of adeno-associated virus rep coordinates replication initiation using two distinct DNA recognition interfaces. Mol. Cell 13:403–14 [Google Scholar]
  117. Surosky RT, Urabe M, Godwin SG, McQuiston SA, Kurtzman GJ. 117.  et al. 1997. Adeno-associated virus Rep proteins target DNA sequences to a unique locus in the human genome. J. Virol. 71:7951–59 [Google Scholar]
  118. Tratschin JD, Tal J, Carter BJ. 118.  1986. Negative and positive regulation in trans of gene expression from adeno-associated virus vectors in mammalian cells by a viral rep gene product. Mol. Cell. Biol. 6:2884–94 [Google Scholar]
  119. Linden RM, Winocour E, Berns KI. 119.  1996. The recombination signals for adeno-associated virus site-specific integration. Proc. Natl. Acad. Sci. USA 93:7966–72 [Google Scholar]
  120. Im DS, Muzyczka N. 120.  1992. Partial purification of adeno-associated virus Rep78, Rep52, and Rep40 and their biochemical characterization. J. Virol. 66:1119–28 [Google Scholar]
  121. Thomson BJ, Weindler FW, Gray D, Schwaab V, Heilbronn R. 121.  1994. Human herpesvirus 6 (HHV-6) is a helper virus for adeno-associated virus type 2 (AAV-2) and the AAV-2 rep gene homologue in HHV-6 can mediate AAV-2 DNA replication and regulate gene expression. Virology 204:304–11 [Google Scholar]
  122. Dhepakson P, Mori Y, Jiang YB, Huang HL, Akkapaiboon P. 122.  et al. 2002. Human herpesvirus-6 rep/U94 gene product has single-stranded DNA-binding activity. J. Gen. Virol. 83:847–54 [Google Scholar]
  123. Turner S, Di Luca D, Gompels U. 123.  2002. Characterisation of a human herpesvirus 6 variant A “amplicon” and replication modulation by U94-Rep “latency gene.”. J. Virol. Methods 105:331–41 [Google Scholar]
  124. Mori Y, Dhepakson P, Shimamoto T, Ueda K, Gomi Y. 124.  et al. 2000. Expression of human herpesvirus 6B rep within infected cells and binding of its gene product to the TATA-binding protein in vitro and in vivo. J. Virol. 74:6096–104 [Google Scholar]
  125. Caselli E, Bracci A, Galvan M, Boni M, Rotola A. 125.  et al. 2006. Human herpesvirus 6 (HHV-6) U94/REP protein inhibits betaherpesvirus replication. Virology 346:402–14 [Google Scholar]
  126. Frenkel N, Schirmer EC, Wyatt LS, Katsafanas G, Roffman E. 126.  et al. 1990. Isolation of a new herpesvirus from human CD4+ T cells. Proc. Natl. Acad. Sci. USA 87:748–52 [Google Scholar]
  127. Krueger GR, Koch B, Leyssens N, Berneman Z, Rojo J. 127.  et al. 1998. Comparison of seroprevalences of human herpesvirus-6 and -7 in healthy blood donors from nine countries. Vox Sanguinis 75:193–97 [Google Scholar]
  128. Wyatt LS, Rodriguez WJ, Balachandran N, Frenkel N. 128.  1991. Human herpesvirus 7: antigenic properties and prevalence in children and adults. J. Virol. 65:6260–65 [Google Scholar]
  129. Wyatt LS, Frenkel N. 129.  1992. Human herpesvirus 7 is a constitutive inhabitant of adult human saliva. J. Virol. 66:3206–9 [Google Scholar]
  130. Black JB, Inoue N, Kite-Powell K, Zaki S, Pellett PE. 130.  1993. Frequent isolation of human herpesvirus 7 from saliva. Virus Res. 29:91–98 [Google Scholar]
  131. Black JB, Pellett PE. 131.  1999. Human herpesvirus 7. Rev. Med. Virol. 9:245–62 [Google Scholar]
  132. Donaldson CD, Clark DA, Kidd IM, Breuer J, Depledge DD. 132.  2013. Genome sequence of human herpesvirus 7 strain UCL-1. Genome Announc. 1:e00830–13 [Google Scholar]
  133. Nicholas J. 133.  1996. Determination and analysis of the complete nucleotide sequence of human herpesvirus. J. Virol. 70:5975–89 [Google Scholar]
  134. Megaw AG, Rapaport D, Avidor B, Frenkel N, Davison AJ. 134.  1998. The DNA sequence of the RK strain of human herpesvirus 7. Virology 244:119–32 [Google Scholar]
  135. Stehelin D, Varmus HE, Bishop JM, Vogt PK. 135.  1976. DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260:170–73 [Google Scholar]
  136. Signer ER. 136.  1968. Lysogeny: the integration problem. Annu. Rev. Microbiol. 22:451–88 [Google Scholar]
  137. Ausubel FM. 137.  1974. Radiochemical purification of bacteriophage λ integrase. Nature 247:152–54 [Google Scholar]
  138. Cheung AK, Hoggan MD, Hauswirth WW, Berns KI. 138.  1980. Integration of the adeno-associated virus genome into cellular DNA in latently infected human Detroit 6 cells. J. Virol. 33:739–48 [Google Scholar]
  139. Urcelay E, Ward P, Wiener SM, Safer B, Kotin RM. 139.  1995. Asymmetric replication in vitro from a human sequence element is dependent on adeno-associated virus Rep protein. J. Virol. 69:2038–46 [Google Scholar]
/content/journals/10.1146/annurev-virology-031413-085422
Loading
/content/journals/10.1146/annurev-virology-031413-085422
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error