1932

Abstract

Human perception is remarkably flexible: We experience vivid three-dimensional (3D) structure under diverse conditions, from the seemingly random magic-eye stereograms to the aesthetically beautiful, but obviously flat, canvases of the Old Masters. How does the brain achieve this apparently effortless robustness? Using brain imaging we are beginning to discover how different parts of the visual cortex support 3D perception by tracing different computations in the dorsal and ventral pathways. This review concentrates on studies of binocular disparity and its combination with other depth cues. This work suggests that the dorsal visual cortex is strongly engaged by 3D information and is involved in integrating signals to represent the structure of viewed surfaces. The ventral cortex may store representations of object configurations and the features required for task performance. These differences can be broadly understood in terms of the different computational demands of reducing estimator variance versus increasing the separation between exemplars.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-111815-114605
2016-10-14
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/vision/2/1/annurev-vision-111815-114605.html?itemId=/content/journals/10.1146/annurev-vision-111815-114605&mimeType=html&fmt=ahah

Literature Cited

  1. Babington-Smith C. 1958. Evidence in Camera London: Chatto & Windus
  2. Backus BT, Fleet DJ, Parker AJ, Heeger DJ. 2001. Human cortical activity correlates with stereoscopic depth perception. J. Neurophysiol. 86:42054–68 [Google Scholar]
  3. Badcock DR, Schor CM. 1985. Depth-increment detection function for individual spatial channels. J. Opt. Soc. Am. A 2:71211–16 [Google Scholar]
  4. Ban H, Preston TJ, Meeson A, Welchman AE. 2012. The integration of motion and disparity cues to depth in dorsal visual cortex. Nat. Neurosci. 15:4636–43 [Google Scholar]
  5. Ban H, Welchman AE. 2015. fMRI analysis-by-synthesis reveals a dorsal hierarchy that extracts surface slant. J. Neurosci. 35:279823–35 [Google Scholar]
  6. Benton AL, Hécaen H. 1970. Stereoscopic vision in patients with unilateral cerebral disease. Neurology 20:111084 [Google Scholar]
  7. Blake A, Bülthoff H. 1990. Does the brain know the physics of specular reflection?. Nature 343:6254165–68 [Google Scholar]
  8. Bradley DC, Chang GC, Andersen RA. 1998. Encoding of three-dimensional structure-from-motion by primate area MT neurons. Nature 392:6677714–17 [Google Scholar]
  9. Bradshaw MF, Rogers BJ. 1996. The interaction of binocular disparity and motion parallax in the computation of depth. Vis. Res. 36:213457–68 [Google Scholar]
  10. Bridge H, Parker AJ. 2007. Topographical representation of binocular depth in the human visual cortex using fMRI. J. Vis. 7:1415 [Google Scholar]
  11. Bülthoff HH, Mallot HA. 1988. Integration of depth modules: stereo and shading. J. Opt. Soc. Am. A 5:101749–58 [Google Scholar]
  12. Bülthoff I, Bülthoff H, Sinha P. 1998. Top-down influences on stereoscopic depth-perception. Nat. Neurosci. 1:3254–57 [Google Scholar]
  13. Burge J, Geisler WS. 2014. Optimal disparity estimation in natural stereo images. J. Vis. 14:21 [Google Scholar]
  14. Carmon A, Bechtoldt HP. 1969. Dominance of the right cerebral hemisphere for stereopsis. Neuropsychologia 7:129–39 [Google Scholar]
  15. Chandrasekaran C, Canon V, Dahmen JC, Kourtzi Z, Welchman AE. 2007. Neural correlates of disparity-defined shape discrimination in the human brain. J. Neurophysiol. 97:21553–65 [Google Scholar]
  16. Chang DHF, Kourtzi Z, Welchman AE. 2013. Mechanisms for extracting a signal from noise as revealed through the specificity and generality of task training. J. Neurosci. 33:2710962–71 [Google Scholar]
  17. Chang DHF, Mevorach C, Kourtzi Z, Welchman AE. 2014. Training transfers the limits on perception from parietal to ventral cortex. Curr. Biol. 24:202445–50 [Google Scholar]
  18. Chen G, Lu HD, Roe AW. 2008. A map for horizontal disparity in monkey V2. Neuron 58:3442–50 [Google Scholar]
  19. Chowdhury SA, DeAngelis GC. 2008. Fine discrimination training alters the causal contribution of macaque area MT to depth perception. Neuron 60:2367–77 [Google Scholar]
  20. Clark J, Yuille AL. 1990. Data Fusion for Sensory Information Processing Systems Boston: Kluwer Acad.
  21. Cogan AI, Lomakin AJ, Rossi AF. 1993. Depth in anticorrelated stereograms: effects of spatial density and interocular delay. Vis. Res. 33:141959–75 [Google Scholar]
  22. Cottereau BR, Ales JM, Norcia AM. 2014. The evolution of a disparity decision in human visual cortex. NeuroImage 92:193–206 [Google Scholar]
  23. Cottereau BR, McKee SP, Ales JM, Norcia AM. 2011. Disparity-tuned population responses from human visual cortex. J. Neurosci. 31:3954–65 [Google Scholar]
  24. Cottereau BR, McKee SP, Ales JM, Norcia AM. 2012. Disparity-specific spatial interactions: evidence from EEG source imaging. J. Neurosci. 32:3826–40 [Google Scholar]
  25. Cumming BG, DeAngelis GC. 2001. The physiology of stereopsis. Annu. Rev. Neurosci. 24:203–38 [Google Scholar]
  26. Cumming BG, Parker AJ. 1997. Responses of primary visual cortical neurons to binocular disparity without depth perception. Nature 389:6648280–83 [Google Scholar]
  27. Cumming BG, Parker AJ. 1999. Binocular neurons in V1 of awake monkeys are selective for absolute, not relative, disparity. J. Neurosci. 19:135602–18 [Google Scholar]
  28. DeAngelis G, Cumming B, Newsome W. 1998. Cortical area MT and the perception of stereoscopic depth. Nature 394:6694677–80 [Google Scholar]
  29. DeAngelis GC, Newsome WT. 1999. Organization of disparity-selective neurons in macaque area MT. J. Neurosci. 19:41398–415 [Google Scholar]
  30. Dekker TM, Ban H, van der Velde B, Sereno MI, Welchman AE, Nardini M. 2015. Late development of cue integration is linked to sensory fusion in cortex. Curr. Biol. 25:212856–61 [Google Scholar]
  31. Dodd J, Krug K, Cumming B, Parker AJ. 2001. Perceptually bistable three-dimensional figures evoke high choice probabilities in cortical area. J. Neurosci. 21:134809–21 [Google Scholar]
  32. Domini F, Caudek C, Tassinari H. 2006. Stereo and motion information are not independently processed by the visual system. Vis. Res. 46:111707–23 [Google Scholar]
  33. Dosher BA, Jeter P, Liu J, Lu ZL. 2013. An integrated reweighting theory of perceptual learning. PNAS 110:3313678–83 [Google Scholar]
  34. Dosher BA, Lu ZL. 1998. Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting. PNAS 95:2313988–93 [Google Scholar]
  35. Dosher BA, Lu ZL. 2005. Perceptual learning in clear displays optimizes perceptual expertise: learning the limiting process. PNAS 102:145286–90 [Google Scholar]
  36. Dosher BA, Sperling G, Wurst SA. 1986. Tradeoffs between stereopsis and proximity luminance covariance as determinants of perceived 3D structure. Vis. Res. 26:6973–90 [Google Scholar]
  37. Dövencioğlu D, Ban H, Schofield AJ, Welchman AE. 2013. Perceptual integration for qualitatively different 3-D cues in the human brain. J. Cogn. Neurosci. 25:91527–41 [Google Scholar]
  38. Dupont P, De Bruyn B, Vandenberghe R, Rosier AM, Michiels J. et al. 1997. The kinetic occipital region in human visual cortex. Cereb. Cortex 7:3283–92 [Google Scholar]
  39. Durand J-B, Peeters R, Norman JF, Todd JT, Orban GA. 2009. Parietal regions processing visual 3D shape extracted from disparity. NeuroImage 46:41114–26 [Google Scholar]
  40. Durnford M, Kimura D. 1971. Right hemisphere specialization for depth perception reflected in visual field differences. Nature 231:5302394–95 [Google Scholar]
  41. Erkelens C, Collewijn H. 1985. Eye-movements and stereopsis during dichoptic viewing of moving random-dot stereograms. Vis. Res. 25:111689–1700 [Google Scholar]
  42. Ernst MO, Banks MS. 2002. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415:6870429–33 [Google Scholar]
  43. Fleet DJ, Wagner H, Heeger DJ. 1996. Neural encoding of binocular disparity: energy models, position shifts and phase shifts. Vis. Res. 36:121839–57 [Google Scholar]
  44. Fleming RW, Holtmann-Rice D, Bülthoff HH. 2011. Estimation of 3D shape from image orientations. PNAS 108:5120438–43 [Google Scholar]
  45. Fleming RW, Torralba A, Adelson EH. 2004. Specular reflections and the perception of shape. J. Vis. 4:9798–820 [Google Scholar]
  46. Georgieva SS, Peeters R, Kolster H, Todd JT, Orban GA. 2009. The processing of three-dimensional shape from disparity in the human brain. J. Neurosci. 29:3727–42 [Google Scholar]
  47. Georgieva SS, Todd JT, Peeters R, Orban GA. 2008. The extraction of 3D shape from texture and shading in the human brain. Cereb. Cortex 18:102416–38 [Google Scholar]
  48. Gerardin P, Kourtzi Z, Mamassian P. 2010. Prior knowledge of illumination for 3D perception in the human brain. PNAS 107:3716309–14 [Google Scholar]
  49. Gillebert CR, Schaeverbeke J, Bastin C, Neyens V, Bruffaerts R. et al. 2015. 3D shape perception in posterior cortical atrophy: a visual neuroscience perspective. J. Neurosci. 35:3712673–92 [Google Scholar]
  50. Glennerster A, Tcheang L, Gilson SJ, Fitzgibbon AW, Parker AJ. 2006. Humans ignore motion and stereo cues in favor of a fictional stable world. Curr. Biol. 16:4428–32 [Google Scholar]
  51. Goncalves NR, Ban H, Sánchez-Panchuelo RM, Francis ST, Schluppeck D, Welchman AE. 2015. 7 Tesla fMRI reveals systematic functional organization for binocular disparity in dorsal visual cortex. J. Neurosci. 35:73056–72 [Google Scholar]
  52. Gonzalez F, Perez R. 1998. Neural mechanisms underlying stereoscopic vision. Prog. Neurobiol. 55:3191–224 [Google Scholar]
  53. Gori M, Del Viva M, Sandini G, Burr DC. 2008. Young children do not integrate visual and haptic form information. Curr. Biol. 18:9694–98 [Google Scholar]
  54. Haefner RM, Cumming BG. 2008. Adaptation to natural binocular disparities in primate V1 explained by a generalized energy model. Neuron 57:1147–58 [Google Scholar]
  55. Hamsher KD. 1978. Stereopsis and unilateral brain disease. Investig. Ophthalmol. Vis. Sci. 17:4336–43 [Google Scholar]
  56. Heeger DJ, Ress D. 2002. What does fMRI tell us about neuronal activity?. Nat. Rev. Neurosci. 3:2142–51 [Google Scholar]
  57. Hibbard P. 2007. A statistical model of binocular disparity. Vis. Cogn. 15:2149–65 [Google Scholar]
  58. Hillis JM, Ernst MO, Banks MS, Landy MS. 2002. Combining sensory information: mandatory fusion within, but not between, senses. Science 298:55981627–30 [Google Scholar]
  59. Hubel DH, Wiesel TN. 1970. Stereoscopic vision in macaque monkey: cells sensitive to binocular depth in area 18 of the macaque monkey cortex. Nature 225:522741–42 [Google Scholar]
  60. Ip IB, Minini L, Dow J, Parker AJ, Bridge H. 2014. Responses to interocular disparity correlation in the human cerebral cortex. Ophthalmic Physiol. Opt. 34:2186–98 [Google Scholar]
  61. Jacobs RA. 1999. Optimal integration of texture and motion cues to depth. Vis. Res. 39:213621–29 [Google Scholar]
  62. James TW, Stevenson RA. 2012. The use of fMRI to assess multisensory integration. Frontiers in the Neural Bases of Multisensory Processes MM Murray, MT Wallace 131–46 Boca Raton, FL: CRC [Google Scholar]
  63. Janssen P, Vogels R, Liu Y, Orban GA. 2003. At least at the level of inferior temporal cortex, the stereo correspondence problem is solved. Neuron 37:4693–701 [Google Scholar]
  64. Janssen P, Vogels R, Orban GA. 1999. Macaque inferior temporal neurons are selective for disparity-defined three-dimensional shapes. PNAS 96:148217–22 [Google Scholar]
  65. Janssen P, Vogels R, Orban GA. 2000. Three-dimensional shape coding in inferior temporal cortex. Neuron 27:2385–97 [Google Scholar]
  66. Johnston EB, Cumming BG, Landy MS. 1994. Integration of stereopsis and motion shape cues. Vis. Res. 34:172259–75 [Google Scholar]
  67. Johnston EB, Cumming BG, Parker AJ. 1993. Integration of depth modules: stereopsis and texture. Vis. Res. 33:5–6813–26 [Google Scholar]
  68. Julesz B. 1971. Foundations of Cyclopean Perception Chicago: Univ. Chicago Press
  69. Knill D, Saunders J. 2003. Do humans optimally integrate stereo and texture information for judgments of surface slant?. Vis. Res. 43:242539–58 [Google Scholar]
  70. Kriegeskorte N. 2015. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annu. Rev. Vis. Sci. 1:417–46 [Google Scholar]
  71. Kriegeskorte N, Mur M, Bandettini P. 2008. Representational similarity analysis—connecting the branches of systems neuroscience. Front. Syst. Neurosci. 2:4 [Google Scholar]
  72. Landy M, Maloney L, Johnston EB, Young M. 1995. Measurement and modeling of depth cue combination: in defense of weak fusion. Vis. Res. 35:3389–412 [Google Scholar]
  73. Larsson J, Heeger DJ. 2006. Two retinotopic visual areas in human lateral occipital cortex. J. Neurosci. 26:5113128–42 [Google Scholar]
  74. Laurienti PJ, Perrault TJ, Stanford TR, Wallace MT, Stein BE. 2005. On the use of superadditivity as a metric for characterizing multisensory integration in functional neuroimaging studies. Exp. Brain Res. 166:3–4289–97 [Google Scholar]
  75. Law C-T, Gold JI. 2008. Neural correlates of perceptual learning in a sensory-motor, but not a sensory, cortical area. Nat. Neurosci. 11:4505–13 [Google Scholar]
  76. Lehky SR, Sejnowski TJ. 1990. Neural model of stereoacuity and depth interpolation based on a distributed representation of stereo disparity. J. Neurosci. 10:72281–99 [Google Scholar]
  77. Liu Y, Vogels R, Orban GA. 2004. Convergence of depth from texture and depth from disparity in macaque inferior temporal cortex. J. Neurosci. 24:153795–3800 [Google Scholar]
  78. Lugtigheid AJ, Brenner E, Welchman AE. 2011. Speed judgments of three-dimensional motion incorporate extraretinal information. J. Vis. 11:131 [Google Scholar]
  79. Marr D. 1976. Early processing of visual information. Philos. Trans. R. Soc. Lond. Ser. B 275:942483–519 [Google Scholar]
  80. Marr D, Poggio T. 1976. Cooperative computation of stereo disparity. Science 194:4262283–87 [Google Scholar]
  81. Marr D, Poggio T. 1979. A computational theory of human stereo vision. Proc. R. Soc. Lond. Ser. B 204:1156301–28 [Google Scholar]
  82. Meredith MA, Stein BE. 1983. Interactions among converging sensory inputs in the superior colliculus. Science 221:4608389–91 [Google Scholar]
  83. Minini L, Parker AJ, Bridge H. 2010. Neural modulation by binocular disparity greatest in human dorsal visual stream. J. Neurophysiol. 104:1169–78 [Google Scholar]
  84. Muckli L, De Martino F, Vizioli L, Petro LS, Smith FW. et al. 2015. Contextual feedback to superficial layers of V1. Curr. Biol. 25:202690–95 [Google Scholar]
  85. Murphy AP, Ban H, Welchman AE. 2013. Integration of texture and disparity cues to surface slant in dorsal visual cortex. J. Neurophysiol. 110:1190–203 [Google Scholar]
  86. Murray SO, Olshausen BA, Woods DL. 2003. Processing shape, motion and three-dimensional shape-from-motion in the human cortex. Cereb. Cortex 13:5508–16 [Google Scholar]
  87. Muryy AA, Welchman AE, Blake A, Fleming RW. 2013. Specular reflections and the estimation of shape from binocular disparity. PNAS 110:62413–18 [Google Scholar]
  88. Naganuma T, Nose I, Inoue K, Takemoto A, Katsuyama N, Taira M. 2005. Information processing of geometrical features of a surface based on binocular disparity cues: an fMRI study. Neurosci. Res. 51:2147–55 [Google Scholar]
  89. Nardini M, Bedford R, Mareschal D. 2010. Fusion of visual cues is not mandatory in children. PNAS 107:3917041–46 [Google Scholar]
  90. Nardini M, Jones P, Bedford R, Braddick O. 2008. Development of cue integration in human navigation. Curr. Biol. 18:9689–93 [Google Scholar]
  91. Nawrot M, Blake R. 1989. Neural integration of information specifying structure from stereopsis and motion. Science 244:4905716–18 [Google Scholar]
  92. Neri P. 2005. A stereoscopic look at visual cortex. J. Neurophysiol. 93:41823–26 [Google Scholar]
  93. Neri P, Bridge H, Heeger DJ. 2004. Stereoscopic processing of absolute and relative disparity in human visual cortex. J. Neurophysiol. 92:31880–91 [Google Scholar]
  94. Nguyenkim JD, DeAngelis GC. 2003. Disparity-based coding of three-dimensional surface orientation by macaque middle temporal neurons. J. Neurosci. 23:187117–28 [Google Scholar]
  95. Nishida Y, Hayashi O, Iwami T, Kimura M, Kani K. et al. 2001. Stereopsis-processing regions in the human parieto-occipital cortex. NeuroReport 12:102259–63 [Google Scholar]
  96. Norcia AM, Suiter EE, Tyler CW. 1985. Electrophysiological evidence for the existence of coarse and fine disparity mechanisms in human. Vis. Res. 25:111603–11 [Google Scholar]
  97. Ogle KN. 1932. An analytical treatment of the longitudinal horopter, its measurement and application to related phenomena, especially to the relative size and shape of the ocular images. J. Opt. Soc. Am. 22:12665–728 [Google Scholar]
  98. Ogle KN. 1952. Disparity limits of stereopsis. AMA Arch. Ophthalmol. 48:150–60 [Google Scholar]
  99. Ohzawa I, DeAngelis GC, Freeman RD. 1990. Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. Science 249:49721037–41 [Google Scholar]
  100. Orban GA. 2011. The extraction of 3D shape in the visual system of human and nonhuman primates. Annu. Rev. Neurosci. 34:361–88 [Google Scholar]
  101. Orban GA, Janssen P, Vogels R. 2006. Extracting 3D structure from disparity. Trends Neurosci. 29:8466–73 [Google Scholar]
  102. Otto TU, Mamassian P. 2012. Noise and correlations in parallel perceptual decision making. Curr. Biol. 22:151391–96 [Google Scholar]
  103. Parker AJ. 2007. Binocular depth perception and the cerebral cortex. Nat. Rev. Neurosci. 8:5379–91 [Google Scholar]
  104. Patten ML, Welchman AE. 2015. fMRI activity in posterior parietal cortex relates to the perceptual use of binocular disparity for both signal-in-noise and feature difference tasks. PLOS ONE 10:11e0140696 [Google Scholar]
  105. Peuskens H, Claeys KG, Todd JT, Norman JF, Van Hecke P, Orban GA. 2004. Attention to 3-D shape, 3-D motion, and texture in 3-D structure from motion displays. J. Cogn. Neurosci. 16:4665–82 [Google Scholar]
  106. Pirenne MH. 1970. Optics, Painting and Photography Cambridge, UK: Cambridge Univ. Press
  107. Poggio GF, Gonzalez F, Krause F. 1988. Stereoscopic mechanisms in monkey visual cortex: binocular correlation and disparity selectivity. J. Neurosci. 8:124531–50 [Google Scholar]
  108. Ponce CR, Lomber SG, Born RT. 2008. Integrating motion and depth via parallel pathways. Nat. Neurosci. 11:2216–23 [Google Scholar]
  109. Poom L, Borjesson E. 1999. Perceptual depth synthesis in the visual system as revealed by selective adaptation. J. Exp. Psychol. Hum. Percept. Perform. 25:2504–17 [Google Scholar]
  110. Preston TJ, Kourtzi Z, Welchman AE. 2009. Adaptive estimation of three-dimensional structure in the human brain. J. Neurosci. 29:61688–98 [Google Scholar]
  111. Preston TJ, Li S, Kourtzi Z, Welchman AE. 2008. Multivoxel pattern selectivity for perceptually relevant binocular disparities in the human brain. J. Neurosci. 28:4411315–27 [Google Scholar]
  112. Read JCA, Cumming BG. 2007. Sensors for impossible stimuli may solve the stereo correspondence problem. Nat. Neurosci. 10:101322–28 [Google Scholar]
  113. Read JCA, Phillipson GP, Serrano-Pedraza I, Milner AD, Parker AJ. 2010. Stereoscopic vision in the absence of the lateral occipital cortex. PLOS ONE 5:9e12608 [Google Scholar]
  114. Regan D, Spekreijse H. 1970. Electrophysiological correlate of binocular depth perception in man. Nature 225:522792–94 [Google Scholar]
  115. Roe AW, Parker AJ, Born RT, Deangelis GC. 2007. Disparity channels in early vision. J. Neurosci. 27:4411820–31 [Google Scholar]
  116. Rosenberg A, Angelaki DE. 2014. Reliability-dependent contributions of visual orientation cues in parietal cortex. PNAS 111:5018043–48 [Google Scholar]
  117. Rosenberg A, Cowan NJ, Angelaki DE. 2013. The visual representation of 3D object orientation in parietal cortex. J. Neurosci. 33:4919352–61 [Google Scholar]
  118. Shiozaki HM, Tanabe S, Doi T, Fujita I. 2012. Neural activity in cortical area V4 underlies fine disparity discrimination. J. Neurosci. 32:113830–41 [Google Scholar]
  119. Srivastava S, Orban GA, De Mazière PA, Janssen P. 2009. A distinct representation of three-dimensional shape in macaque anterior intraparietal area: fast, metric, and coarse. J. Neurosci. 29:3410613–26 [Google Scholar]
  120. Stanford TR, Quessy S, Stein BE. 2005. Evaluating the operations underlying multisensory integration in the cat superior colliculus. J. Neurosci. 25:286499–508 [Google Scholar]
  121. Stevenson SB, Cormack LK, Schor CM, Tyler CW. 1992. Disparity tuning in mechanisms of human stereopsis. Vis. Res. 32:91685–94 [Google Scholar]
  122. Sun H-C, Ban H, Di Luca M, Welchman AE. 2014. fMRI evidence for areas that process surface gloss in the human visual cortex. Vis. Res. 109:149–57 [Google Scholar]
  123. Tanabe S, Umeda K, Fujita I. 2004. Rejection of false matches for binocular correspondence in macaque visual cortical area V4. J. Neurosci. 24:378170–80 [Google Scholar]
  124. Thomas OM, Cumming BG, Parker AJ. 2002. A specialization for relative disparity in V2. Nat. Neurosci. 5:5472–78 [Google Scholar]
  125. Ts'o DY, Roe AW, Gilbert CD. 2001. A hierarchy of the functional organization for color, form and disparity in primate visual area V2. Vis. Res. 41:10–111333–49 [Google Scholar]
  126. Tsao DY, Vanduffel W, Sasaki Y, Fize D, Knutsen TA. et al. 2003. Stereopsis activates V3A and caudal intraparietal areas in macaques and humans. Neuron 39:3555–68 [Google Scholar]
  127. Tsutsui K-I, Sakata H, Naganuma T, Taira M. 2002. Neural correlates for perception of 3D surface orientation from texture gradient. Science 298:5592409–12 [Google Scholar]
  128. Tyler CW. 1990. A stereoscopic view of visual processing streams. Vis. Res. 30:111877–95 [Google Scholar]
  129. Tyler CW, Likova LT, Kontsevich LL, Wade AR. 2006. The specificity of cortical region KO to depth structure. NeuroImage 30:1228–38 [Google Scholar]
  130. Uka T, DeAngelis GC. 2003. Contribution of middle temporal area to coarse depth discrimination: comparison of neuronal and psychophysical sensitivity. J. Neurosci. 23:83515–30 [Google Scholar]
  131. Uka T, DeAngelis GC. 2004. Contribution of area MT to stereoscopic depth perception: Choice-related response modulations reflect task strategy. Neuron 42:2297–310 [Google Scholar]
  132. Uka T, DeAngelis GC. 2006. Linking neural representation to function in stereoscopic depth perception: roles of the middle temporal area in coarse versus fine disparity discrimination. J. Neurosci. 26:256791–802 [Google Scholar]
  133. Uka T, Tanabe S, Watanabe M, Fujita I. 2005. Neural correlates of fine depth discrimination in monkey inferior temporal cortex. J. Neurosci. 25:4610796–802 [Google Scholar]
  134. Umeda K, Tanabe S, Fujita I. 2007. Representation of stereoscopic depth based on relative disparity in macaque area V4. J. Neurophysiol. 98:1241–52 [Google Scholar]
  135. Van Oostende S, Sunaert S, Van Hecke P, Marchal G, Orban GA. 1997. The kinetic occipital (KO) region in man: an fMRI study. Cereb. Cortex 7:7690–701 [Google Scholar]
  136. Vanduffel W, Fize D, Peuskens H, Denys K, Sunaert S. et al. 2002. Extracting 3D from motion: differences in human and monkey intraparietal cortex. Science 298:5592413–15 [Google Scholar]
  137. Wada A, Sakano Y, Ando H. 2014. Human cortical areas involved in perception of surface glossiness. NeuroImage 98:243–57 [Google Scholar]
  138. Wallach H. 1935. Über visuell wahrgenommene Bewegungsrichtung. Psychol. Forsch. 20:325–80 [Google Scholar]
  139. Wallach H, O'Connell DN. 1953. The kinetic depth effect. J. Exp. Psychol. 45:4205–17 [Google Scholar]
  140. Watt SJ, Bradshaw MF. 2002. Binocular information in the control of prehensile movements in multiple-object scenes. Spat. Vis. 15:2141–55 [Google Scholar]
  141. Welchman AE, Deubelius A, Conrad V, Bülthoff HH, Kourtzi Z. 2005. 3D shape perception from combined depth cues in human visual cortex. Nat. Neurosci. 8:6820–27 [Google Scholar]
  142. Welchman AE, Harris JM, Brenner E. 2009. Extra-retinal signals support the estimation of 3D motion. Vis. Res. 49:7782–89 [Google Scholar]
  143. Welchman AE, Kourtzi Z. 2013. Linking brain imaging signals to visual perception. Vis. Neurosci. 30:5–6229–41 [Google Scholar]
  144. Westheimer G. 1979. Cooperative neural processes involved in stereoscopic acuity. Exp. Brain Res. 36:3585–97 [Google Scholar]
  145. Williams ZM, Elfar JC, Eskandar EN, Toth LJ, Assad JA. 2003. Parietal activity and the perceived direction of ambiguous apparent motion. Nat. Neurosci. 6:6616–23 [Google Scholar]
/content/journals/10.1146/annurev-vision-111815-114605
Loading
/content/journals/10.1146/annurev-vision-111815-114605
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error