1932

Abstract

Floral isolation is a form of prepollination reproductive isolation mediated by floral morphology (morphological isolation) and pollinator behavior (ethological isolation). Here we review mechanisms and evolutionary consequences of floral isolation in various pollination systems. Furthermore, we compare key features of floral isolation, i.e., pollinator sharing and specialization in pollination, in different orchid pollination systems. In orchid pollination, pollinator sharing is generally low, indicating strong floral isolation. The pollinators’ motivation to visit flowers (specifically) can be due to both foraging or reproductive behavior. In both types of behavior, innate preferences for floral signals can be quickly overruled by learning. In pollination systems in which reproductive behavior of pollinators triggers flower visits, lower pollinator sharing was evident compared with systems with foraging behavior, probably because pollinators displaying reproductive behavior show higher fidelity in their visitation patterns. Orchids pollinated through reproductive behavior also use fewer pollinators than orchids pollinated through foraging behavior. No association between specialization and pollinator sharing was found. Thus, generalized pollination does not impede floral isolation, as orchids with many pollinators may nonetheless have low pollinator sharing. Specialization in pollination was, however, linked to orchid species richness in our analysis. Flower size, spur, and column morphology are most important for morphological isolation, and floral scent is most important for ethological isolation. These traits may be based on few genes, implying that floral isolation can be brought about by few genes of large effect.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.ento.54.110807.090603
2009-01-07
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ento/54/1/annurev.ento.54.110807.090603.html?itemId=/content/journals/10.1146/annurev.ento.54.110807.090603&mimeType=html&fmt=ahah

Literature Cited

  1. Aldridge G, Campbell DR. 1.  2007. Variation in pollinator preference between two Ipomopsis contact sites that differ in hybridization rate. Evolution 61:99–110 [Google Scholar]
  2. Andersson S. 2.  2003. Foraging responses in the butterflies Inachis io, Aglais urticae (Nymphalidae), and Gonepteryx rhamni (Pieridae) to floral scents. Chemoecology 13:1–11 [Google Scholar]
  3. Armbruster WS. 3.  1997. Exaptations link evolution of plant-herbivore and plant-pollinator interactions: a phylogenetic inquiry. Ecology 78:1661–72 [Google Scholar]
  4. Ayasse M, Paxton RJ, Tengö J. 4.  2001. Mating behavior and chemical communication in the order Hymenoptera. Annu. Rev. Entomol. 46:31–78 [Google Scholar]
  5. Ayasse M, Schiestl FP, Paulus HF, Löfstedt C, Hansson B et al.5.  2000. Evolution of reproductive strategies in the sexually deceptive orchid Ophrys sphegodes: How does flower-specific variation of odor signals influence reproductive success?. Evolution 54:1995–2006 [Google Scholar]
  6. Balkenius A, Kelber A. 6.  2006. Colour preferences influences odour learning in the hawkmoth, Macroglossum stellatarum. Naturwissenschaften 93:255–58 [Google Scholar]
  7. Banziger H. 7.  1993. Studies on the natural pollination of three species of wild lady slipper orchids (Paphiopedilum) in Southeastern Asia. Proc. 14th World Orchid Conf. Glasgow 428
  8. Banziger H, Sun HQ, Luo YB. 8.  2008. Pollination of wild lady slipper orchids Cypripedium yunnanense and C. flavum (Orchidaceae) in south-west China: Why are there no hybrids?. Bot. J. Linn. Soc. 156:51–64 [Google Scholar]
  9. Barrett RDH, Schlüter D. 9.  2008. Adaptation from standing genetic variation. Trends Ecol. Evol. 23:38–44 [Google Scholar]
  10. Baumann K, Perez-Rodriguez M, Bradley D, Venail J, Bailey P et al.10.  2007. Control of cell and petal morphogenesis by R2R3 MYB transcription factors. Development 134:1691–701 [Google Scholar]
  11. Beardsley PM, Yen A, Olmstead RG. 11.  2003. AFLP phylogeny of Mimulus section Erythranthe and the evolution of hummingbird pollination. Evol. Int. J. Org. Evol. 57:1397–410 [Google Scholar]
  12. Bey M, Stüber K, Fellenberg K, Schwarz-Sommer Z, Sommer H et al.12.  2004. Characterization of Antirrhinum petal development and identification of target genes of the class B MADS box gene DEFICIENS. Plant Cell 16:3197–215 [Google Scholar]
  13. Borba EL, Semir J. 13.  1998. Wind-assisted fly pollination in three Bulbophyllum (Orchidaceae) species occurring in the Brazilian campos rupestres. Lindleyana 13:203–18 [Google Scholar]
  14. Borba E, Semir J. 14.  2001. Pollinator specificity and convergence in fly-pollinated Pleurothallis (Orchidaceae) species: a multiple population approach. Ann. Bot. 88:75–88 [Google Scholar]
  15. Bower CC. 15.  1996. Demonstration of pollinator-mediated reproductive isolation in sexually deceptive species of Chiloglottis (Orchidaceae: Caladeniinae). Aust. J. Bot. 44:15–33 [Google Scholar]
  16. Bradshaw HD Jr, Otto KG, Frewen BE, McKay JK, Schemske DW. 16.  1998. Quantitative trait loci affecting differences in floral morphology between two species of monkeyflower (Mimulus). Genetics 149:367–82 [Google Scholar]
  17. Bradshaw HD Jr, Schemske DW. 17.  2003. Allele substitution at a flower colour locus produces a pollinator shift in monkeyflowers. Nature 426:176–78Quantitative genetic study documenting the large phenotypic effect of a trait locus on floral isolation. [Google Scholar]
  18. Bradshaw HD Jr, Wilbert SM, Otto KG, Schemske DW. 18.  1995. Genetic mapping of floral traits associated with reproductive isolation in monkeyflowers (Mimulus). Nature 376:762–65 [Google Scholar]
  19. Cameron KM. 19.  2004. Utility of plastid psaB gene sequences for investigating intrafamilial relationships within Orchidaceae. Mol. Phylogenet. Evol. 31:1157–80 [Google Scholar]
  20. Campbell DR, Aldridge G. 20.  2006. Floral biology of hybrid zones. Ecology and Evolution of Flowers LD Harder, SCH Barrett 326–45 Oxford: Oxford Univ. Press [Google Scholar]
  21. Catling PM, Brown JR. 21.  1983. Morphometrics and ecological isolation in sympatric Spiranthes (Orchidaceae) in southwestern Ontario. Can. J. Bot. 61:2747–59 [Google Scholar]
  22. Chittka L, Spaethe J, Schmidt A, Hickelsberger A. 22.  2001. Adaptation, constraint, and chance in the evolution of flower color and pollinator color vision. See Ref. 23 106–26
  23. 23.  Chittka L, Thomson JD. 2001. Cognitive Ecology of Pollination Cambridge, UK: Cambridge Univ. Press
  24. Chittka L, Thomson JD, Waser NM. 24.  1999. Flower constancy, insect psychology, and plant evolution. Naturwissenschaften 86:361–77 [Google Scholar]
  25. Cozzolino S, D'Emerico S, Widmer A. 25.  2004. Evidence for reproductive isolate selection in Mediterranean orchids: Karyotype differences compensate for the lack of pollinator specificity. Proc. R. Soc. London Sci. Ser. B 271:S259–S62 [Google Scholar]
  26. Cozzolino S, Schiestl FP, Muller A, De Castro O, Nardella AM, Widmer A. 26.  2005. Evidence for pollinator sharing in Mediterranean nectar-mimic orchids: absence of premating barriers?. 1Proc. R. Soc. London. Sci. Ser. B 272:1271–78 [Google Scholar]
  27. Cozzolino S, Widmer A. 27.  2005. Orchid diversity: an evolutionary consequence of deception?. Trends Ecol. Evol. 20:487–94 [Google Scholar]
  28. Cunningham JP, Moore CJ, Zalucki MP, West SA. 28.  2004. Learning, odour preference and flower foraging in moths. J. Exp. Biol. 207:87–94 [Google Scholar]
  29. Dafni A, Ivri Y. 29.  1979. Pollination ecology of, and hybridization between Orchis coriophora L. and Orchis collina Sol Ex Russ (Orchidaceae) in Israel. New Phytol. 83:181–87 [Google Scholar]
  30. Darwin C.30.  1862. On the various Contrivances by which British and Foreign Orchids are Fertilised by Insects London: Murray
  31. Dodd ME, Silvertown J, Chase MW. 31.  1999. Phylogenetic analysis of trait evolution and species diversity variation among angiosperm families. Evolution 53:732–44 [Google Scholar]
  32. Dotterl S, Jurgens A, Seifert K, Laube T, Weissbecker B, Schutz S. 32.  2006. Nursery pollination by a moth in Silene latifolia: the role of odours in eliciting antennal and behavioural responses. New Phytol. 169:707–18 [Google Scholar]
  33. Dressler RL. 33.  1968. Pollination by euglossine bees. Evolution 22:202–10 [Google Scholar]
  34. Dressler RL.34.  1981. The Orchids: Natural History and Classification Cambridge, MA: Harvard Univ. Press
  35. Dukas R. 35.  2008. Evolutionary biology of insect learning. Annu. Rev. Entomol. 53:145–60 [Google Scholar]
  36. Ellis AG, Johnson SD. 36.  1999. Do pollinators determine hybridization patterns in sympatric Satyrium (Orchidaceae) species?. Plant Syst. Evol. 219:137–50 [Google Scholar]
  37. Felsenstein J.37.  2005. PHYLIP (Phylogeny Inference Package) version 3.6. Dep. Genome Sci., Univ. Wash., Seattle
  38. Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD. 38.  2004. Pollination syndromes and floral specialization. Annu. Rev. Ecol. Evol. Syst. 35:375–403 [Google Scholar]
  39. Fulton M, Hodges SA. 39.  1999. Floral isolation between Aquilegia formosa and Aquilegia pubescens. Proc. R. Soc. London Sci. Ser. B 266:2247–52 [Google Scholar]
  40. Gegear RJ, Burns JG. 40.  2007. The birds, the bees, and the virtual flowers: Can pollinator behavior drive ecological speciation in flowering plants?. Am. Nat. 170:551–66 [Google Scholar]
  41. Gerlach G, Schill R. 41.  1991. Composition of orchid scents attracting euglossine bees. Bot. Acta 104:379–91 [Google Scholar]
  42. Giurfa M, Nunez J, Chittka L, Menzel R. 42.  1995. Color preferences of flower-naive honeybees. J. Comp. Physiol. A 177:247–59 [Google Scholar]
  43. Golz JF, Keck EJ, Hudson A. 43.  2002. Spontaneous mutations in KNOX genes give rise to a novel floral structure in Antirrhinum. Curr. Biol. 12:515–22 [Google Scholar]
  44. Goulson D. 44.  1999. Foraging strategies of insects for gathering nectar and pollen, and implications for plant ecology and evolution. Perspect. Plant Ecol. Evol. Syst. 2:185–209 [Google Scholar]
  45. Goulson D, Jerrim K. 45.  1997. Maintenance of the species boundary between Silene dioica and S. latifolia (red and white campion). Oikos 79:115–26 [Google Scholar]
  46. Grant V. 46.  1949. Pollination systems as isolating mechanisms in angiosperms. Evolution 3:82–97 [Google Scholar]
  47. Grant V. 47.  1993. Origin of floral isolation between ornithophilous and sphingophilous plant species. Proc. Natl. Acad. Sci. USA 90:7729–33 [Google Scholar]
  48. Grant V. 48.  1994. Modes and origins of mechanical and ethological isolation in angiosperms. Proc. Natl. Acad. Sci. USA 91:3–10 [Google Scholar]
  49. Gravendeel B, Smithson A, Slik FJW, Schuiteman A. 49.  2004. Epiphytism and pollinator specialization: drivers for orchid diversity?. Philos. Trans. R. Soc. London Sci. B 359:1523–35 [Google Scholar]
  50. Grotewold E. 50.  2006. The genetics and biochemistry of floral pigments. Annu. Rev. Plant Biol. 57:761–80 [Google Scholar]
  51. Han Y-Y. 51.  2005. A novel chalcone synthase gene from Phalaenopsis orchid that alters floral morphology in transgenic tobacco plants. Plant Mol. Biol. Rep. 23:193a–93m [Google Scholar]
  52. Han Y-Y, Ming F, Wang JW, Wen JG, Ye M-M, Shen D-L. 52.  2006. Cloning and characterization of a novel chalcone synthase gene from Phalaenopsis hybrida orchid flowers. Russ. J. Plant Physiol. 53:223–30 [Google Scholar]
  53. Hansson BS. 53.  1995. Olfaction in Lepidoptera. Experientia 51:1003–27 [Google Scholar]
  54. Hieber AD, Mudalige-Jayawickrama RG, Kuehnle AR. 54.  2006. Color genes in the orchid Oncidium Gower Ramsey: identification, expression, and potential genetic instability in an interspecific cross. Planta 223:521–31 [Google Scholar]
  55. Hills HG, Williams NH, Dodson CH. 55.  1972. Floral fragrances and isolating mechanisms in the genus Catasetum (Orchidaceae). Biotropica 4:61–76 [Google Scholar]
  56. Hoballah ME, Gübitz T, Stuurman J, Broger L, Barone M et al.56.  2007. Single gene-mediated shift in pollinator attraction in Petunia. Plant Cell 19:779–90Case study showing how a single molecularly characterized gene can affect floral isolation. [Google Scholar]
  57. Hodges SA.57.  1997. Floral nectar spurs and diversification. Int. J. Plant Sci. 158:S81–S88 [Google Scholar]
  58. Hodges SA, Fulton M, Yang JY, Whitall JB. 58.  2003. Verne Grant and evolutionary studies of Aquilegia. New Phytol. 161:113–20 [Google Scholar]
  59. Hsiao Y-Y, Tsai W-C, Kuoh C-S, Huang H, Wang H-C et al.59.  2006. Comparison of transcripts in Phalaenopsis bellina and Phalaenopsis equestris (Orchidaceae) flowers to deduce monoterpene biosynthesis pathway. BMC Plant Biol. 6:14 [Google Scholar]
  60. Huber FK, Kaiser R, Sauter W, Schiestl FP. 60.  2005. Floral scent emission and pollinator attraction in two species of Gymnadenia (Orchidaceae). Oecologia 142:564–75 [Google Scholar]
  61. Jersakova J, Johnson SD, Kindlmann P. 61.  2006. Mechanisms and evolution of deceptive pollination in orchids. Biol. Rev. 81:219–35 [Google Scholar]
  62. Johnson SD. 62.  1996. Bird pollination in South African species of Satyrium (Orchidaceae). Plant Syst. Evol. 203:91–98 [Google Scholar]
  63. Johnson SD.63.  1996. Pollination, adaptation and speciation models in the cape flora of South Africa. Taxon 45:59–66 [Google Scholar]
  64. Johnson SD. 64.  1997. Insect pollination and floral mechanisms in South African species of Satyrium (Orchidaceae). Plant Syst. Evol. 204:195–206 [Google Scholar]
  65. Johnson SD.65.  2006. Pollinator driven speciation in plants. Ecology and Evolution of Flowers LD Harder, SCH Barrett 295–310 Oxford: Oxford Univ. Press [Google Scholar]
  66. Johnson SD, Brown M. 66.  2004. Transfer of pollinaria on birds’ feet: a new pollination system in orchids. Plant Syst. Evol. 244:181–88 [Google Scholar]
  67. Johnson SD, Steiner KE. 67.  1997. Long-tongued fly pollination and evolution of floral spur length in the Disa draconis complex (Orchiaceae). Evolution 51:45–53 [Google Scholar]
  68. Johnson SD, Steiner KE. 68.  2000. Generalization versus specialization in plant pollination systems. Trends Ecol. Evol. 15:140–43 [Google Scholar]
  69. Johnson SD, Steiner KE. 69.  2003. Specialized pollination systems in southern Africa. S. Afr. J. Sci. 99:345–48 [Google Scholar]
  70. Johnson SD, Steiner KE, Kaiser R. 70.  2005. Deceptive pollination in two subspecies of Disa spathulata (Orchidaceae) differing in morphology and floral fragrance. Plant Syst. Evol 255:87–98 [Google Scholar]
  71. Kaminaga Y, Schnepp J, Peel G, Kish CM, Ben-Nissan G et al.71.  2006. Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation. J. Biol. Chem. 281:23357–66Molecular characterization of the enzyme underlying a key floral scent compound important for ethological isolation. [Google Scholar]
  72. Kay KM.72.  2006. Reproductive isolation between two closely related hummingbird-pollinated neotropical gingers. Evolution 60:538–52 [Google Scholar]
  73. Kay KM, Voelckel C, Yang JY, Hufford KM, Kaska DD, Hodges SA. 73.  2006. Floral characters and species diversification. Ecology and Evolution of Flowers LD Harder, SCH Barrett 311–26 Oxford: Oxford Univ. Press [Google Scholar]
  74. Kephart S, Theiss K. 74.  2003. Pollinator-mediated isolation in sympatric milkweeds (Asclepias): Do floral morphology and insect behavior influence species boundaries?. New Phytol. 161:265–77 [Google Scholar]
  75. Knudsen JT, Tollsten L. 75.  1993. Trends in floral scent chemistry in pollination syndromes. floral scent composition in moth-pollinated taxa. Bot. J. Linn. Soc. 113:263–84 [Google Scholar]
  76. Koes R, Verweij W, Quattrocchio F. 76.  2005. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci. 10:236–42 [Google Scholar]
  77. Larsen MW, Peter C, Johnson SD, Olesen JM. 77.  2008. Comparative biology of pollination systems in the African-Malagasy genus Brownleea (Brownleeinae: Orchidaceae). Bot. J. Linn. Soc. 156:65–78 [Google Scholar]
  78. Lehnebach CA, Robertson AW. 78.  2004. Pollination ecology of four epiphytic orchids of New Zealand. Ann. Bot. 93:773–81 [Google Scholar]
  79. Levin DA. 79.  1985. Reproductive character displacement in Phlox. Evolution 39:1275–81 [Google Scholar]
  80. Lexer C, Widmer A. 80.  2008. The genic view of plant speciation—recent progress and emerging questions. Philos. Trans. R. Soc. London Sci. B 363:15063023–36 [Google Scholar]
  81. Lim SH, Liew CF, Lim CN, Lee YH, Goh CJ. 81.  1998. A simple and efficient method of DNA isolation from orchid species and hybrids. Biol. Plant. 41:313–16 [Google Scholar]
  82. Lynn SK, Cnaani J, Papaj DR. 82.  2005. Peak shift discrimination learning as a mechanism of signal evolution. Evolution 59:1300–5 [Google Scholar]
  83. Mant J, Peakall R, Schiestl FP. 83.  2005. Does selection on floral odor promote differentiation among populations and species of the sexually deceptive orchid genus Ophrys?. Evolution 59:1449–63 [Google Scholar]
  84. Martins DJ, Johnson SD. 84.  2007. Hawkmoth pollination of aerangoid orchids in Kenya, with special reference to nectar sugar concentration gradients in the floral spurs. Am. J. Bot. 94:650–59 [Google Scholar]
  85. Melendez-Ackerman E, Campbell DR, Waser NM. 85.  1997. Hummingbird behavior and mechanisms of selection on flower color in Ipomopsis. Ecology 78:2532–41 [Google Scholar]
  86. Mondragón-Palomino M, Theißen G. 86.  2008. MADS about the evolution of orchid flowers. Trends Plant Sci. 13:51–59 [Google Scholar]
  87. Mudalige-Jayawickrama RG, Champagne MM, Hieber AD, Kuehnle AR. 87.  2005. Cloning and characterization of two anthocyanin biosynthetic genes from Dendrobium orchid. J. Am. Soc. Hortic. Sci. 130:611–18 [Google Scholar]
  88. Muller A, Diener S, Schnyder S, Stutz K, Sedivy C, Dorn S. 88.  2006. Quantitative pollen requirements of solitary bees: implications for bee conservation and the evolution of bee-flower relationships. Biol. Conserv. 130:604–15 [Google Scholar]
  89. Nilsson LA. 89.  1983. Processes of isolation and introgressive interplay between Platanthera bifolia (L) Rich and Platanthera chlorantha (Custer) Reichb (Orchidaceae). Bot. J. Linn. Soc. 87:325–50 [Google Scholar]
  90. Nilsson LA, Jonsson L, Ralison L, Radrianjohany E. 90.  1987. Angraecoid orchids and hawkmoths in central Madagascar: specialized pollination systems and generalist foragers. Biotropica 19:310–18 [Google Scholar]
  91. Ollerton J.91.  2006. “Biological Barter”: patterns of specialization compared across different mutualisms. Plant-Pollinator Interactions: From Specialization to Generalization NM Waser, J Ollerton 411–35 Chicago: Univ. Chicago Press [Google Scholar]
  92. Pansarin ER, Bittrich V, Amaral MCE. 92.  2006. At daybreak: reproductive biology and isolating mechanisms of Cirrhaea dependens (Orchidaceae). Plant Biol. 8:494–502 [Google Scholar]
  93. Paulus HF, Gack C. 93.  1990. Pollination of Ophrys (Orchidaceae) in Cyprus. Plant Syst. Evol. 169:177–207 [Google Scholar]
  94. Paulus HF, Gack C. 94.  1990. Pollinators as prepollinating isolation factors: evolution and speciation in Ophrys (Orchidaceae). Isr. J. Bot. 39:43–79 [Google Scholar]
  95. Peakall R.95.  1989. A new technique for monitoring pollen flow in orchids. Oecologia 79:361–65 [Google Scholar]
  96. Peakall R. 96.  1990. Responses of male Zaspilothynnus trilobatus Turner wasps to females and the sexually deceptive orchid it pollinates. Funct. Ecol. 4:159–67 [Google Scholar]
  97. Peakall R, Beattie AJ. 97.  1996. Ecological and genetic consequences of pollination by sexual deception in the orchid Caladenia tentactulata. Evolution 50:2207–20 [Google Scholar]
  98. Plepys D, Ibarra F, Francke W, Lofstedt C. 98.  2002. Odour-mediated nectar foraging in the Silver Y Moth, Autographa gamma (Lepidoptera: Noctuidae): behavioural and electrophysiological responses to floral volatiles. Oikos 99:75–82Case study showing innate responses of moth to a single odor compound; single compound had similar attractiveness than whole bouquet. [Google Scholar]
  99. Pridgeon AM, Cribb PJ, Chase MW, Rasmussen FN. 99.  1999. Genera Orchidacearum. Vol. 1: General Introduction, Apostasioideae, Cypripedioideae Oxford: Oxford Univ. Press [Google Scholar]
  100. Pridgeon AM, Cribb PJ, Chase MW, Rasmussen FN. 100.  2001. Genera Orchidacearum. Vol. 2 (Pt. 1): Orchidoideae Oxford: Oxford Univ. Press [Google Scholar]
  101. Pridgeon AM, Cribb PJ, Chase MW, Rasmussen FN. 101.  2003. Genera Orchidacearum. Vol. 2 (Pt. 2): Orchidoideae Oxford: Oxford Univ. Press [Google Scholar]
  102. Pridgeon AM, Cribb PJ, Chase MW, Rasmussen FN. 102.  2005. Genera Orchidacearum. Vol. 4 (Pt. 1): Epidendroideae Oxford: Oxford Univ. Press [Google Scholar]
  103. Raguso RA, Willis MA. 103.  2002. Synergy between visual and olfactory cues in nectar feeding by naive hawkmoths, Manduca sexta. Anim. Behav. 64:685–95One of a series of studies, investigating the combined effects of floral signals on pollinator behavior. [Google Scholar]
  104. Ramsey J, Bradshaw HD, Schemske DW. 104.  2003. Components of reproductive isolation between the monkeyflowers Mimulus lewisii and M. cardinalis (Phrymaceae). Evolution 57:1520–34Quantification and relative importance of different mechanisms of reproductive isolation. [Google Scholar]
  105. Rieseberg LH, Church SA, Morjan CL. 105.  2004. Integration of populations and differentiation of species. New Phytol. 161:59–69 [Google Scholar]
  106. Rieseberg LH, Willis JH. 106.  2007. Plant speciation. Science 317:910–14 [Google Scholar]
  107. Riffel JA, Alarcon R, Abrell L, Davidowitz G, Bronstein JL, Hildebrand JG. 107.  2008. Behavioral consequences of innate preferences and olfactory learning in hawkmoth-flower interactions. Proc. Natl. Acad. Sci. USA 105:3404–9 [Google Scholar]
  108. Sakai S. 108.  2002. A review of brood-site pollination mutualism: plants providing breeding sites for their pollinators. J. Plant Res. 115:161–68 [Google Scholar]
  109. Salzmann CC, Nardella AM, Cozzolino S, Schiestl FP. 109.  2007. Variability in floral scent in rewarding and deceptive orchids: the signature of pollinator-imposed selection?. Ann. Bot. 100:757–65 [Google Scholar]
  110. Sargent RD, Otto SP. 110.  2006. The role of local species abundance in the evolution of pollinator attraction in flowering plants. Am. Nat. 167:67–80 [Google Scholar]
  111. Schemske DW, Bradshaw HD Jr. 111.  1999. Pollinator preference and the evolution of floral traits in monkeyflowers (Mimulus). Proc. Natl. Acad. Sci. USA 96:11910–15 [Google Scholar]
  112. Schiestl FP. 112.  2005. On the success of a swindle: pollination by deception in orchids. Naturwissenschaften 92:255–64 [Google Scholar]
  113. Schiestl FP, Ayasse M. 113.  2002. Do changes in floral odor cause speciation in sexually deceptive orchids?. Plant Syst. Evol. 234:111–19 [Google Scholar]
  114. Schiestl FP, Cozzolino S. 114.  2008. Evolution of sexual mimicry in the orchid subtribe orchidinae: the role of preadaptations in the attraction of male bees as pollinators. BMC Evol. Biol. 8:27 [Google Scholar]
  115. Schiestl FP, Peakall R, Mant JG. 115.  2004. Chemical communication in the sexually deceptive orchid genus Cryptostylis. Bot. J. Linn. Soc. 144:199–205 [Google Scholar]
  116. Schiestl FP, Peakall R, Mant JG, Ibarra F, Schulz C et al.116.  2003. The chemistry of sexual deception in an orchid-wasp pollination system. Science 302:437–38Study showing that a single odor compound attracts one specific pollinator in an Australian sexually deceptive orchid. [Google Scholar]
  117. Schlüter PM, Ruas PM, Kohl G, Ruas CF, Stuessy TF, Paulus HF. 117.  2007. Reproductive isolation in the Aegean Ophrys omegaifera complex (Orchidaceae). Plant Syst. Evol 267:105–19 [Google Scholar]
  118. Schlüter PM, Schiestl FP. 118.  2008. Molecular mechanisms of floral mimicry in orchids. Trends Plant Sci. 13:228–35 [Google Scholar]
  119. Scopece G, Musacchio A, Widmer A, Cozzolino S. 119.  2007. Patterns of reproductive isolation in Mediterranean deceptive orchids. Evolution 61:2623–42Study showing the relative importance of premating and postmating barriers in deceptive orchids. [Google Scholar]
  120. Serna L, Martin C. 120.  2006. Trichomes: Different regulatory networks lead to convergent structures. Trends Plant Sci. 11:274–80 [Google Scholar]
  121. Silva-Pereira V, Smidt EDC, Borba EL. 121.  2007. Isolation mechanisms between two sympatric Sophronitis (Orchidaceae) species endemic to Northeastern Brazil. Plant Syst. Evol. 269:171–82 [Google Scholar]
  122. Singer R, Cocucci AA. 122.  1997. Eye attached hemipollinaria in the hawkmoth and settling moth pollination of Habenaria (Orchidaceae): a study on functional morphology in five species from subtropical South America. Bot. Acta 110:328–37 [Google Scholar]
  123. Singer RB, Sazima M. 123.  2001. The pollination mechanism of three sympatric Prescottia (Orchidaceae: Prescottinae) species in southeastern Brazil. Ann. Bot. 88:999–1005 [Google Scholar]
  124. Smidt EC, Silva-Pereira V, Borba EL. 124.  2006. Reproductive biology of two Cattleya (Orchidaceae) species endemic to north-eastern Brazil. Plant Species Biol. 21:85–91 [Google Scholar]
  125. Smith GR, Snow GE. 125.  1976. Pollination ecology of Platanthera (Habenaria) ciliaris and Platanthera blephariglottis (Orchidaceae). Bot. Gaz. 137:133–40 [Google Scholar]
  126. Smithson A, Macnair MR. 126.  1997. Negative frequency-dependent selection by pollinators on artificial flowers without rewards. Evolution 51:715–23 [Google Scholar]
  127. Steiner KE. 127.  1989. The pollination of Disperis (Orchidaceae) by oil-collecting bees in southern Africa. Lindleyana 4:164–83 [Google Scholar]
  128. Steiner KE, Whitehead VB, Johnson SD. 128.  1994. Floral and pollinator divergence in two sexually deceptive South-African orchids. Am. J. Bot. 81:185–94 [Google Scholar]
  129. Stoutamire WP. 129.  1983. Wasp pollination species of Caladenia (Orchidaceae) in south-western Australia. Aust. J. Bot. 31:383–94 [Google Scholar]
  130. Su V, Hsu B-D. 130.  2003. Isolation and sequencing a genomic DNA encoding for phenylalanine ammonia-lyase from Phalaenopsis. DNA Seq. 14:442–49 [Google Scholar]
  131. Swofford DL. 131.  2002. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sunderland, MA: Sinauer [Google Scholar]
  132. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 132.  1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:4876–82 [Google Scholar]
  133. Tremblay RL.133.  1992. Trends in the pollination ecology of the Orchidaceae: evolution and systematics. Can. J. Bot. 70:642–50 [Google Scholar]
  134. van der Niet T, Johnson SD, Linder HP. 134.  2006. Macroevolutionary data suggest a role for reinforcement in pollination system shifts. Evolution 60:1596–601 [Google Scholar]
  135. Vareschi E. 135.  1971. Duftunterscheidung bei der Honigbiene—Einzelzell-Ableitungen und Verhaltensreaktionen. Z. Vergl. Physiol. 75:143–73 [Google Scholar]
  136. Vöth W. 136.  2000. Gymnadenia, Nigritella und ihre Bestäuber. J. Eur. Ochideen 32:547–73 [Google Scholar]
  137. Wälti MO, Mühlemann JK, Widmer A, Schiestl FP. 137.  2008. Floral odour and reproductive isolation in two species of Silene. J. Evol. Biol. 21:111–21Experimental study showing the contribution of a single floral odor compound to ethological isolation. [Google Scholar]
  138. Waser NM.138.  1998. Pollination, angiosperm speciation, and the nature of species boundaries. Oikos 82:198–201 [Google Scholar]
  139. Waser NM. 139.  2001. Pollinator behavior and plant speciation: looking beyond the “ethological isolation” paradigm. See Ref. 23 318–35
  140. Waser NM, Campbell DR. 140.  2004. Ecological speciation in flowering plants. Adaptive Speciation U Dieckmann, M Doebeli, MJ Metz, D Tautz 264–77 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  141. Waser NM, Chittka L, Price MV, Williams NM, Ollerton J. 141.  1996. Generalization in pollination systems, and why it matters. Ecology 77:1043–60 [Google Scholar]
  142. Wasserthal LT. 142.  1997. The pollinators of the Malagasy star orchids Angraecum sesquipedale, A. sororium and A. compactum and the evolution of extremely long spurs by pollinator shift. Bot. Acta 110:343–59 [Google Scholar]
  143. Weiss MR. 143.  2001. Vision and learning in some neglected pollinators: beetles, flies, moths, and butterflies. See Ref. 23 171–90
  144. Wells PH, Wells H. 144.  1985. Ethological isolation of plants. 2. Odor selection by honeybees. J. Apic. Res. 24:86–92 [Google Scholar]
  145. Whittall JB, Hodges SA. 145.  2007. Pollinator shifts drive increasingly long nectar spurs in columbine flowers. Nature 447:706–9 [Google Scholar]
  146. Wong BBM, Schiestl FP. 146.  2002. How an orchid harms its pollinator. Proc. R. Soc. London Sci. Ser. B 269:1529–32 [Google Scholar]
  147. Wu C-I. 147.  2001. The genic view of the process of speciation. J. Evol. Biol. 14:851–65 [Google Scholar]
  148. Zik M, Irish VF. 148.  2003. Global identification of target genes regulated by APETALA3 and PISTILLATA floral homeotic gene action. Plant Cell 15:207–22 [Google Scholar]
/content/journals/10.1146/annurev.ento.54.110807.090603
Loading
/content/journals/10.1146/annurev.ento.54.110807.090603
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error