1932

Abstract

Influenza viruses continue to pose a major global public health problem. There is a need to better understand the pathogenicity and transmission of pandemic influenza viruses so that we may develop improved methods for their prevention and control. Reconstruction of the 1918 virus and studies elucidating the exceptional virulence and transmissibility of the virus are providing exciting new insights into this devastating pandemic strain. The primary approach has been to reconstruct and analyze recombinant viruses, in which genes of the 1918 virus are replaced with genes of contemporary influenza viruses of lesser virulence. This review highlights the current status of the field and discusses the molecular determinants of the 1918 pandemic virus that may have contributed to its virulence and spread. Identifying the exact genes responsible for the high virulence of the 1918 virus will be an important step toward understanding virulent influenza strains and will allow the world to better prepare for and respond to future influenza pandemics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.micro.091208.073359
2009-10-13
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/63/1/annurev.micro.091208.073359.html?itemId=/content/journals/10.1146/annurev.micro.091208.073359&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  2004. WHO Manual on Animal Influenza Diagnosis and Surveillance Geneva: WHO
  2. 2.  2008. Online report: toward a unified nomenclature system for highly pathogenic avian influenza virus (H5N1). Emerg. Infect. Dis. 14:e1 [Google Scholar]
  3. 3.  2009. Cumulative number of confirmed human cases of avian influenza A/(H5N1) reported to WHO. Geneva: WHO [Google Scholar]
  4. Alford RH, Kasel JA, Gerone PJ, Knight V. 4.  1966. Human influenza resulting from aerosol inhalation. Proc. Soc. Exp. Biol. Med. 122:800–4 [Google Scholar]
  5. Andrewes CH, Glover RE. 5.  1941. Spread of infection from the respiratory tract of the ferret. I. Transmission of influenza A virus. Br. J. Exp. Pathol. 22:91–97 [Google Scholar]
  6. Andrews CH, Laidlaw PP, Smith W. 6.  1935. Influenza: observations on the recovery of virus from man and on the antibody content of human sera. Br. J. Exp. Pathol. 17:579–81 [Google Scholar]
  7. Basler CF, Reid AH, Dybing JK, Janczewski TA, Fanning TG. 7.  et al. 2001. Sequence of the 1918 pandemic influenza virus nonstructural gene (NS) segment and characterization of recombinant viruses bearing the 1918 NS genes. Proc. Natl. Acad. Sci. USA 98:2746–51Demonstrated that viruses possessing the 1918 NS gene segment were attenuated in mice. [Google Scholar]
  8. Bean B, Moore BM, Sterner B, Peterson LR, Gerding DN, Balfour HH Jr. 8.  1982. Survival of influenza viruses on environmental surfaces. J. Infect. Dis. 146:47–51 [Google Scholar]
  9. Bergmann M, Garcia-Sastre A, Carnero E, Pehamberger H, Wolff K. 9.  et al. 2000. Influenza virus NS1 protein counteracts PKR-mediated inhibition of replication. J. Virol. 74:6203–6 [Google Scholar]
  10. Biswas SK, Nayak DP. 10.  1996. Influenza virus polymerase basic protein 1 interacts with influenza virus polymerase basic protein 2 at multiple sites. J. Virol. 70:6716–22 [Google Scholar]
  11. Chandrasekaran A, Srinivasan A, Raman R, Viswanathan K, Raguram S. 11.  et al. 2008. Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin. Nat. Biotechnol. 26:107–13Identified that glycan topology, as well as glycan composition, affects receptor binding of influenza viruses. [Google Scholar]
  12. Chanturiya AN, Basanez G, Schubert U, Henklein P, Yewdell JW, Zimmerberg J. 12.  2004. PB1-F2, an influenza A virus-encoded proapoptotic mitochondrial protein, creates variably sized pores in planar lipid membranes. J. Virol. 78:6304–12 [Google Scholar]
  13. Chen W, Calvo PA, Malide D, Gibbs J, Schubert U. 13.  et al. 2001. A novel influenza A virus mitochondrial protein that induces cell death. Nat. Med. 7:1306–12Documents the discovery of PB1-F2 protein, generated by an alternative reading frame of the influenza PB1 gene. [Google Scholar]
  14. Claas EC, Osterhaus AD, van Beek R, De Jong JC, Rimmelzwaan GF. 14.  et al. 1998. Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet 351:472–77 [Google Scholar]
  15. Conenello GM, Zamarin D, Perrone LA, Tumpey T, Palese P. 15.  2007. A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence. PLoS Pathog. 3:1414–21 [Google Scholar]
  16. Conn CA, McClellan JL, Maassab HF, Smitka CW, Majde JA, Kluger MJ. 16.  1995. Cytokines and the acute phase response to influenza virus in mice. Am. J. Physiol. 268:R78–84 [Google Scholar]
  17. Connor RJ, Kawaoka Y, Webster RG, Paulson JC. 17.  1994. Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology 205:17–23 [Google Scholar]
  18. de Jong JC, Claas EC, Osterhaus AD, Webster RG, Lim WL. 18.  1997. A pandemic warning?. Nature 389:554 [Google Scholar]
  19. de Jong MD, Simmons CP, Thanh TT, Hien VM, Smith GJ. 19.  et al. 2006. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat. Med. 12:1203–7 [Google Scholar]
  20. Dong B, Silverman RH. 20.  1995. 2-5A-dependent RNase molecules dimerize during activation by 2-5A. J. Biol. Chem. 270:4133–37 [Google Scholar]
  21. Fodor E, Devenish L, Engelhardt OG, Palese P, Brownlee GG, Garcia-Sastre A. 21.  1999. Rescue of influenza A virus from recombinant DNA. J. Virol. 73:9679–82Describes the plasmid-based reverse genetics system used to rescue influenza A viruses in cell culture. [Google Scholar]
  22. Fouchier RA, Munster V, Wallensten A, Bestebroer TM, Herfst S. 22.  et al. 2005. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J. Virol. 79:2814–22 [Google Scholar]
  23. Gambaryan AS, Tuzikov AB, Piskarev VE, Yamnikova SS, Lvov DK. 23.  et al. 1997. Specification of receptor-binding phenotypes of influenza virus isolates from different hosts using synthetic sialylglycopolymers: Nonegg-adapted human H1 and H3 influenza A and influenza B viruses share a common high binding affinity for 6′-sialyl(N-acetyllactosamine). Virology 232:345–50 [Google Scholar]
  24. Garcia-Sastre A. 24.  2001. Inhibition of interferon-mediated antiviral responses by influenza A viruses and other negative-strand RNA viruses. Virology 279:375–84 [Google Scholar]
  25. Garcia-Sastre A, Durbin RK, Zheng H, Palese P, Gertner R. 25.  et al. 1998. The role of interferon in influenza virus tissue tropism. J. Virol. 72:8550–58 [Google Scholar]
  26. Geiss GK, Salvatore M, Tumpey TM, Carter VS, Wang X. 26.  et al. 2002. Cellular transcriptional profiling in influenza A virus-infected lung epithelial cells: the role of the nonstructural NS1 protein in the evasion of the host innate defense and its potential contribution to pandemic influenza. Proc. Natl. Acad. Sci. USA 99:10736–41 [Google Scholar]
  27. Ghanem A, Mayer D, Chase G, Tegge W, Frank R. 27.  et al. 2007. Peptide-mediated interference with influenza A virus polymerase. J. Virol. 81:7801–4 [Google Scholar]
  28. Gibbs MJ, Gibbs AJ. 28.  2006. Molecular virology: Was the 1918 pandemic caused by a bird flu?. Nature 440:E8–10 [Google Scholar]
  29. Glaser L, Stevens J, Zamarin D, Wilson IA, Garcia-Sastre A. 29.  et al. 2005. A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity. J. Virol. 79:11533–36 [Google Scholar]
  30. Glezen WP. 30.  1996. Emerging infections: pandemic influenza. Epidemiol. Rev. 18:64–76 [Google Scholar]
  31. Gonzalez S, Zurcher T, Ortin J. 31.  1996. Identification of two separate domains in the influenza virus PB1 protein involved in the interaction with the PB2 and PA subunits: a model for the viral RNA polymerase structure. Nucleic Acids Res. 24:4456–63 [Google Scholar]
  32. Goto H, Kawaoka Y. 32.  1998. A novel mechanism for the acquisition of virulence by a human influenza A virus. Proc. Natl. Acad. Sci. USA 95:10224–28 [Google Scholar]
  33. Goto H, Wells K, Takada A, Kawaoka Y. 33.  2001. Plasminogen-binding activity of neuraminidase determines the pathogenicity of influenza A virus. J. Virol. 75:9297–301 [Google Scholar]
  34. Hartley CA, Reading PC, Ward AC, Anders EM. 34.  1997. Changes in the hemagglutinin molecule of influenza type A (H3N2) virus associated with increased virulence for mice. Arch. Virol. 142:75–88 [Google Scholar]
  35. Hatada E, Saito S, Fukuda R. 35.  1999. Mutant influenza viruses with a defective NS1 protein cannot block the activation of PKR in infected cells. J. Virol. 73:2425–33 [Google Scholar]
  36. Hatta M, Hatta Y, Kim JH, Watanabe S, Shinya K. 36.  et al. 2007. Growth of H5N1 influenza A viruses in the upper respiratory tracts of mice. PLoS Pathog. 3:1374–79 [Google Scholar]
  37. Hayden FG, Fritz R, Lobo MC, Alvord W, Strober W, Straus SE. 37.  1998. Local and systemic cytokine responses during experimental human influenza A virus infection. Relation to symptom formation and host defense. J. Clin. Investig. 101:643–49 [Google Scholar]
  38. Ibricevic A, Pekosz A, Walter MJ, Newby C, Battaile JT. 38.  et al. 2006. Influenza virus receptor specificity and cell tropism in mouse and human airway epithelial cells. J. Virol. 80:7469–80 [Google Scholar]
  39. Jaeschke H, Farhood A, Bautista AP, Spolarics Z, Spitzer JJ. 39.  1993. Complement activates Kupffer cells and neutrophils during reperfusion after hepatic ischemia. Am. J. Physiol. 264:G801–9 [Google Scholar]
  40. Johnson NP, Mueller J. 40.  2002. Updating the accounts: global mortality of the 1918–1920 “Spanish” influenza pandemic. Bull. Hist. Med. 76:105–15 [Google Scholar]
  41. Kandun IN, Wibisono H, Sedyaningsih ER, Yusharmen, Hadisoedarsuno W. 41.  et al. 2006. Three Indonesian clusters of H5N1 virus infection in 2005. N. Engl. J. Med. 355:2186–94 [Google Scholar]
  42. Kash JC, Tumpey TM, Proll SC, Carter V, Perwitasari O. 42.  et al. 2006. Genomic analysis of increased host immune and cell death responses induced by 1918 influenza virus. Nature 443:578–81 [Google Scholar]
  43. Katz JM, Lu X, Tumpey TM, Smith CB, Shaw MW, Subbarao K. 43.  2000. Molecular correlates of influenza A H5N1 virus pathogenesis in mice. J. Virol. 74:10807–10 [Google Scholar]
  44. Kaverin NV, Finskaya NN, Rudneva IA, Gitelman AK, Kharitonenkov IG, Smirnov YA. 44.  1989. Studies on the genetic basis of human influenza A virus adaptation to mice: degrees of virulence of reassortants with defined genetic content. Arch. Virol. 105:29–37 [Google Scholar]
  45. Kawaoka Y, Krauss S, Webster RG. 45.  1989. Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. J. Virol. 63:4603–8 [Google Scholar]
  46. Keleta L, Ibricevic A, Bovin NV, Brody SL, Brown EG. 46.  2008. Experimental evolution of human influenza virus H3 hemagglutinin in the mouse lung identifies adaptive regions in HA1 and HA2. J. Virol. 82:11599–608 [Google Scholar]
  47. Kobasa D, Jones SM, Shinya K, Kash JC, Copps J. 47.  et al. 2007. Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature 445:319–23 [Google Scholar]
  48. Kobasa D, Takada A, Shinya K, Hatta M, Halfmann P. 48.  et al. 2004. Enhanced virulence of influenza A viruses with the haemagglutinin of the 1918 pandemic virus. Nature 431:703–7 [Google Scholar]
  49. Lamb RA, Takeda M. 49.  2001. Death by influenza virus protein. Nat. Med. 7:1286–88 [Google Scholar]
  50. LeCount ER. 50.  1919. The pathologic anatomy of influenzal bronchopneumonia. JAMA 72:650–52 [Google Scholar]
  51. Li S, Schulman J, Itamura S, Palese P. 51.  1993. Glycosylation of neuraminidase determines the neurovirulence of influenza A/WSN/33 virus. J. Virol. 67:6667–73 [Google Scholar]
  52. Lidwell OM. 52.  1974. Aerial dispersal of micro-organisms from the human respiratory tract. Soc. Appl. Bacteriol. Symp. Ser. 3:135–54 [Google Scholar]
  53. Lowen AC, Mubareka S, Steel J, Palese P. 53.  2007. Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathog. 3:1470–76 [Google Scholar]
  54. Lowen AC, Mubareka S, Tumpey TM, Garcia-Sastre A, Palese P. 54.  2006. The guinea pig as a transmission model for human influenza viruses. Proc. Natl. Acad. Sci. USA 103:9988–92 [Google Scholar]
  55. Lowen AC, Steel J, Mubareka S, Palese P. 55.  2008. High temperature (30°C) blocks aerosol but not contact transmission of influenza virus. J. Virol. 82:5650–52 [Google Scholar]
  56. Lu Y, Wambach M, Katze MG, Krug RM. 56.  1995. Binding of the influenza virus NS1 protein to double-stranded RNA inhibits the activation of the protein kinase that phosphorylates the elF-2 translation initiation factor. Virology 214:222–28 [Google Scholar]
  57. Ludwig S, Pleschka S, Wolff T. 57.  1999. A fatal relationship—influenza virus interactions with the host cell. Viral. Immunol. 12:175–96 [Google Scholar]
  58. Maines TR, Chen LM, Matsuoka Y, Chen H, Rowe T. 58.  et al. 2006. Lack of transmission of H5N1 avian-human reassortant influenza viruses in a ferret model. Proc. Natl. Acad. Sci. USA 103:12121–26 [Google Scholar]
  59. Massin P, Van Der Werf S, Naffakh N. 59.  2001. Residue 627 of PB2 is a determinant of cold sensitivity in RNA replication of avian influenza viruses. J. Virol. 75:5398–404 [Google Scholar]
  60. Matrosovich M, Zhou N, Kawaoka Y, Webster R. 60.  1999. The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J. Virol. 73:1146–55 [Google Scholar]
  61. Matrosovich MN, Gambaryan AS, Teneberg S, Piskarev VE, Yamnikova SS. 61.  et al. 1997. Avian influenza A viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site. Virology 233:224–34 [Google Scholar]
  62. Matrosovich MN, Matrosovich TY, Gray T, Roberts NA, Klenk HD. 62.  2004. Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc. Natl. Acad. Sci. USA 101:4620–24 [Google Scholar]
  63. McAuley JL, Hornung F, Boyd KL, Smith AM, McKeon R. 63.  et al. 2007. Expression of the 1918 influenza A virus PB1-F2 enhances the pathogenesis of viral and secondary bacterial pneumonia. Cell Host Microbes 2:240–49 [Google Scholar]
  64. Min JY, Krug RM. 64.  2006. The primary function of RNA binding by the influenza A virus NS1 protein in infected cells: inhibiting the 2′-5′ oligo (A) synthetase/RNase L pathway. Proc. Natl. Acad. Sci. USA 103:7100–5 [Google Scholar]
  65. Mitnaul LJ, Matrosovich MN, Castrucci MR, Tuzikov AB, Bovin NV. 65.  et al. 2000. Balanced hemagglutinin and neuraminidase activities are critical for efficient replication of influenza A virus. J. Virol. 74:6015–20 [Google Scholar]
  66. Moss B, Keith JM, Gershowitz A, Ritchey MB, Palese P. 66.  1978. Common sequence at the 5′ ends of the segmented RNA genomes of influenza A and B viruses. J. Virol. 25:312–18 [Google Scholar]
  67. Munster VJ, de Wit E, van Riel D, Beyer WE, Rimmelzwaan GF. 67.  et al. 2007. The molecular basis of the pathogenicity of the Dutch highly pathogenic human influenza A H7N7 viruses. J. Infect. Dis. 196:258–65 [Google Scholar]
  68. Naeve CW, Hinshaw VS, Webster RG. 68.  1984. Mutations in the hemagglutinin receptor-binding site can change the biological properties of an influenza virus. J. Virol. 51:567–69 [Google Scholar]
  69. Naffakh N, Massin P, Escriou N, Crescenzo-Chaigne B, Van Der Werf S. 69.  2000. Genetic analysis of the compatibility between polymerase proteins from human and avian strains of influenza A viruses. J. Gen. Virol. 81:1283–91 [Google Scholar]
  70. 70. OIE 1996. Highly pathogenic avian influenza (fowl plague). Manual of Standards for Diagnostic Tests and Vaccines GA Cullen, S Linnance , pp. 155–60 Paris: OIE, 3rd. ed. [Google Scholar]
  71. Opitz B, Rejaibi A, Dauber B, Eckhard J, Vinzing M. 71.  et al. 2007. IFNbeta induction by influenza A virus is mediated by RIG-I which is regulated by the viral NS1 protein. Cell Microbiol. 9:930–38 [Google Scholar]
  72. Palese P, Shaw ML. 72.  2006. Orthomyxoviridae: the viruses and their replication. Field's Virology DM Knipe 1648–89 Philadelphia: Lippincott Williams & Wilkins [Google Scholar]
  73. Palese P, Tobita K, Ueda M, Compans RW. 73.  1974. Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology 61:397–410 [Google Scholar]
  74. Pappas C, Aguilar PV, Basler CF, Solorzano A, Zeng H. 74.  et al. 2008. Single gene reassortants identify a critical role for PB1, HA, and NA in the high virulence of the 1918 pandemic influenza virus. Proc. Natl. Acad. Sci. USA 105:3064–69Testing of single-gene H1N1 reassortant 1918 viruses identified crucial role of HA, NA, and PB1 segments in virus replication and virulence. [Google Scholar]
  75. Perez DR, Donis RO. 75.  2001. Functional analysis of PA binding by influenza a virus PB1: effects on polymerase activity and viral infectivity. J. Virol. 75:8127–36 [Google Scholar]
  76. Reid AH, Fanning TG, Hultin JV, Taubenberger JK. 76.  1999. Origin and evolution of the 1918 “Spanish” influenza virus hemagglutinin gene. Proc. Natl. Acad. Sci. USA 96:1651–56 [Google Scholar]
  77. Reid AH, Fanning TG, Janczewski TA, Lourens RM, Taubenberger JK. 77.  2004. Novel origin of the 1918 pandemic influenza virus nucleoprotein gene. J. Virol. 78:12462–70 [Google Scholar]
  78. Reid AH, Fanning TG, Janczewski TA, McCall S, Taubenberger JK. 78.  2002. Characterization of the 1918 “Spanish” influenza virus matrix gene segment. J. Virol. 76:10717–23 [Google Scholar]
  79. Reid AH, Fanning TG, Janczewski TA, Taubenberger JK. 79.  2000. Characterization of the 1918 “Spanish” influenza virus neuraminidase gene. Proc. Natl. Acad. Sci. USA 97:6785–90 [Google Scholar]
  80. Rogers GN, D'Souza BL. 80.  1989. Receptor binding properties of human and animal H1 influenza virus isolates. Virology 173:317–22 [Google Scholar]
  81. Salomon R, Franks J, Govorkova EA, Ilyushina NA, Yen HL. 81.  et al. 2006. The polymerase complex genes contribute to the high virulence of the human H5N1 influenza virus isolate A/Vietnam/1203/04. J. Exp. Med. 203:689–97 [Google Scholar]
  82. Shinya K, Ebina M, Yamada S, Ono M, Kasai N, Kawaoka Y. 82.  2006. Avian flu: influenza virus receptors in the human airway. Nature 440:435–36 [Google Scholar]
  83. Shinya K, Hamm S, Hatta M, Ito H, Ito T, Kawaoka Y. 83.  2004. PB2 amino acid at position 627 affects replicative efficiency, but not cell tropism, of Hong Kong H5N1 influenza A viruses in mice. Virology 320:258–66 [Google Scholar]
  84. Shinya K, Watanabe S, Ito T, Kasai N, Kawaoka Y. 84.  2007. Adaptation of an H7N7 equine influenza A virus in mice. J. Gen. Virol. 88:547–53 [Google Scholar]
  85. Shope RE. 85.  1936. The incidence of neutralizing antibodies for severe influenza virus in the sera of human beings of different ages. J. Exp. Med. 63:655–59 [Google Scholar]
  86. Simonet WS, Hughes TM, Nguyen HQ, Trebasky LD, Danilenko DM, Medlock ES. 86.  1994. Long-term impaired neutrophil migration in mice overexpressing human interleukin-8. J. Clin. Investig. 94:1310–19 [Google Scholar]
  87. Simonsen L, Clarke MJ, Schonberger LB, Arden NH, Cox NJ, Fukuda K. 87.  1998. Pandemic versus epidemic influenza mortality: a pattern of changing age distribution. J. Infect. Dis. 178:53–60 [Google Scholar]
  88. Skehel JJ, Wiley DC. 88.  2000. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu. Rev. Biochem. 69:531–69 [Google Scholar]
  89. Smeenk CA, Wright KE, Burns BF, Thaker AJ, Brown EG. 89.  1996. Mutations in the hemagglutinin and matrix genes of a virulent influenza virus variant, A/FM/1/47-MA, control different stages in pathogenesis. Virus Res. 44:79–95 [Google Scholar]
  90. Srinivasan A, Viswanathan K, Raman R, Chandrasekaran A, Raguram S. 90.  et al. 2008. Quantitative biochemical rationale for differences in transmissibility of 1918 pandemic influenza A viruses. Proc. Natl. Acad. Sci. USA 105:2800–5 [Google Scholar]
  91. Steel J, Lowen AC, Mubareka S, Palese P. 91.  2009. Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N. PLoS Pathog. 5:e1000252 [Google Scholar]
  92. Stevens J, Blixt O, Tumpey TM, Taubenberger JK, Paulson JC, Wilson IA. 92.  2006. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312:404–10 [Google Scholar]
  93. Subbarao EK, London W, Murphy BR. 93.  1993. A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J. Virol. 67:1761–64 [Google Scholar]
  94. Subbarao K, Klimov A, Katz J, Regnery H, Lim W. 94.  et al. 1998. Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science 279:393–96Reported the first documented influenza outbreak caused by a wholly avian virus directly transmitting to humans from infected poultry and causing death. [Google Scholar]
  95. Swayne DE, Pantin-Jackwood M. 95.  2006. Pathogenicity of avian influenza viruses in poultry. Dev. Biol. 124:61–67 [Google Scholar]
  96. Swayne DE, Suarez DL. 96.  2000. Highly pathogenic avian influenza. Rev. Sci. Tech. 19:463–82 [Google Scholar]
  97. Tan SL, Katze MG. 97.  1998. Biochemical and genetic evidence for complex formation between the influenza A virus NS1 protein and the interferon-induced PKR protein kinase. J. Interferon Cytokine Res. 18:757–66 [Google Scholar]
  98. Taubenberger JK, Reid AH, Krafft AE, Bijwaard KE, Fanning TG. 98.  1997. Initial genetic characterization of the 1918 “Spanish” influenza virus. Science 275:1793–96Describes the initial isolation and phylogenetic analysis of multiple genes of 1918 virus sequences, which are consistent with an H1N1 influenza A virus belonging to the subgroup of strains that infects humans. [Google Scholar]
  99. Taubenberger JK, Reid AH, Lourens RM, Wang R, Jin G, Fanning TG. 99.  2005. Characterization of the 1918 influenza virus polymerase genes. Nature 437:889–93 [Google Scholar]
  100. Thompson WW, Shay DK, Weintraub E, Brammer L, Bridges CB. 100.  et al. 2004. Influenza-associated hospitalizations in the United States. JAMA 292:1333–40 [Google Scholar]
  101. Thompson WW, Shay DK, Weintraub E, Brammer L, Cox N. 101.  et al. 2003. Mortality associated with influenza and respiratory syncytial virus in the United States. JAMA 289:179–86 [Google Scholar]
  102. Tran TH, Nguyen TL, Nguyen TD, Luong TS, Pham PM. 102.  et al. 2004. Avian influenza A (H5N1) in 10 patients in Vietnam. N. Engl. J. Med. 350:1179–88 [Google Scholar]
  103. Tumpey TM, Basler CF, Aguilar PV, Zeng H, Solorzano A. 103.  et al. 2005. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310:77–80First report characterizing the fully reconstructed 1918 virus, including mammalian challenge data. [Google Scholar]
/content/journals/10.1146/annurev.micro.091208.073359
Loading
/content/journals/10.1146/annurev.micro.091208.073359
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error