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Abstract

Natural variants of crops are generated from wild progenitor plants under
both natural and human selection. Diverse crops that are able to adapt to vari-
ous environmental conditions are valuable resources for crop improvements
to meet the food demands of the increasing human population. With the
completion of reference genome sequences, the advent of high-throughput
sequencing technology now enables rapid and accurate resequencing of a
large number of crop genomes to detect the genetic basis of phenotypic
variations in crops. Comprehensive maps of genome variations facilitate
genome-wide association studies of complex traits and functional investi-
gations of evolutionary changes in crops. These advances will greatly accel-
erate studies on crop designs via genomics-assisted breeding. Here, we first
discuss crop genome studies and describe the development of sequencing-
based genotyping and genome-wide association studies in crops. We then
review sequencing-based crop domestication studies and offer a perspective
on genomics-driven crop designs.
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INTRODUCTION

Natural variants in crop plants resulted mainly from spontaneous mutations in their wild progeni-
tors. Since the beginnings of agriculture 10,000 years ago, a huge number of diverse crops adapted
to various environmental conditions have been cultivated. Crop domestication and breeding have
had a profound influence on the genetic diversity present in modern crops. Understanding the ge-
netic basis of phenotypic variation and the domestication processes in crops can help us efficiently
utilize these diverse genetic resources for crop improvement.

To meet the food demands of billions of people, it is critical to improve crop productivity
through efficient breeding (27, 108, 133). The use of naturally occurring alleles has greatly in-
creased grain yield. Through the use of huge germplasm resources and genetic tools such as
genome sequences, genetic populations, haplotype map data sets, genome-wide association stud-
ies (GWAS), and transformation techniques, crop researchers are now able to extensively and
rapidly mine natural variation and associate phenotypic variation with the underlying sequence
variants. Recently, the advent of second-generation sequencing has facilitated the discovery and
use of natural variation in crop design and genome-wide selection (8, 30).

ADVANCES IN CROP GENOME SEQUENCING

The reference genome sequences of crops are the basis of crop genetic studies. They are also
important for rapidly investigating genetic variations in natural variants of crops. Since the rice
genome was completely sequenced approximately 10 years ago (22, 28, 46, 89, 94, 130), the refer-
ence genome sequences of several other major crops—including barley, millet, maize, sorghum,
potato, tomato, and Brassica rapa—have been reported (7, 37, 48, 70, 83, 87, 96, 97, 110, 111, 116,
132; for a review, see 8). The reference sequences can be determined through several strategies:
the clone-by-clone (e.g., bacterial artificial chromosome) approach (as was done, e.g., in rice and
maize), the whole-genome shotgun approach (as was done, e.g., in sorghum and foxtail millet),
or a combination of the techniques (as was done, e.g., in tomato and barley). Clone-by-clone
sequencing provides a way to achieve high-quality sequence assemblies for genomes of great im-
portance. Because de novo assembly from whole-genome shotgun sequencing often results in a
large number of sequence gaps, especially when using second-generation sequencing technology,
it is necessary to supplement it with other information to construct long superscaffolds. These
supplements may include the generation of long-insert paired-end reads, physical maps from bac-
terial artificial chromosome–end sequences (or fingerprinting), and high-density genetic maps.
The quality of the reference sequence, which greatly affects subsequent research, depends on both
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the sequencing strategy and the genome of the crop to be sequenced: Different crop species have
large variations in genome size, proportion of repetitive sequences, and ploidy level (24). Gener-
ating a high-quality assembly for the large, complex crop genomes of species such as bread wheat
(Triticum aestivum) remains a significant challenge (10, 51, 65).

Resequencing a large number of diverse varieties, facilitated by second-generation sequenc-
ing technologies and new computational biological approaches, is feasible after the release of a
crop’s reference genome, which is then used to characterize genome-wide variation for genetic
mapping and evolutionary studies (15, 29, 41, 52, 59, 60, 127). High-throughput resequenc-
ing has rapidly expanded our knowledge of genetic variations in crops. Sequencing of six elite
maize inbred lines identified more than 1.2 million single-nucleotide polymorphisms (SNPs)
and more than 30,000 insertions or deletions (indels) and also uncovered hundreds of presence/
absence variations of intact expressed genes (59). Among various types of sequence variants, SNPs
are the most abundant (an order of magnitude greater in number than all other polymorphisms)
and are also easy to identify technically (Figure 1), which is why only SNP markers have been
widely used in most high-throughput genotyping analyses (21, 72). In second-generation sequenc-
ing, small indels (typically <6 base pairs) are usually discovered through direct alignment, and
large structural variations are usually discovered by read depth, often with a relatively high level
of false negatives. To capture a full catalog of sequence variants in a crop, it is best to deep se-
quence several representative varieties and then perform whole-genome de novo assembly and
comparative genome analysis (25).

HIGH-THROUGHPUT GENOTYPING

Genome variations in crops can be defined by genotyping each individual cultivar. The genotype
is an individual’s full hereditary information, often defined to be the allele pattern at multiple
molecular markers. An individual’s phenotype is the observable characteristics that are influenced
by both the genotype and the environment. Classical genetics identifies the genotype (generally
adjacent to the causal variant) that is responsible for a phenotype, through linkage mapping in a
recombinant population or association mapping in a natural population.

There are many types of molecular markers corresponding to different genotyping approaches.
The use of polymerase chain reaction (PCR)–based markers followed by allele scoring on agarose
gel laid the foundation for quantitative trait locus (QTL) mapping and gene cloning in recent
years. However, the genotyping processes that are based on PCR markers are quite laborious,
expensive, and time consuming when high-density genotyping is needed for a large number of
individuals. The advent of high-throughput genotyping technology, coupled with the availability
of reference genome sequences for multiple major crops, has greatly accelerated and facilitated
genotyping procedures.

Here, we summarize five high-throughput genotyping approaches (Table 1). The first use of
high-throughput genotyping was a microarray technology that detects SNPs by hybridizing DNA
to oligonucleotides spotted on the chips. This method, known as microarray-based genotyping,
enables direct scanning of allelic variation across the genome, covering hundreds to thousands
of SNPs in a short time (17, 102, 121). Once a comprehensive SNP data set is available for
a species, a well-designed microarray can be produced; generally, the technology is then cost
efficient and the process relatively convenient. Nearly all GWAS in human genetics have used
microarray technology, which can scan the human genome at 0.5–1 million SNPs. Microarray-
based genotyping has been applied in crops such as rice and maize (26, 61, 72, 136). Diversity
arrays technology (DArT) mapping, which is also based on microarray hybridizations, has been
used in many crops, such as barley (119).
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Figure 1
Genomic variation in a natural population, using real data from foxtail millet. (a) The proportion of three types of sequence variants in
the genomes. (b) The proportion of sequence variants with different functional effects. (c) Allele frequency spectrum of all variants.
(d ) Haplotype display in a local genomic region in 400 foxtail millet varieties. Each column represents a haplotype from an inbred
foxtail millet line, and each row is a single-nucleotide polymorphism (SNP) site. Dark and light red represent the major and minor
alleles, respectively, at each SNP site.

The advent of second-generation sequencing technology hastened a methodological leap for-
ward: the high-throughput sequencing-based genotyping method (99). For genotyping of recom-
binant populations, a method that utilizes low-coverage whole-genome resequencing data was
developed (38, 137). The method was first applied in a recombinant inbred line (RIL) population
that was generated from a cross between the Oryza sativa ssp. japonica Nipponbare and Oryza sativa
ssp. indica 93-11 varieties (38). The genomic DNA of each line in the population was sequenced
with 0.02× coverage. SNPs were identified between two parental lines, and genotype calling
was based on identification of adjacent SNPs using the sliding window approach, which resulted
in an ultradense genotype map. A total of 49 QTLs for 14 agronomic traits were identified at
high resolution using the high-density genotype map (114). Among them, 5 QTLs of large effect
were located in small genomic regions, and strong candidate genes were found in the intervals.
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Table 1 Five high-throughput genotyping methods

Microarray-based
genotyping

Sequencing-based
genotyping

Genotyping by
sequencing

RNA-seq-based
genotyping

Exon-sequencing-
based

genotyping
Preliminary
requirement

Comprehensive
SNPs available

None A suitable
restriction enzyme

None Exon array
developed

Density Alterable Alterable Modest Modest Modest
Cost Alterable Alterable Low High High
Experimental
workload

Low Medium Medium High High

Marker
distribution

Well distributed Well distributed Not well distributed Not well distributed Not well distributed

Application Most species Most species Species with a large
genome size

Species with a large
genome size

Species with a large
genome size

Additional
uses

None Identifying novel
mutation variants

None Identifying novel
mutation variants
and eQTL analysis

Identifying novel
mutation variants

Abbreviations: eQTL, expression quantitative trait locus; SNP, single-nucleotide polymorphism.

This method now extends to different types of mapping populations in crops, including nearly
isogenic lines, chromosome segment substitution lines, and F2 populations (114, 124, 126, 129,
141). Here, we refer to this whole-genome sequencing-based genotyping (via low-pass multiplex
resequencing) as sequencing-based genotyping.

The low-coverage whole-genome resequencing approach was also used in the genotyping of
natural populations through completely different computation methods. In the construction of the
haplotype maps in rice and foxtail millet, each variety was sequenced with low genome coverage,
resulting in numerous missing genotype calls owing to low-fold sequencing. Data imputation—the
process of replacing missing data with inferred values according to local linkage disequilibrium
(LD)—can be used to deal with such population-scale genotype data sets. For this, a k nearest
neighbor–based algorithm that explores local haplotype similarity to infer the missing calls was
developed, and applications in both rice and foxtail millet showed high accuracy (41, 50). Many
imputation pipelines are now available with different features, and researchers need to make
adjustments in sequencing coverage according to the population size, diversity level, and LD decay
rate of the study sample in the initial experimental designs. Some imputation methods (typically
using hidden Markov model–based algorithms) are also suitable for outcrossing species whose
genomes contain numerous heterozygous genotypes (11). The use and simulations of sequencing
data on human populations showed that, after effective imputations, even extremely low-coverage
sequencing could increase the power of GWAS when compared with the microarray method
(82). Computation simulations are needed to determine the sequence coverage with different
population sizes for different crop species (63).

Some crops (e.g., maize, barley, and wheat) have large genomes, and whole-genome resequenc-
ing for these crops is still expensive. There are now several alternatives to sequencing the whole
genome. One method is to generate restriction-site-associated DNA tags (e.g., using SbfI or EcoRI)
and sequence them to identify polymorphic markers (6). A similar approach is to cut the genomic
DNA and ligate the genomic fragments to bar-code adapters to prepare a multiplex sequenc-
ing library (19). Through the use of methylation-sensitive restriction enzymes, the regions with
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transposable elements can be reduced, and the relatively low-copy regions flanking the particular
restriction enzymes are enriched in the sequencing library. Genotyping by sequencing has been
used in maize, sorghum, and barley, and these applications showed that this method is efficient
for large-scale, low-cost genotyping despite the limitations in SNP number and distribution (19,
76, 91).

Another approach, known as RNA sequencing (RNA-seq)–based genotyping, is to retrieve
genotype from RNA-seq data. Despite the great variation in genome size for different crops, there
are no significant changes in number of genes or total gene sizes. Because most repetitive regions
are ignored, performing transcriptome sequencing for SNP calling rather than whole-genome
resequencing is quite cost efficient. For example, a recent study genotyped a large number of SNPs
from 368 maize transcriptomes and then used the RNA-seq data for expression profile analysis
and expression QTL (eQTL) mapping simultaneously (61). It would be much more expensive
to genotype 368 maize genomes, because the repeat region occupies more than 80% of the total
maize genome.

RNA-seq-based sequencing has several weak points. Because the SNP density in genic regions
is much lower than that in intergenic regions, the number of SNPs called from RNA-seq data
may not be large enough for GWAS, especially for high-LD crops. The existence of a strong
bias in SNP distribution raises another problem: In a particular tissue at a particular time point,
many genes have very low or even no expression and thus cannot be used in genotyping, but
RNA preparation of multiple tissues at multiple time points for a large population would greatly
increase the workload. Exon-sequencing-based genotyping, facilitated by exon capture, can also
be applied to the mapping of some large, complex crop genomes (69, 78, 113) (Table 1).

LINKAGE MAPPING IN CROPS

To unravel the genetic basis of complex QTLs like grain yield and stress tolerance, a large sample
size is key—typically thousands of individuals are needed. It is now feasible to genotype thou-
sands of genomes using high-throughput methods. Compared with genotyping, most fieldwork
is still laborious, involving the measurement of multiple traits at several time points in large-scale
experiments across diverse environments. Some sensor-based platforms have been developed for
measuring biomass traits, including near-infrared spectroscopy on agricultural harvesters and spec-
tral reflectance of plant canopies (75). Future progress in phenotyping technologies will accelerate
genetic mapping and gene discovery in crops.

Genetic mapping in crops is usually undertaken in segregating mapping populations, such as
F2 populations, RILs, and backcross inbred lines. Further fine mapping and gene cloning then
follow, often using advanced backcross-derived populations. A mapping population derived from
a cross between the O. sativa ssp. indica Kasalath and O. sativa ssp. japonica Nipponbare varieties
has enabled the identification and cloning of tens of QTLs underlying a wide range of traits (32).
Although this strategy has been used successfully in functional genomics studies in crops, there
are two major limitations to QTL mapping in conventional recombinant populations. First, there
are only a few recombination events in the mapping population; for example, typically one or
two recombinations occur per chromosome in rice segregating populations, which would lead to
poor mapping resolution unless very large populations are used. Second, because the sequence
divergence between the selected parents in a particular segregating population represents only a
small fraction of all genetic variation within a species, in a single segregating mapping population,
only QTLs at which the two parents differ can be detected.

To overcome these disadvantages, some new types of populations have been constructed and
used. In maize, nested association mapping (NAM) was developed to enable high power and high
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resolution through joint linkage-association analysis (71). The NAM population was created by
crossing 25 diverse inbred maize lines to the B73 reference line, where the NAM population in
total includes ∼5,000 RILs. The NAM population has been used in large-scale genetic mapping
for several important traits (12, 58, 86, 109). In the model plant Arabidopsis, the Multiparent Ad-
vanced Generation Inter-Cross (MAGIC) population was generated, including hundreds of RILs
descended from a heterogeneous stock of 19 intermated Arabidopsis accessions (57). Computa-
tional simulation demonstrated that the QTLs explaining 10% of the phenotypic variance can be
detected with an average mapping error of approximately 300 kb when using the MAGIC popula-
tion. Another team crossed eight Arabidopsis accessions and produced a set of six RIL populations
called the Arabidopsis multiparent RIL (AMPRIL) population (40). QTL analysis in the AMPRIL
population showed that this genetic resource was able to detect QTLs explaining 2% or more of
a trait’s variation.

As an alternative to conventional linkage analysis, bulk segregation analysis coupled with
multiple-sample pooling sequencing can be used in the genetic mapping of simple qualitative
traits or mutant mapping. Several methods have been reported for this application, includ-
ing SHOREmap (98), next-generation mapping (5), MutMap (1), and MutMap-Gap (105). In
Arabidopsis, a mutant in the Columbia (Col-0) reference background was crossed to the Landsberg
erecta (Ler-1) accession, and a pool of 500 mutant F2 plants was sequenced to detect the causal
mutation sites (98). To avoid potential interference from different genetic backgrounds, James
et al. (49) recommended using populations derived from backcrossing the mutant line to the non-
mutagenized parent for mapping by sequencing. In rice, a recessive mutant was crossed to the
parental line used for the mutagenesis, and the genomes from multiple lines of mutant F2 progeny
were pooled and sequenced (1). The strategy can be further improved for application to quantita-
tive traits in crops (e.g., grading the RILs into several sequencing pools according to a particular
trait).

GENOME-WIDE ASSOCIATION STUDIES IN CROPS

GWAS take full advantage of ancient recombination events to identify the genetic loci underlying
traits at a relatively high resolution. The GWAS methodology became well established in human
genetics during a decade of great effort. Through global collaborations, millions of common SNPs
were identified in human populations to construct a high-density haplotype map of the human
genome (44, 45). Several commercial microarrays were designed for large-scale genotyping and
analysis of GWAS panels, with many accompanied tool kits developed. GWAS approaches have
been widely used in genetic research to identify the genes involved in human disease (2, 118). The
contribution of GWAS work to understanding of the genetic basis and molecular mechanisms of
common disease is evident.

With the rapid development of sequencing technologies and computational methods, GWAS
are now becoming a powerful tool for detecting natural variation underlying complex traits in
crops (88). Different from GWAS in humans, GWAS in crops usually use a permanent resource—
a population of diverse (and preferably homozygous) varieties that can be rephenotyped for many
traits and only needs to be genotyped once—and one can subsequently generate specific mapping
populations for specific traits or QTLs in crops (4). Human GWAS usually adopt a case–control
design: the identification of susceptibility loci for a particular disease through a population-scale
genome-wide comparison between large groups of patients and healthy controls. Moreover, hu-
man GWAS have been influenced by the missing heritability problem, where most loci that they
identify have a very low rate of phenotypic contribution. To detect more QTLs, the population
size (up to tens of thousands of individuals) and number of markers (up to millions of SNPs or
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whole genomes) must be increased continually. GWAS in crops are therefore much less costly
than those in human.

GWAS have now been carried out successfully in many crops, including maize, rice, sorghum,
and foxtail millet (41, 42, 50, 58, 61, 76, 109, 136). Based on the magnitude of resources already
developed and published, rice and maize are the two major models for crop GWAS, and both have
panels of thousands of genotyped inbreds and multiple environment trials conducted for several
traits. In rice, 1,083 cultivated O. sativa ssp. indica and O. sativa ssp. japonica varieties and 446 wild
rice accessions (Oryza rufipogon) were collected and sequenced with low genome coverage (39).
A high-density haplotype map of the rice genome was constructed using data imputation, and a
GWAS was then conducted to characterize the alleles associated with 10 grain-related traits and
flowering time using the comprehensive data set of ∼1.3 million SNPs. Several association signals
were tied to previously well-characterized genes. A GWAS was also carried out in 446 O. rufipogon
accessions for leaf sheath color and tiller angle, which would have stronger mapping power owing
to higher levels of genetic diversity in the wild species. Moreover, the GWAS was performed
based on the microarray-based genotyping approach. In total, 413 diverse accessions of O. sativa
were genotyped at 44,100 SNP variants and phenotyped for 34 traits, and the result showed the
complex genetic architecture of the traits in rice.

In maize, the genetic architectures of flowering time, leaf angle, leaf size, and disease resistance
traits were dissected by conducting linkage mapping and GWAS jointly in the NAM panel, and
multiple related candidate genes were identified (12, 58, 86, 109). The GWAS result demonstrated
that the genetic architecture of these traits is dominated by many QTLs with small effects. Maize
oil is an important food and energy source, and a GWAS in maize was recently performed for
maize kernel oil composition (61). A total of 368 maize lines were analyzed at ∼1 million SNPs
genome-wide, and 74 loci were found to be associated with maize kernel oil concentration and
fatty acid composition.

There are some slight differences between rice GWAS and maize GWAS. The differences are
reflected in the trade-offs in power and resolution in the mapping of selfing versus outcrossing
species. In the rice genome, LD generally decays at ∼100 kb, which might be a result of self-
fertilization and the small effective population size. Some other self-pollinated crops (e.g., foxtail
millet and soybean) show similar (or slower) LD decay rates as well. Owing to extended LD, the
low-coverage sequencing approach coupled with missing data imputation—which has been applied
in rice GWAS—is quite efficient and powerful. The low rate of LD decay, however, also means
that the resolution of GWAS in the selfing species cannot resolve a single gene. Maize, in contrast,
is a standard outcrossing species because the plant has separate male and female inflorescences that
differ in flowering time. Owing to its outcrossing nature, maize has rapid LD decay (within ∼2 kb)
and great genetic diversity, which makes it a promising model with greater power in GWAS.
In most cases, the resolution of maize GWAS may reach the single-gene level. Accordingly, a
typical GWAS in maize may need tens of millions of SNPs to be accurately typed genome-wide
for numerous varieties, which is still challenging and costly because of the large size, abundant
repeats, and paralog sequences in the maize genome.

GWAS have been successfully extended to genetic studies in other crops. A total of 916 diverse
foxtail millet varieties, including both traditional landraces and modern cultivars, were genotyped
through whole-genome low-coverage sequencing (50). A GWAS in foxtail millet identified mul-
tiple loci for tens of agronomic traits, which were measured in five different environments. In
sorghum, 917 worldwide diverse accessions were collected, and ∼0.2 million SNPs were identi-
fied through genotyping by sequencing (76). To identify the loci underlying variation in agro-
nomic traits, a GWAS was carried out on plant height components and inflorescence architecture,
and several known loci were mapped to these traits. For a barley GWAS, a team collected an
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association mapping panel with 224 spring barley accessions, which were genotyped at 957 SNP
sites using a genotyping microarray (81). The method identified some relevant candidate genes
despite the low marker density. Another team carried out a GWAS of 32 morphologic and 10 agro-
nomic traits in a collection of 615 barley cultivars, and the SNP density was very low as well (115).
Associative transcriptomics of traits in Brassica napus was applied based on SNPs from mRNA data
to assess the feasibility of conducting GWAS in polyploid crops (31). Genomic deletions were
detected that underlie two QTLs for the glucosinolate content of seeds, which identified a strong
candidate gene—the transcription factor–encoding gene HAG1. Bread wheat is a typical polyploid
crop with a huge genome. Association analysis has been tested in Triticum urartu, the progenitor
species of the A genome of bread wheat (65). However, implementing GWAS in wheat remains
technically difficult, and great effort will be needed to overcome the challenges.

These studies show that the GWAS method in crops is a useful and robust strategy com-
plementary to classical biparental cross mapping and has the power to genetically map multiple
traits simultaneously. GWAS results are expected to be further utilized to investigate the genetic
basis of plant morphology, yield, and physiology in more grasses, including close wild relatives of
domesticated crops.

A matter requiring attention in crop GWAS is the need to account for the massive population
structure, including weighing the trade-offs of increased false-negative and decreased false-positive
rates from accounting for that structure (55, 77, 85, 112). The mixed model is the most popu-
lar method to detect genotype–phenotype associations in crop GWAS (9, 131). However, the
computational burden of this model becomes impractical at large sample sizes (typically ∼1,000
accessions) and numbers of markers (typically ∼1 million SNPs). Some advances have substan-
tially decreased the computation time, including the Efficient Mixed-Model Association eXpedited
(EMMAX) program and the compressed mixed linear model method (53, 66, 67, 134, 135, 139).
GWAPP, an interactive Web-based application for conducting GWAS in Arabidopsis thaliana,
was developed using an efficient implementation of a linear mixed model known as an accelerated
mixed model (101). These methods mainly sequentially query SNPs with the inclusion of popula-
tion structure. Some additional multiple-regression approaches and nonparametric statistics have
also been developed (56, 100).

It is important to note that GWAS have low power for rare alleles, which make up a substantial
proportion of natural variation. In rice, ∼44% of the SNPs are of low frequency (minor allele
frequency <0.05). In the case of rare alleles, either the use of a large sample size or the construction
of multiple biparental cross populations (e.g., NAM or MAGIC) may be helpful.

In most cases, there are several genes in the interval of one GWAS locus (sometimes even in
humans and maize), only one of which might contribute to the QTL (that is, the causal gene).
Therefore, follow-up analyses of GWAS loci and additional experiments may be required to pin-
point the causal genes. Gene annotation, expression profiles, and variant catalogs can be carefully
analyzed in the post-GWAS stage. For example, the nucleotide binding site–leucine-rich repeat
genes are probably the causal genes in the GWAS loci for disease traits, and genes that are highly
expressed in the grain-filling stage are more likely to be causal genes in GWAS of grain-related
traits. The large-effect variants in the coding region of a gene can also provide important clues for
detailed analysis of GWAS loci. T-DNA mutants and targeting induced local lesions in genomes
(TILLING) analysis of candidate genes at the GWAS loci in crops using artificially induced mu-
tants (e.g., ethyl methanesulfonate–induced or radiation-induced mutants) could be an effective
approach for further identifying and validating gene–trait associations. More importantly and
directly, additional experimental studies, including transgenic analysis, will be necessary to con-
clusively identify causal genes and causal variants. More information will be gained through diverse
GWAS panels in crops when more traits (e.g., drought tolerance and photosynthesis efficiency)
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are carefully evaluated in these crops and more functional trials are performed, which will be of
great utility in addressing the important biological questions.

In addition to the phenotypic traits of ecological, agronomic, and economic interest, other
molecular components reflect natural variation among individuals. The nonphenotypic variation
may include diversity in gene expression level, DNA methylation, and metabolite accumula-
tion, which may contribute to phenotypic changes through complex pathways (23, 68). Over the
past decade, efforts to characterize nonphenotypic variation in natural accessions have improved
our knowledge, and GWAS are the most effective way to identify eQTLs, methylation QTLs
(mQTLs), and loci for various metabolism products. The rapid development of RNA-seq and
MethylC-seq technologies coupled with SNP data has enabled eQTL and mQTL mapping at a
previously unimaginable scale. In GWAS for eQTLs, the expression level of each gene is equiva-
lent to the phenotype data in an ordinary GWAS. Studies in maize and Arabidopsis reported that a
large fraction of the eQTLs were due to polymorphisms within or close to the gene (referred to as
local eQTLs or cis-eQTLs) (54, 61, 95). In contrast, some eQTLs were mapped elsewhere in the
genome (referred to as distant eQTLs or trans-eQTLs). In maize, the immature seeds were used
for RNA extraction, and the gene expression levels were obtained by RNA-seq technology. To
detect potential cis-eQTLs, a GWAS was performed to detect associations between the expression
level of each associated gene and nearby SNPs. Among the GWAS loci, 41 exhibited a statistical
correlation between DNA sequence polymorphisms and expression levels. These differences in
expression levels may account for a substantial proportion of diversity in agronomic traits. There-
fore, the identification of allelic expression differences and phenotypic variation will improve our
understanding of how the regulatory elements affect transcript accumulation and agronomic traits
afterward.

DNA methylation is a covalent base modification of nuclear genomes that can be accurately
inherited during cell divisions. In plants, DNA methylation occurs on cytosines at CG, CHG,
and CHH sites (where H = A, T, or C), and DNA methylation levels change in diverse nat-
ural accessions, referred to as natural epigenetic variation. Single-methylation polymorphisms
are considered to be the most abundant natural epigenetic variation. A recent study carried out
population-wide sequencing of the genomes and methylomes of hundreds of diverse Arabidop-
sis thaliana accessions and found that CG, CHG, and CHH single-methylation polymorphisms
accounted for 23%, 13%, and 64% of all single-methylation polymorphisms, respectively (95).
A GWAS was then conducted to link the genetic and methylation variants. Association analyses
of the DNA methylation levels with genetic variants identified 2,739 significant mQTLs. More
studies will be needed to shed light on the genetically dependent methylation variation and the
underlying mechanisms.

GENOME VARIATION INSIGHTS INTO CROP DOMESTICATION

Crop domestication is the outcome of continuous selection procedures that led to increased adap-
tation of a plant for cultivation by humans. Human ancestors made great efforts and took a long
time to improve wild plants to better suit human needs, and finally created tens of crops con-
taining inherent differences from their progenitors (18). By a few thousand years ago, human
ancestors had independently cultivated major cereal crops in various parts of the world. Based on
archaeological records and genetic analysis, the geographic origins and subsequent demographic
processes for most crops have been revealed (18). Bread wheat and barley were domesticated across
the Fertile Crescent region in western Asia. The cultivated rice O. sativa was initially formed from
the common wild rice O. rufipogon in southern China, and foxtail millet probably arose from wild
green foxtail in northern China. Genetic studies have identified the wild grass teosinte in southern
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Mexico as the closest relative of maize. More recently, the sweet potato (Ipomoea batatas) was do-
mesticated in South America and then spread across the world, and the domestication of sorghum,
now grown throughout the arid and semiarid tropics, originated in Africa. Crop domestication
represents one of the most important developments in human history.

Understanding the origins and domestication processes of cultivated crops is important for
modern crop breeding (for a review, see 80). The earliest agricultural practice was to grow and
harvest wild plants of a favorable species, a key step from the hunter-gatherer life to agricultural
civilization. Afterward, humans would select the individuals with the preferred characteristics
in the wild species populations and use the favorable seeds to resow and plant the next year.
During these processes, human selection and crop improvement occurred every year, and many
morphological and physiological traits of the wild progenitors were reshaped. For most crops, the
initial domestication may have focused primarily on converting wild types with few, smaller, and
shattering seeds to those with more, larger, and nonshattering seeds, often along with changes in
plant architectures. The traits under human selection in crop domestication may also include seed
dormancy, flowering time, outcrossing rate (e.g., the change of mating system from outcrossing
to selfing in rice and foxtail millet), and coloration. For some domestication traits (e.g., seed
shattering), the crop’s native characteristics are completely altered, such that the plants cannot
grow or reproduce without human intervention. For most traits (e.g., seed size and flowering
time), the phenotypic variation is quite broad in the wild progenitors, whereas the domesticated
crops tend to have limited variation.

Detecting the phenotypic differences between a crop plant and its wild relatives is relatively
easy; identifying the molecular basis for these differences is much harder. Considerable effort
has been devoted to detecting QTLs and genes that are under domestication selection in crops,
and tens of such genes have been identified in previous studies. The most common approach
is to (a) construct a recombinant population from a cross between a crop plant accession and
a line of its wild relatives, (b) perform QTL mapping to understand whether a domestication
trait is controlled by a few genes of large effect or many genes of small effect, and (c) fine map
a domestication gene with relatively large effect in a large population. It is important to note
that not all QTLs for domestication traits (e.g., seed size) have been under human selection and
belong to domestication loci: Some QTLs are responsible only for natural intraspecies variation,
and some have alleles that exist at a very low frequency in both cultivated and wild populations
(55, 107). Only genes underlying typical domestication traits whose favored alleles for this trait
under cultivated conditions have been significantly different from those under natural conditions
in a wild progenitor can be considered domestication-related genes.

Domestication loci can also be detected through population genetic analysis, which may rely
on procedures including (a) use of an extensive collection of tens of diverse varieties of both
a domesticated crop and its wild progenitor, (b) whole-genome profiling of sequence variation
through direct resequencing in the populations, and (c) genomic screening of artificial selection
signatures to detect selective sweeps (i.e., elimination of sequence variation in genomic regions
linked to a recently fixed beneficial mutation). There are several computational pipelines to detect
selective sweeps (e.g., simple diversity ratio, cross-population composite likelihood ratio, and
cross-population extended haplotype homozygosity) (13, 79). Because it is difficult to say which
method is best in all cases, knowledge of previously known loci involved in domestication of a
given species is important, providing an independent clue to choose an appropriate method and
parameter optimization. The threshold of sweep calling can be chosen based on a permutation
test (i.e., reshuffling the species information in the combined population of the crop species and
the wild species, and then performing selective sweep detection with the same parameters) and
well-characterized domestication loci.
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Owing to significant decreases in sequencing cost, this strategy has been successfully applied
in several crops (34, 39, 43, 60, 123, 127). In rice, several reports focused on detecting selective
sweeps by resequencing and analyzing diverse accessions of cultivated rice and wild rice (34, 39,
127). A systematic comparison of a large number of cultivated and wild rice accessions identi-
fied 55 domestication sweeps, including most well-characterized genes in rice (39). In maize, a
comprehensive assessment of selective sweeps was implemented based on the genome-wide re-
sequencing of 75 wild, landrace, and improved maize lines (43). Analysis of the resultant 484
domestication features revealed that maize domestication targeted hundreds of genes of diverse
biological function that likely affected many unstudied aspects of phenotype.

Genetic mapping and comparative genome analysis found that the Shattering 1 gene for seed
shattering was under parallel selection during sorghum, foxtail millet, rice, and maize domes-
tication (50, 64). Similar cases include Waxy, C1, and so on (92, 117). Because the required
population-scale comparative genomics are being or will be used in more crops (such as sorghum,
barley, and foxtail millet), comprehensive comparisons of the domestication sweeps in multi-
ple crops may find more key genes under parallel selection in the grass family. However, in
many cases, the same traits are controlled by different genes in the domestication of different
crops (some domestication genes were identified in one crop even without orthologs in other
crops).

The limitations of population genetics in analyzing domestication loci are due to the lack
of biological information: We do not know why these chromosomal loci were selected during
domestication. Integrating population genetic analysis and high-resolution genetic mapping may
be an effective way to overcome this lack of information. A recent study constructed and genotyped
a permanent mapping population from a cross between cultivated and wild rice, and identified tens
of QTLs underlying a wide range of domestication traits at a relatively high resolution (39). The
information on fine-mapped domestication-related QTLs enabled identification of the selective
sweeps associated with the traits. Crosses between teosinte and maize have also been widely used
in maize genetic studies to investigate the functions of domestication loci and identify the causal
genes (18).

Wild populations of most crops have not been effectively used so far owing to difficulties
in both collection and planting, but close wild relatives of domesticated crops are important
systems for ecological and population genetic research. Wild relatives of crop plants, which have
adapted to various climatic changes and survived until today, often contain many excellent traits
of agricultural importance, including tolerance to biotic and abiotic stresses, and are thus thought
to be valuable genetic resources for crop improvements. The rich gene alleles and great genetic
diversity in wild progenitors may be lost because of genetic bottlenecks in crop domestication.
Through comprehensive collection and assessment of wild relatives, it is possible to uncover
excellent genetic resources that can then be used to discover new alleles and provide genetic
donor material to breeders.

The causal variants underlying domestication traits can arise from either de novo mutation or
standing variation in wild populations (84). For the alleles with standing variation, GWAS of the
traits in the wild populations will be an alternative approach to identifying domestication genes.
Genome assemblies of wild species are therefore quite useful in both studying domestication and
determining the utility of wild resources. To unlock the genetic potential of wild rice, the Interna-
tional Oryza Map Alignment Project was initiated with the goal of completing the sequencing and
assembly of all 23 species in the Oryza genus (47, 120). So far, the 261-Mb de novo assembly genome
sequence of Oryza brachyantha (genome FF) and the de novo assembly of Oryza rufipogon (genome
AA) have been reported (14, 39), and the sequence assembly and genome annotation of other
wild rice species are under way. Along with the construction of advanced mapping populations

542 Huang · Han



PP65CH19-Han ARI 8 April 2014 22:13

using wild species, the 23 reference genome sequences will provide an important resource for
future breeding and molecular applications in the genus Oryza.

CROP DESIGNS BY GENOME-WIDE SELECTION

The study of natural variation and genetic mapping in crops has brought great advances in recent
years, and now it is time to put more effort into applying this knowledge to crop breeding through
molecular design (breeding that designs the crossing and selection procedures to generate a line
with expected genotypes). Although genetic modification technology can provide an effective way
to improve specific traits like insect resistance in crops, breeding programs using natural allelic
variation are still the most common approach in practice because the yield traits are generally
controlled by numerous QTLs. There is also public concern over the use of genetically modified
crops. Therefore, the use of molecular design in breeding is clearly a feasible alternative to genetic
modification technology.

Successful application of breeding through molecular design depends primarily on close and
long-term interactions between breeders and geneticists. To establish a platform for such an in-
teraction, a comprehensive digital map of the elite varieties could be constructed collectively. The
digital information includes high-density genotypes and measurements of multiple agronomic
traits in diverse environments for different varieties. The data set will be essential in molecular
design, because the elite varieties have accumulated some favorite alleles, and most genetic im-
provement programs need to be based on these resources along with further supplementation
of elite alleles from diverse landraces and wild relatives. For disease resistance and grain quality,
the well-characterized major QTLs or genes can be screened in the elite varieties, followed by
fine tuning through marker-assisted selection (3, 36, 74, 93, 106, 140). Moreover, the biparental
population of a selected cross, coupled with the information on associated loci in GWAS and
selective sweeps between tradition landraces and modern cultivars, can be directly applied in crop
breeding through genomics-assisted selection.

The yield traits are usually highly polygenic, controlled by a large number of QTLs with small
effects; QTLs with large effects would probably be under intensive selection during domestica-
tion and recent breeding, such that the deleterious alleles with large effects are rare or extinct
in the gene pools of modern elite cultivars (125). Marker-assisted selection of only a few QTLs
will therefore have limited effects on the grain yield. In this situation, whole-genome prediction,
which is a method for predicting phenotypes using high-density genotype data, might be com-
plementary to breeding design. This method was recently applied in an inbred line population to
estimate general combining ability in maize (90). A collection of 285 diverse maize inbred lines
was genotyped at 56,110 SNP sites using a microarray, and 130 metabolites were also surveyed
using gas chromatography–mass spectrometry. The lines were crossed with two testers, and the
F1 individuals were phenotyped in six environments for seven traits. To predict the general com-
bining ability of the inbred lines for seven traits of the hybrids, SNP and metabolite data were
fitted into models, and both of them provided high predictive accuracy (from 0.72 to 0.81). This
study demonstrates that in silico genomic design based on the combination of all superior SNPs
has the potential to predict yield performance to generate new superior varieties.

Although both GWAS and whole-genome prediction rely on high-density genotypes and phe-
notypes, there are some differences between the two approaches (Figure 2). For example, the goals
of the two methods are different. The GWAS method aims to identify individual loci (although
there are still some problems in detecting epistatic interactions) and related genes significantly
associated with a trait, and follow-up gene functional studies then analyze the molecular mech-
anism. Whole-genome prediction aims to provide accurate modeling from the genotype to the
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Figure 2
A schematic view of a genome-wide association study (GWAS) and whole-genome prediction using
genotype and phenotype data in diverse crop varieties.

phenotype, and a breeding program with designed crosses and marker-assisted selection can then
be carried out under computational guidance (73, 122). Therefore, the training population in
whole-genome prediction is generally the same as the breeding population that is being used,
and the traits for prediction should be closely related to crop improvement; GWAS, in contrast,
generally use a population with a high level of genetic diversity, and all kinds of phenotypes can be
examined. Compared with GWAS, whole-genome prediction is still in its development stage, and
many questions remain, such as how to select the training population and the most appropriate
statistical models (20, 30, 128).

Hybrid breeding is one of the most important aspects of crop breeding. Through crossing
of different inbred lines, produced F1 hybrids often provide higher yields than both parents, a
phenomenon known as heterosis or hybrid vigor. Commercial maize and rice seeds now include
a substantial proportion of such F1 hybrids, which has contributed greatly to global food security.
Crop breeders make and select many parent inbred lines every year that are then used in crosses
to generate F1 hybrids to test their yield performance. A small proportion of these hybrids have
improved performance, which can then be adopted for commercialization. Although heterosis is
widely used in agriculture and has been investigated for decades because of its direct and practical
implications for hybrid crop breeding, its genetic basis remains poorly understood. In rice, RILs
were intercrossed to create an experimental population referred to as an immortalized F2 (35,
62, 138). The yield component traits, including tiller number, grain number, and grain weight,
were then phenotyped in the immortalized F2 population. These studies further assessed the
relative contributions of dominance, overdominance, and epistasis to heterosis in hybrid rice.
Whole-genome profiling of gene expression changes between F1 hybrids and their parents was
also assayed in rice and maize to detect potential heterosis-associated genes and their unique
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Table 2 Levels of genetic diversity during domestication and modern breeding in three crop
species

Wild progenitors Landraces Modern cultivars Reference(s)
Maize 0.0059 0.0049 0.0048 42
Rice 0.0030 0.0024 Not reported 38, 39
Foxtail millet Not reported 0.0010 0.0009 48

expression patterns (16, 33, 103, 104). With more information on heterosis studies, integration of
new genomics technologies with traditional hybrid breeding strategies will help breeders design
and select the best combinations.

SYNTHESIS AND CONCLUSION

Available crop germplasm is a valuable resource for crop genetic study. Although the genetic
diversity of domesticated crops has been significantly reduced compared to that of their wild pro-
genitors, a relatively high level of genetic variation in modern crops has been maintained owing
to genetic drift and introgressions between or among the domesticated crops and their close wild
relatives (Table 2). Such diverse crop germplasm provides resources that facilitate modern breed-
ing and crop genomic and population genetic studies. Enhancing crop improvement in the future
will require continuing to collect diverse crops worldwide, constructing populations of crosses
between or among wild species and cultivated crop species, and identifying the morphologies and
genetic variation of natural-variant crop plants.

Exploiting the origins of cultivated crops and crop domestication histories will help us under-
stand how breeding has influenced the genetic diversity of modern crops. The studies reviewed
here demonstrate that using genome sequencing to create a comprehensive map of genome vari-
ations among cultivated species and closely related wild species will be a powerful approach for
crop domestication research. This map would provide detailed information on genomic patterns
to reveal the direction of introgression of the targeted genetic loci within or between cultivars and
wild species.

It is now feasible to comprehensively reveal genetic variation for traits among crop species
through enhanced genomic approaches. Genotyping via low-pass multiplex sequencing is a pow-
erful way to profile genomic patterns among diverse crops. Constructing haplotype map data sets
for all major crops as completely as possible is a key to genomics-assisted crop breeding. We can
predict that more and more such data sets will be available to facilitate genome-wide associa-
tion mapping of important agronomic traits in crops. We also believe that genetic mapping of
complex traits will be improved by developing new statistical models and integrating more data
sets from diverse crops. The enhanced genomic approaches will continue to reveal variability in
genetic architectures among traits and among crop species. Moreover, revealing the genetic basis
of heterosis in crops through an approach that integrates genomics and population genetics will
be crucial for crop improvement and accelerate genomics-assisted crop breeding.
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