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Abstract

Depending on the environment a young seedling encounters, the develop-
mental program following seed germination could be skotomorphogenesis
in the dark or photomorphogenesis in the light. Light signals are interpreted
by a repertoire of photoreceptors followed by sophisticated gene expression
networks, eventually resulting in developmental changes. The expression
and functions of photoreceptors and key signaling molecules are highly co-
ordinated and regulated at multiple levels of the central dogma in molecular
biology. Light activates gene expression through the actions of positive tran-
scriptional regulators and the relaxation of chromatin by histone acetylation.
Small regulatory RNAs help attenuate the expression of light-responsive
genes. Alternative splicing, protein phosphorylation/dephosphorylation, the
formation of diverse transcriptional complexes, and selective protein degra-
dation all contribute to proteome diversity and change the functions of in-
dividual proteins.
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1. INTRODUCTION

Light is one of most influential environmental stimuli, regulating numerous growth and develop-
mental processes during a plant’s life cycle, from seed germination through early seedling estab-
lishment, shade avoidance, the establishment of the circadian rhythm, flowering, and eventually
senescence (63). Plants possess cryptochromes, phototropins, and phytochromes to perceive and
coordinate UVA blue (B) and red/far-red (R/FR) light signals in their living environment. The
B and R/FR light photoreceptors have been comprehensively reviewed (22, 86, 96). In addition,
UV RESISTANCE LOCUS 8 (UVR8) was recently discovered to be the UVB photoreceptor
(111).

When seeds germinate in the soil under darkness, young seedlings undergo skotomorphogen-
esis and have closed cotyledons, unopened hooks, and elongated hypocotyls (Figure 1). Upon
protruding from soil, the seedlings proceed with photomorphogenesis, a developmental process
that transforms them into a vegetative state that is required for photosynthetic activity. The pro-
cess of photomorphogenesis, or de-etiolation, has been widely used for studies of light-sensing
and signaling pathways. This early seedling development is also modulated by multiple plant
hormones (72, 137). Here, I concentrate on regulatory genes that respond to light signals.

Genes contributing to the regulation of photomorphogenesis can be broadly classified as either
positive or negative regulators of photomorphogenesis. When seedlings are grown in the light,
light inhibits hypocotyl elongation. Mutants defective in positive regulators are less sensitive
to light treatment and exhibit a long-hypocotyl phenotype. ELONGATED HYPOCOTYL 5
(HY5) is one of the best-characterized positive regulators of photomorphogenesis (102). However,
mutations in negative regulators of photomorphogenesis lead to photomorphogenic development
when seedlings are grown in the dark or show hypersensitivity to light (shorter hypocotyls as
compared with wild-type seedlings). CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1)
is one such negative regulator (31).
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Figure 1
Photomorphogenic mutants included in this review. Skotomorphogenic and photomorphogenic
development of the wild type and mutants of positive and negative regulators are shown. Mutants are
categorized by their roles as positive or negative regulators and their contributions at different levels of gene
expression regulation.

The switch from skotomorphogenesis to photomorphogenesis is the conclusion of tightly reg-
ulated gene expression and the interaction of gene products. A broad definition of gene expression
involves producing functional RNA and/or protein products from the genetic codes. This article
focuses on light-regulated gene expression at various levels of the central dogma, including tran-
scriptional, posttranscriptional, translational, and posttranslational regulation. Figure 1 lists the
key regulators highlighted in this article.

2. TRANSCRIPTIONAL REGULATION

Light triggers the targeting of the phytochrome (phy) R/FR-light photoreceptors and the UVR8
UVB photoreceptor to the nucleus (23, 36, 62). The cryptochrome (cry) B-light photorecep-
tors are also present in the nucleus (138, 145). Genetic screens have yielded many Arabidopsis
thaliana mutants with aberrant photomorphogenic phenotypes (24). Like photoreceptors, the
protein products of many of the genes identified in mutant screens are localized in the nucleus.
The localization of photoreceptors and light-signaling molecules within the nuclei suggests active
molecular modulation within the nucleus, including the modification of chromatin structures and
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changes in transcriptional activities. These events contribute to the transcriptomic adjustment in
photomorphogenic Arabidopsis.

2.1. Chromatin Remodeling for Light-Regulated Gene Expression

The chromatin structure—including nucleosome positions and compaction—on the promoter
region of a gene can affect its transcription activity. Posttranslational modifications of the
N-terminal tails of histones in the nucleosome can affect nucleosome position and density. The
most commonly seen modifications of histones include acetylation, methylation, phosphorylation,
and ubiquitination.

2.1.1. Histone modification and expression of light-regulated genes. Among the histone
modifications, hyperacetylation can help to relax chromatin structure and lead to transcriptional
activation (70). In pea, light upregulation of the plastocyanin gene PetE is associated with the
hyperacetylation of histones H3 and H4 in a light-dependent manner (25, 26). Light also trig-
gers the acetylation of histone H3 on lysine 9 (H3K9) and histone H4 on lysine 5 (H4K5) in
the promoter and transcribed region of the C4-specific phosphoenolpyruvate carboxylase gene
C4-Pepc (99, 100).

The level of chromatin compaction differs among Arabidopsis accessions but is associated with
the light intensity of the native habitats of these accessions (132). Changes in light quality and
quantity also influence histone modifications, especially H3K9 acetylation, in Arabidopsis seedlings
(42). This study additionally showed that photoreceptors and key regulators, including COP1 and
HY5, are involved in the changes in histone modifications and the association of RNA polymerase
II with light-responsive genes (42).

In contrast, specific histone trimethylations can repress transcription. Quick light-repressed
expression of PHYA was accompanied by an increase in H3K27 trimethylation and a decrease
in H3K9/14 acetylation and H3K4 methylation levels surrounding the translation start site (54)
(Figure 2b). A genome-wide survey of four histone modifications (H3K9 acetylation, H3K9 tri-
methylation, H3K27 acetylation, and H3K27 trimethylation) provided a more comprehensive
picture of global histone modification in de-etiolating Arabidopsis seedlings (20). This study re-
vealed a clear and dynamic association between H3K9 acetylation and the gene expression of HY5,
HYH, and photosynthesis-related genes (20).

2.1.2. Photomorphogenic development of chromatin-modifier mutants. Previous studies
have identified chromatin-modifying enzymes responsible for the diverse and dynamic modifica-
tions of histones. Genetic studies in Arabidopsis further supported the idea that changes in histone
codes are involved in photomorphogenesis (Figure 2b). An Arabidopsis mutant defective in the
histone acetyltransferase HAF2/TAF1 showed light-insensitive phenotypes, including reduced
expression of light-responsive genes and decreased accumulation of chlorophyll (7). The haf2/taf1
mutant showed reduced acetylation of histones H3 and H4 in the RBCS-1A promoter and his-
tone H3 in the CAB2 promoter, in addition to their reduced expression (7). Similarly, mutation
in another histone acetyltransferase, GCN5, produced a long-hypocotyl phenotype in light with
reduced H3K9, H3K27, and H4K12 acetylation on promoters of target genes (5). Although a
genome-wide search of GCN5 target genes did not reveal a preferential binding of GCN5 to
light-upregulated genes, the binding of GCN5 and HY5 to the promoter was proposed to prime
the activation of early light-responsive genes (6).

Mapping of quantitative trait loci revealed that HISTONE DEACETYLASE A6 (HDA6) and
the polymorphic alleles of PHYB play positive roles in light-regulated chromatin compaction
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Figure 2
Examples of changes in light-regulated gene expression due to chromatin modifications (ac, acetylation; me, methylation).
(a) Expression and chromatin modifications of PHYA under dark or light conditions. The filled triangles indicate the translation start.
Histone modifications in red and gray text indicate modifications for turning gene expression on and off, respectively. (b) Expression and
chromatin modifications of RBCS-1A, CAB2, and IAA3 in the wild type and in Arabidopsis mutants defective in chromatin-modifying
enzymes. Thicker arrows indicate stronger expression. Font size positively correlates with the degree of histone modification indicated.

(132). Benhamed et al. (5) showed that HD1/HDA19 functions to repress the acetylation of
H3K9, H3K27, H4K5, and H4K8 of light-responsive genes, which explains in part the light-
hypersensitive phenotype in the hd1 mutant. HD1/HDA19 also regulates the deacetylation of
H3K9/14 on the PHYA locus (54). In contrast, Arabidopsis plants defective in HDA15 showed
longer hypocotyls under R/FR light, indicating that HDA15 is a positive regulator of R/FR-light-
signaling pathways (84). Interestingly, in the dark, HDA15 also functions to repress the expression
of genes in chlorophyll biosynthesis and photosynthesis by decreasing the acetylation levels in these
genes (84). The HDA15-dependent deacetylation of these genes depends on a negative regulator
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of photomorphogenesis, PHYTOCHROME INTERACTING FACTOR 3 (PIF3), possibly by
protein–protein interactions (84).

Another negative regulator of photomorphogenesis is PICKLE (PKL)/ENHANCED
PHOTOMORPHOGENIC 1 (EPP1), an ATP-dependent chromatin remodeling factor from
the chromodomain/helicase/DNA-binding family (59). In the dark, PKL/EPP1 can be recruited
to promoters of cell-elongation genes by the transcriptional regulator HY5 and function to repress
H3K27 trimethylation levels, thus leading to the expression of these genes and cell elongation (59).
Light downregulates the expression of PKL/EPP1 and stabilizes HY5 (see below), which increases
H3K27 trimethylation levels and represses cell-elongation gene expression in photomorphogenic
development (59).

Ubiquitination is another form of histone modification. In the early photomorphogenic stage,
light induces a quick redistribution of the monoubiquitinated histone H2B marks in the Arabidopsis
genome (10). As compared with its genome-wide distribution, modification of monoubiquitinated
histone H2B is overrepresented in coding regions of genes upregulated by light, especially those
that play important regulatory roles in photomorphogenesis (10).

2.2. Positive and Negative Transcriptional Regulators in Photomorphogenesis

Both classical and reverse genetic approaches have been broadly used for identifying genes that
when mutated result in aberrant photomorphogenic phenotypes. These approaches have yielded
many Arabidopsis mutants defective in transcriptional regulators, primarily in the families of B-box
zinc-finger transcription factors (BBXs), basic helix-loop-helix transcription factors (bHLHs), and
basic region/leucine zipper motif transcription factors (bZIPs).

2.2.1. B-box zinc-finger transcription factors. Many BBXs are important regulators in
photomorphogenesis (11, 65). Among them, BBX4/COL3, BBX20/BZS1, BBX21/STH2, and
BBX22/LZF1 are positive regulators (18, 28–30, 35). BBX22, a direct target of HY5, positively
regulates genes involved in the biosynthesis of anthocyanin and the biogenesis of chloroplasts (18).
In contrast, BBX24/STO and BBX25/STH negatively regulate photomorphogenesis by interfer-
ing with the transcriptional activity of HY5 toward BBX22 (39).

2.2.2. Basic helix-loop-helix transcription factors. PIF3 was the first bHLH transcription
factor identified to regulate photomorphogenesis in Arabidopsis (97). The involvement of multiple
PIFs in photomorphogenesis and their molecular actions have been comprehensively reviewed
(3, 17, 57, 76) and are not elaborated here. More recently, the transcriptomic impact of PIF1,
-3, -4, and -5 and their direct genomic targets were surveyed on a genome-wide scale (77, 147).
The cis-elements G box (CACGTG) and PBE box (CACATG) were found to be enriched in
direct target genes of PIFs (147). PIFs function in a partially overlapping way, but each PIF
has a different molecular effect (77). Results have also indicated that PIFs and phytochromes
antagonistically regulate transcriptomic alteration (77).

LONG HYPOCOTYL IN FAR-RED 1 (HFR1) is an atypical bHLH and a positive regulator
of the phyA-signaling pathway (34). Another bHLH, the Z-box binding factor ZBF1/MYC2, is a
negative regulator of photomorphogenesis (140).

2.2.3. Basic region/leucine zipper motif transcription factors. In the bZIP family, HY5 (21)
and its homolog HYH (47) are the members that have been most extensively characterized for
their positive roles in photomorphogenesis. HY5 and HYH belong to group H of the bZIP family.
HY5 contributes broadly to actions of various wavelengths of light and the integration of light- and
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hormonal-signaling pathways (72). HY5 initiates a transcriptional cascade by directly targeting
the promoters of thousands of genes (41, 146).

In group G of the bZIP family, the G-box binding factors GBF1, -2, and -3 can bind to
the cis-element G box (CACGTG) in promoters of light-responsive genes (115). During pho-
tomorphogenic growth, GBF1 negatively regulates the B-light-mediated inhibition of hypocotyl
elongation but is positively involved in cotyledon expansion (90). The group-G bZIPs bZIP16
and bZIP68 can form homodimers or heterodimers with other group-G bZIPs (119, 120). The
Arabidopsis bzip16 mutant is hypersensitive to R light (50). In photomorphogenic growth, bZIP16
functions as a transcriptional repressor regulating genes in the light and hormone (gibberellic acid
and abscisic acid) pathways (50).

2.2.4. Other transcription factors. LONG AFTER FAR-RED 1 (LAF1) is an R2R3-MYB
transcription factor. The Arabidopsis laf1 mutant has an elongated hypocotyl under FR light (4).
PHYTOCHROME A SIGNAL TRANSDUCTION 1 (PAT1), a GRAS family transcription
regulator, also positively regulates FR-light-mediated photomorphogenic development (9). Two
other positive transcriptional regulators in the phyA-signaling pathway that were derived from
ancestral transposases are FAR-RED ELONGATED HYPOCOTYL 3 (FHY3) and FAR-RED
IMPAIRED RESPONSE 1 (FAR1) (52).

2.3. Light-Regulated Transcriptomic Adjustments

I have summarized dynamic chromatin remodeling and the active involvement of transcriptional
regulators in responding to and transmitting light signals. The changes in nucleosome compaction
and the coordinated actions of transcription factors call for massive transcriptomic adjustments in
photomorphogenic seedlings.

Transcriptome profiling experiments with microarrays have revealed hundreds to thousands
of genes with differential expression patterns following light treatment in wild-type Arabidopsis
and different photomorphogenic mutants. For example, large-scale gene expression profiling has
been conducted in seedlings exposed to R, FR, and B light and light/dark transitions (89). This
landmark study estimated that one-third of the genome expresses differentially in response to
light and that these genes belong to more than 20 cellular pathways. Consistent with the consti-
tutive photomorphogenic phenotype, the genome-wide expression profile of the cop1 mutant is
similar to that of light-grown seedlings (88). Use of a custom-made microarray comprising 1,864
transcription factors indicated that approximately 20% of these were differentially expressed in
seedlings grown in the dark or under B light (58).

The availability of commercial Affymetrix GeneChip technology has further benefited studies
that use transcriptomic results to extrapolate genome-scale molecular events. Pioneering work
included the identification of transcription factors as the primary responders in early FR-light
responses (131), the identification of phyB and other phytochromes that together orchestrate the
expression of R-light-regulated genes (130), and the successful reconstruction of phyB function
in the phyA phyB mutant with constitutive Y276H phyB (51). Transcriptomic profiling is now
routinely used to reveal molecular events at a genome-wide scale that are associated with mutations
in genes related to perception or signaling in photomorphogenesis.

3. POSTTRANSCRIPTIONAL REGULATION

The genome-wide gene expression data obtained with total RNA or mRNA represent the steady-
state transcript levels of annotated genes. Studies of the transcriptional activation or repression
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of light-regulated genes offer only partial explanations for the light-regulated transcriptomic ad-
justments. In fact, the steady-state mRNA is the conclusion of multilayered events, including
transcriptional activation/repression and posttranscriptional regulation such as alternative splicing
and selected degradation of mRNA mediated by small regulatory RNAs. Studies of posttranscrip-
tional regulation in photomorphogenic development are not as abundant as those of transcriptional
regulation. However, the following examples indicate that posttranscriptional regulation indeed
contributes to this important developmental process.

3.1. Alternative Splicing in Light Responses

Alternative splicing is a key process for enhancing proteome diversity and transcriptome plasticity
without increasing the number of genes. Alternative splicing allows for the production of different
mRNA isoforms from a single gene. mRNA isoforms carrying premature termination codons may
undergo degradation via nonsense-mediated decay, thus reducing the accumulation of this mRNA
species. Alternatively, mRNA isoforms could produce protein products with additional or missing
functional domains, different protein stability, or targeting to different subcellular compartments.

In Arabidopsis, an estimated 40–60% of intron-containing genes may be alternatively spliced
(38, 92). Nine genes, including two encoding serine/arginine-rich (SR) proteins, were found to
be differentially spliced in dark- and light-grown seedlings (127). Many genes encoding impor-
tant light-sensing and signaling molecules produce two or more different alternatively spliced
transcripts; these include PHYA/PHYB1 in tomato (74, 75) and COP1 (148), PIF6 (107), CCA1
(38, 118), and HYH (126) in Arabidopsis. The alternatively spliced form of HYH lacks a COP1-
interacting motif and thus is more resistant to selective protein degradation mediated by COP1
(126) (Figure 3). Transgenic plants that overexpress the gene encoding an alternatively spliced,
truncated COP1 have a cop1-like phenotype in the dark, which implies a dominant-negative regula-
tory role of the truncated COP1 over the full-length protein (148). An alternatively spliced CCA1
variant, CCA1b, also functions to antagonize the full-length CCA1 by forming a nonfunctional
heterodimer with CCA1a or LATE ELONGATED HYPOCOTYL (LHY) (106).

Proper alternative splicing is important for photomorphogenic development. Arabidopsis plants
that carry mutations in a few splicing factors showed photomorphogenic defects. For example, the

HYH 
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Translation  
COP1-interacting motif

Light genes 

WD40
COP1

26S proteasome degradation

altHYHHYH 

Figure 3
Increased protein stability of an alternatively spliced HYH variant (altHYH). This variant lacks a motif
responsible for interaction with COP1. Increased levels of altHYH could increase the expression of
light-regulated genes.

318 Wu



PP65CH11-Wu ARI 8 April 2014 22:4

Arabidopsis skip mutant is hypersensitive to R and B light (136). SKIP is the Arabidopsis homolog of
the mammalian Ski-interacting protein, a splicing factor and component of the spliceosome. SKIP
can interact with the splicing factor SR45 to regulate pre-mRNA slicing, possibly through the
recognition and cleavage of the 5′ donor and 3′ acceptor sites. The abnormal splicing of PSEUDO-
RESPONSE REGULATOR 7 (PRR7) and PRR9 mRNAs in skip partly explains its defects in sensing
the light input signals (136). In contrast, the Arabidopsis mutant reduced red-light responses in cry1cry2
background 1 (rrc1) is insensitive to R light (125). RRC1 is an ortholog of the human potential
splicing factor SR140 and carries a C-terminal arginine/serine-rich (RS) domain. The RS domain
of RRC1 is essential for RRC1 to regulate the splicing of SR31 and SR34a under R light in a
phyB-dependent manner (125).

The advances in high-throughput sequencing allow for the discovery of alternative splicing
events in Arabidopsis. Although genome-wide alternative splicing in photomorphogenic Arabidopsis
has not yet been reported, global alternative splicing regulated by light was examined in the moss
Physcomitrella patens (139). This study showed that light triggers widespread intron retention for
photosynthetic and ribosomal genes in a phyB-dependent manner.

3.2. Posttranscriptional Regulation by Small Regulatory RNAs

Small regulatory RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs),
play a pivotal role in the posttranscriptional regulation of gene expression. Arabidopsis miRNAs
and siRNAs can regulate the abundance and/or translation of their target mRNAs and thus play
key roles in many growth and developmental stages (15, 91). Through the action of Argonaute-
containing RNA-induced silencing complexes, these small RNAs function in mediating target-
specific mRNA cleavage (60) and in translational repression (14, 79, 80). Phenotypic examination
of Arabidopsis mutants carrying weak alleles of ago1 showed a light-hypersensitive phenotype (128).
This study provided genetic data to suggest that small regulatory RNAs act as negative regulators
and contribute to the light-signaling pathways.

The identification of genome-wide targets of HY5 via chromatin immunoprecipitation and
hybridization to an Affymetrix 1.0R tiling array revealed eight miRNA-encoding (MIR) genes:
MIR156d, MIR172b, MIR402, MIR408, MIR775, MIR858, MIR869, and MIR1888 (146). HY5
activates the expression of MIR156d, MIR402, MIR408, MIR775, and MIR858 (146). In the hy5
mutant, 21 selected target genes of these five MIRs showed high expression (146). Thus, through
HY5 induction, the miRNAs could participate in repressing or at least tuning the expression
amplitude of light-regulated genes (Figure 4).

4. TRANSLATIONAL REGULATION

Despite the quick accumulation of genome-wide gene expression data at the steady-state mRNA
level, researchers have observed a moderate or even poor correlation between mRNAs and their
protein products in budding yeast and mammal cells (8, 133). Much less information is available
for the proteomes in photomorphogenic seedlings.

Several lines of evidence indicate that light can regulate gene expression by modulating the
translation step. Dark-grown seedlings carrying a mutation in translation initiation factor 3 sub-
unit H1 (eIF3h) showed a partial constitutive photomorphogenic phenotype (69). eIF3h is needed
for the ribosome to resume scanning after translating the upstream open reading frame(s) in the 5′

untranslated regions of some transcripts (66, 112). Similar defects in skotomorphogenic develop-
ment were observed in transgenic Arabidopsis seedlings ectopically expressing eIF3e (141). A recent
study provided compelling evidence of translation control during photomorphogenesis. Paik et al.
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Figure 4
Activation and attenuation of photomorphogenesis by the positive regulator HY5. HY5 could activate both
light-responsive genes and MIR genes, the latter of which encode microRNAs that function to attenuate the
expression of light-responsive genes.

(103) showed that, through interaction with the cytosolic protein PENTA1, the photoreceptor
phytochrome negatively regulates the translation of protochlorophyllide reductase mRNAs.

4.1. Light Increases Ribosome Occupancy on Selected Transcripts

Light can regulate the translation of photosynthetic genes. For example, the association of ferre-
doxin 1 (Fed-1) transcripts with polysomes was enhanced by light and stabilized the Fed-1 transcripts
(32, 108). Light also triggered the translation of a photosystem I gene, PsaD, through polysome
loading, a process that depends on the 5′ untranslated sequence of PsaD (124). However, the shift
from low light to high light reduced the translation initiation of the light-harvesting-complex
gene Lhcbm (95).

The technical advancements of real-time quantitative polymerase chain reaction and liquid
chromatography–mass spectrometry have allowed the measurement of transcript and protein levels
on a larger scale. In conjunction with fractionation of polysomes, Piques et al. (110) used these
platforms to measure the transcripts and protein abundance of 35 genes from central metabolic
pathways in Arabidopsis rosette leaves grown under diurnal changes. This study also revealed that
light markedly increases the translation rate for most of the genes examined.

The combination of polysome fractionation and genome-wide transcriptome profiling enabled
scientists to infer global translation in plants responding to abiotic stresses, including dehydration,
elevated temperature, high salinity, oxygen deprivation, sucrose starvation, and heavy metals (12,
13, 64, 94, 98, 129). A comparison of steady-state and polysome-bound mRNAs revealed that trans-
lational enhancement has a greater impact than transcriptomic adjustment in photomorphogenic
Arabidopsis. Liu et al. (82) showed that, during early photomorphogenesis, light increases trans-
lation efficiency by more than twofold and enhances the translation of thousands of genes. In
contrast to light-enhanced translation, an unanticipated dark treatment reduced translation by
17% in Arabidopsis, a process that could be fully recovered by 10 min of reillumination (61).

4.2. Light Increases Ribosome Density on Selected Transcripts

For selected transcripts examined, translation enhancement could be achieved by increasing ri-
bosome occupancy and density (82). The increase in ribosome density on transcripts might be
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overlooked if polysome-mRNA populations are not further fractionated. Nonselected transcrip-
tomic profiling of polysome-associated mRNAs offered information on the mRNA species under
translation but not the regions of transcripts translated.

These concerns were recently addressed by ribosome profiling, a method combining an RNase
protection assay with next-generation sequencing (53). This method could map the positions
of transcripts protected by translating ribosomes at single-nucleotide resolution. Liu et al. (83)
mapped the genome-wide positions of translating ribosomes in Arabidopsis etiolated seedlings in
the dark and after light exposure. This study also revealed hundreds of Arabidopsis transcripts
with increased or decreased ribosome density following a 4-h light treatment and showed that
transcripts with increased ribosome density under light treatment preferentially encode proteins
for the organization and function of chloroplasts.

4.3. Molecular Features Associated with Selected Translation by Light Signals

Genes encoding ribosomal proteins and proteins for functional chloroplasts are preferentially
regulated at the translational level (82, 83), which may explain the high translation capacity and
photosynthetic demands in photomorphogenesis. Other molecular features associated with tran-
scripts preferentially translated in the light include long half-lives, short cDNA length, and tran-
scripts with a cis-element (TAGGGTTT) in their 5′ untranslated region (82). This cis-element was
confirmed to enhance translatability, although its function may not be limited to light treatment
(82). In contrast, transcripts with high G+C content in their 5′ untranslated regions have low
translatability in the dark (61).

Ribosome footprinting results indicated that for more than 1,500 transcripts, the upstream
open reading frames initiated by ATG but not CTG will mediate translational repression of
the downstream main open reading frames (83), probably to attenuate the enhanced translation
efficiency by light signals (82). In contrast, miRNA-mediated translation repression is widespread
but comparable between dark-grown and early photomorphogenic Arabidopsis seedlings (83).

These studies reveal that multiple translational mechanisms work together to orchestrate and
fine-tune the light-regulated translation of diverse transcripts in Arabidopsis (Figure 5).

5. POSTTRANSLATIONAL REGULATION

Upon perceiving light, photoreceptors and key light-signaling molecules redistribute within dif-
ferent subcellular localizations to execute their functions (85, 134). The shuttling of these proteins
into the nucleus initiates a cascade of transcriptional and posttranscriptional regulation, as sum-
marized above. In addition to these changes in subcellular localizations, many of the translated
proteins acquire their full biological functions only after they have been modified posttransla-
tionally. Modifications including but not limited to protein phosphorylation, dephosphorylation,
formation of protein complexes, and selective protein degradation play key roles in regulating the
functions of photoreceptors and signaling molecules in photomorphogenic development.

5.1. Protein Phosphorylation and Dephosphorylation

Protein phosphorylation and/or dephosphorylation play key regulatory roles in gene expression
and signal transduction in de-etiolating plants.

5.1.1. Phytochromes as protein kinases. An ancestral phytochrome in Synechocystis sp.
PCC6803, Cph1, shows typical spectral reversibility with R/FR-light treatment and possesses
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Figure 5
Translational control in photomorphogenesis. Molecular features contributing to light-enhanced
translational control of mRNAs with a polyA tail (AA) include increases in ribosome occupancy and density
and the presence of cis-elements. Features like the presence of upstream open reading frames in 5′
untranslated regions and/or the presence of microRNA target sites will inhibit the translation of mRNAs.
Filled triangles indicate the translation start of the main open reading frame; open triangles indicate the
translation start of the upstream open reading frame.

light-regulated histidine kinase activity (144). Cph1 and its downstream response regulator Rcp1
form a prokaryotic two-component kinase pair. The phosphorelay from Cph1 to Rcp1 is also
light regulated (144). However, eukaryotic phytochromes have evolved to be serine/threonine ki-
nases. Indeed, both algal and plant phytochromes are capable of autophosphorylation (143). The
autophosphorylation of recombinant plant phytochromes is a light-regulated and intramolecular
reaction, so phytochromes themselves are protein kinases (143). Several proteins were later found
to be substrates of phytochrome kinase activities. These proteins include PHYTOCHROME KI-
NASE SUBSTRATE 1 (PKS1), a negative regulator of the phytochrome-signaling pathway (37);
B-light photoreceptor cryptochromes (1); auxin-responsive auxin/indole-3-acetic acid (AUX/IAA)
proteins (27); and FHY1, a protein essential for the nuclear localization of phyA and the molecular
responses induced by light (123).

Autophosphorylation of phytochromes also regulates the protein stability and physiological
activity of the R/FR-light photoreceptor phytochromes. Lapko et al. (71) identified three au-
tophosphorylation sites, Ser8, Ser18, and Ser599, by mass spectrometry of oat phytochrome A.
Transgenic plants expressing serine-to-alanine mutations in phyA at Ser8 and Ser18 showed light
hypersensitivity (71). The lack of autophosphorylation on Ser8 and Ser18 increased the protein
stability of phyA and thus enhanced phyA activity in transgenic plants (71). Light hypersensitivity
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Posttranslational modification of the photoreceptor phytochrome. (a) The prokaryotic phytochrome Cph1
could autophosphorylate and transfer the phosphate to its downstream regulator Rcp1. The Pr form of
Cph1 (thick line), but not the Pfr form, has autophosphorylation and phosphotransferase activities. (b) The
phosphorylation or dephosphorylation of phytochrome determines its interaction with the degradation
machinery (COP1/SPA) or signaling molecules (FHY3/FHY1, PIF3, NDPK2).

was also observed in transgenic Arabidopsis plants overexpressing oat phyA with an alanine substi-
tution at Ser599 in the hinge region (68). The phosphorylation of Ser599 plays an inhibitory role
by preventing the interaction of phytochromes with the signaling molecules, including PIF3 and
NUCLEOSIDE DIPHOSPHATE KINASE 2 (NDPK2) (68).

Saijo et al. (114) reported that underphosphorylated phyA could associate with FHY3 and
FHY1, which are positive regulators of phyA-signaling pathways, to execute functions under FR
light. However, the binding of phosphorylated phyA with the COP1–SPA1 complex acts as a
prelude for 26S proteasome-mediated degradation of phyA (see below) (114). Therefore, the
phosphorylation/dephosphorylation of phyA could determine its affinity with either signaling
molecules or protein degradation machinery (Figure 6).

5.1.2. Dephosphorylation of phytochromes by protein phosphatases. The phosphorylation
status of phytochromes could be modulated by protein phosphatases. Screening of phytochrome-
interacting proteins identified a cytosolic serine/threonine-specific protein phosphatase 2A, FyPP
(67). FyPP can dephosphorylate autophosphorylated oat phyA, and it can dephosphorylate the Pfr
form of oat phyA more effectively than it can the Pr form (67). A nucleus-localized phytochrome-
associated protein phosphatase type 2C (PAPP2C) also interacts with phytochromes and mediates
R-light-enhanced dephosphorylation of phytochromes (109). Moreover, a type 5 protein phos-
phatase (PAPP5) can preferentially interact with and dephosphorylate the Pfr form of phyA (113).
PAPP5 positively regulates the light responses mediated by phytochromes, possibly dephosphory-
lating both N-terminal serine and the serine residue in the hinge regions. The dephosphorylation
of N-terminal serine stabilizes phyA and increases its bioactivity, and that of serine in the hinge
region (Ser599) enhances the interaction of phyA with NDPK2 (113), which is consistent with
transgenic studies of phyA expression with serine-to-alanine mutations described above.
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5.1.3. Phosphorylation of signaling molecules by casein kinase 2. Casein kinase 2 (CK2)
can mediate the in vitro phosphorylation of a negative regulator of photomorphogenesis, PIF1
(16). When carrying mutations on putative phosphorylation sites (serine/threonine to alanine),
PIF1 confers increased protein stability and can promote hypocotyl elongation (16). CK2 was
also proposed to be the kinase responsible for phosphorylating the positive regulator HY5 (44).
Unphosphorylated HY5 is more active physiologically. The phosphorylation of HY5 reduces its
affinity with COP1, thus conferring more resistance to protein degradation (44). Similarly, recom-
binant CK2 can phosphorylate another positive regulator of photomorphogenesis, HFR1, and the
phosphorylation increases the protein stability of HFR1 (105). Thus, CK2 appears to participate
in the phosphorylation of both positive and negative regulators of photomorphogenesis. The
phosphorylation stabilizes the positive regulators HY5 and HFR1 but promotes the degradation
of the negative regulator PIF1.

5.2. Desensitizing Transcriptional Regulators via Protein–Protein Interactions

Many transcriptional regulators in the BBX, bHLH, and bZIP families are key players in pho-
tomorphogenic development. Many of these transcriptional regulators can form homodimers or
heterodimers with other transcription factors. The combined interactions among both positive
and negative transcriptional regulators offer an opportunity for fine-tuning the light-regulated
transcriptional activities.

Increasing evidence suggests that bHLHs possess diverse functions through the formation
of homodimers as well as heterodimers. A few atypical bHLHs lacking DNA-binding domains
function to attenuate the transcriptional activities of PIFs. For example, PHYTOCHROME
RAPIDLY REGULATED 1 (PAR1) forms a heterodimer with PIF4 and reduces the DNA-
binding activity of PIF4 (43). Under shade conditions, HFR1 forms heterodimers with PIF4
and PIF5 to form a non-DNA-binding complex, thus preventing PIF4/PIF5 from triggering the
expression of cell-elongation genes (49). This competitive inhibition could be compromised by
the formation of a heterodimer between KIDARI (KDR), another atypical bHLH, and HFR1
(48), which indicates a double-negative regulation of PIF activities.

The light-regulated phyA nuclear accumulation requires FHY1 and its homolog FHY1-LIKE
(FHL) (40, 46). FHY3/FAR1 can activate the expression of FHY1 and FHL. However, this ac-
tivation can be attenuated by the binding of HY5 to FHY3/FAR1 and to the ACGT-containing
element in the promoters of FHY1 and FHL (78).

The attenuation of transcriptional activity is not limited to interactions between transcriptional
regulators. Park et al. (104) reported that the Pfr form of phyB can interact with PIF1 and PIF3.
This binding sequesters PIF1 and PIF3 from binding to their target promoters.

5.3. Selective Protein Degradation

Selective protein degradation is a key regulatory step in photomorphogenic development
(Figure 7). Many photoreceptors and signaling molecules undergo posttranslational regulation
by light. Genetic screening of Arabidopsis mutants with aberrant photomorphogenesis phenotypes
has revealed many components in the ubiquitin/26S proteasome pathway. The most well-studied
group includes the COP1–SUPPRESSOR OF PHYA-105 (SPA) complex, the COP9 signalo-
some (CSN), and the COP10–DET1–DDB1 (CDD) complex (73). Genetic screening has also
identified EID1, an F-box protein functioning in the phyA pathway (33, 93). The F-box proteins
ATTENUATED FAR-RED RESPONSE (AFR) (45) and MORE AXILLARY BRANCHES
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Figure 7
Selective protein degradation of transcriptional regulators in photomorphogenic development. COP1
mediates the degradation of both positive and negative regulators in photomorphogenesis. E3 ligases
responsible for the degradation of PIFs remain unknown.

2/ORESARA 9 (MAX2/ORE9) (121) were also identified as positive regulators in the phyA- and
light-signaling pathways, respectively.

5.3.1. Selective degradation of photoreceptors. The protein abundance of photoreceptors
can be regulated posttranslationally by degradation. COP1 can interact with phyA and mediate
the ubiquitination and degradation of phyA (116). Light triggers the translocation of phyB into
the nucleus, where phyB is ubiquitinated by COP1 for degradation (55). PIFs can enhance the
COP1-mediated degradation of phyB (55), which is consistent with their negative functions in
light responses.

5.3.2. Selective degradation of positive regulators. Multiple transcriptional regulators pos-
itively regulating photomorphogenesis are degraded in the dark via the 26S proteasome in a
COP1-dependent manner. These regulators include HY5 (101), HYH (47), BBX22/LZF1 (19),
and a GATA transcription factor, GATA2 (87). The degradation of these positive regulators pre-
vents them from triggering photomorphogenic development in the dark, thus ensuring proper
skotomorphogenesis. Under FR light, COP1 also mediates the degradation of positive regulators
such as HFR1 (56) and LAF1 (117) for degradation as a means to attenuate the phyA signaling.

Light-induced translocation of COP1 from the nucleus to the cytosol (135) releases positive
regulators to turn on genes upregulated by light. Under B light, cry1 could interact with SPA1,
thus suppressing the function of COP1, because SPA1 is needed for the E3 ligase activity for the
COP1–SPA complex (81).

5.3.3. Selective degradation of negative regulators. The light-triggered degradation of nega-
tive regulators relieves their roles in activating genes for skotomorphogenesis, which include genes
involved in cell elongation. PIFs are the most well-characterized negative transcriptional regu-
lators of photomorphogenesis. In light, PIF3 is phosphorylated in a phyA- and phyB-dependent
manner. This phosphorylation is followed by the localization of PIF3 in nuclear speckles and then
quick degradation (2). Light also regulates the 26S proteasome–mediated degradation of PIF1 and
PIF5 (17, 122). The E3s responsible for the degradation of PIFs remain to be identified. In con-
trast, COP1 could interact with the negative regulator of photomorphogenesis BBX24/STO (47).
BBX24 only transiently accumulates in seedlings exposed to light signals, and this light-regulated
degradation depends on interaction with COP1 (142).
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6. CONCLUDING REMARKS

The regulation of gene expression could occur at different levels in the central dogma of molecular
biology. As highlighted here, environmental light signals set off a series of molecular actions at
almost every step of the dogma for gene expression regulation.

Light upregulates the expression of genes by triggering the translocation of photoreceptors
from the cytosol to the nucleus and negative regulators such as COP1 from the nucleus to the cy-
tosol, relaxing the chromatin structure through histone modification, activation of transcriptional
cascades by positive transcription factors, and massive enhancement of translation. The derepres-
sion of photomorphogenic development could also be achieved by inactivating negative regulators
through the formation of nonproductive protein complexes, phosphorylation, and degradation.

Clearly, most or all of these molecular actions should be properly inhibited when seedlings
are grown in the dark. Even with growth in the light, light signals need to be properly attenuated
to avoid exaggerated light responses. The attenuation or desensitization mechanisms include
the sequestering of photoreceptors and positive regulators in the cytosol, formation of a more
compacted chromatin structure, repression of gene expression by negative regulators, production
of miRNAs, and phosphorylation and degradation of photoreceptors.

Genes contributing to photomorphogenesis could be regulated at one or more levels in the
central dogma. Gaining a comprehensive and mechanistic understanding of photomorphogenesis
will demand continued efforts in dissecting individual genes and genome-wide surveys of gene
expression at all levels.

FUTURE ISSUES

1. How are light-regulated transcriptional complexes formed and regulated?

2. Is there coordinated regulation among chromatin structure, transcription, and alternative
splicing during photomorphogenesis?

3. Are the alternatively spliced variants nonproductive, or do they contribute to the increase
of proteome complexity?

4. Genome-wide profiling is needed of both mRNAs and small regulatory RNAs for
the discovery of microRNA–mRNA pairs that function to fine-tune the Arabidopsis
transcriptome.

5. Further work is needed to uncover key regulators and/or regulatory mechanisms that
determine the widespread translation enhancement in response to light treatment, espe-
cially for mRNAs with comparable abundance before and after light exposure.

6. Additional E3 ligases responsible for selective degradation of signaling molecules in
photomorphogenesis should be explored, especially the time-dependent degradation of
negative and positive regulators.

7. Phosphoproteome mapping during photomorphogenesis should be carried out, then
followed by mechanistic studies to determine the biological impact of protein phosphor-
ylation/dephosphorylation.
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